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Abstract
It has been common practice to assume that a two-parameter 
Weibull probability distribution is suitable for modeling 
lumber strength properties. In a series of papers published 
from 2012 to 2018, Verrill et al. demonstrated theoretically 
and empirically that the modulus of rupture (MOR) 
distribution of a visual grade of lumber or of lumber that has 
been “binned” by modulus of elasticity (MOE) is not a two-
parameter Weibull. Instead, the tails of the MOR distribution 
are thinned via “pseudo-truncation.” The theoretical portion 
of Verrill et al.’s argument was based on the assumption of 
a bivariate normal–Weibull MOE–MOR distribution for the 
full (“mill run”) population of lumber. Verrill et al. felt that 
it was important to investigate this assumption. In a recent 
pair of papers, they reported results obtained from a sample 
of size 200 drawn from a mill run population. They found 
that normal, lognormal, three-parameter beta, and Weibull 
distributions did not fit the sample MOR distribution of 
these data. Instead, it appeared that the MOR data might 
be fit by a skew normal distribution or a mixture of two 
univariate normals. In this paper, we investigate whether 
the joint MOE–MOR data from Verrill et al.’s recent mill 
run study can be well modeled as a mixture of two bivariate 
normals.

Keywords: normal distribution, bivariate normal 
distribution, mixed normal distribution, mixed bivariate 
normal distribution, skew normal distribution, two-
parameter Weibull distribution, three-parameter Weibull 
distribution, bivariate Gaussian–Weibull distribution, 
pseudo-truncated Weibull distribution, pseudo-truncated 
mixed normal distribution, machine stress-rated lumber, 
MSR lumber, binned MOE lumber, probability density 
functions, mill run, thin tail, lumber property distribution, 
chi-squared goodness-of-fit test for a mixture of bivariate 
normals.
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1 Introduction

In the wood reliability engineering community it has been common practice to model modulus of
elasticity (MOE) as a normal distribution and modulus of rupture (MOR) as a normal, lognormal,
or two-parameter Weibull distribution (Green and Evans 1987; Evans et al. 1997; ASTM 2017a,
2017b). However, Verrill et al. (2012, 2015) demonstrated theoretically the (in retrospect, obvious)
fact that the MOR population associated with a specific visual grade or specific MOE bounds will
not have the same theoretical form as the full (“mill run”) MOR population from which the visual
grade or the “MOE binned” subpopulation is drawn. In particular, they showed that if the mill
run population strength distribution is a two-parameter Weibull, then the strength distribution
of a visual grade or a grade based on truncated MOE values cannot be a two-parameter Weibull.
Instead, it has a “pseudo-truncated Weibull” distribution. (Verrill et al. (2012, 2015) showed
mathematically that a pseudo-truncated Weibull has a probability density function (pdf) that
cannot be represented as a Weibull probability density function.) Pseudo-truncated Weibull or
normal or lognormal distributions will have tails that are “thinned” or “tightened” compared to
non-pseudo-truncated Weibull, normal, or lognormal distributions. Verrill et al. (2013, 2014, 2018)
noted that such tightened tails can be observed in probability plots of In-Grade data. Verrill et al.
(2013, 2014, 2018) further established that if one fits a two-parameter Weibull to pseudo-truncated
data, estimates of probabilities of breakage when loads are at “allowable limits” can be seriously
in error. (See, for example, ASTM (2016) for a discussion of “allowable limits.”)

Verrill et al. (2015) started with a bivariate normal–Weibull MOE–MOR distribution and
derived the form of the corresponding pseudo-truncated Weibull model for MOR (for sub-populations
formed by specimens subject to specific MOE bounds). However, the actual form of the pseudo-
truncated MOR values will depend upon the exact relationship between MOE and MOR. If MOE
and MOR do not have the particular bivariate normal–Weibull relationship assumed in Verrill et
al. (2015), the pdf of a pseudo-truncated MOR population based on MOE bounds will differ from
the pseudo-truncated Weibull form derived by Verrill et al. (2015).

The bivariate normal–Weibull assumption upon which Verrill et al. (2015) based their work
is “commonly accepted” (that is, many researchers assume that MOE is distributed as a normal

1now President, American Lumber Standard Committee, Inc., Frederick, MD
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and MOR is distributed as a Weibull — see, for example, ASTM (2017a, 2017b)). However, these
assumptions are based on the work of researchers who were fitting distributions to grades of lumber
(as in the In-Grade work) rather than to mill run populations.

This fact, and the need for an accurate estimate of the MOR probability density function in
reliability calculations, led us to perform the experiment described in Verrill et al. (2017) and Owens
et al. (2018) — an experiment designed to yield estimates of mill run bivariate stiffness–strength
distributions (which, in turn, yield estimates of pseudo-truncated MOR distributions).

For this initial study, we decided to restrict ourselves to the population of lumber produced
at a single mill during a single day. We realized that populations obtained over multiple days
from multiple mills in multiple regions would almost certainly have more complicated structures.
However, we felt that it would be useful to first address the fundamental question of whether a
“simple” population could be modeled by a “simple” distribution such as a normal or two-parameter
Weibull. In Verrill et al. (2017) and Owens et al. (2018), we reported stiffness–strength data and
distribution fits for a sample of 200 pieces of mill run 2x4 lumber obtained from a single mill on a
single day.

We concluded from those analyses that the mill run MOR data were not well fit by normal,
lognormal, three-parameter beta, or two- or three-parameter Weibull distributions, but the data
might be well fit by a skew normal distribution or a mixture of two normal distributions. We also
concluded that mill run stiffness data might be well fit by a single normal distribution or a mixture
of two normal distributions.

In section 4.2 of Verrill et al. (2017) we noted that graphical evidence from the 200-piece
sample suggested that bivariate stiffness–strength data might have approximately the distribution
of a mixture of two bivariate normal distributions. We further noted that this would explain the
good separate fits of mixtures of univariate normals to the stiffness data and to the strength data.
Some possible causes of such a mixture population include a mixture of trees from a fast-grown
plantation stand and a suppressed stand, trees of two separate species, small-diameter trees and
large-diameter trees, and 2x4’s from the pith region versus 2x4’s from the bark region.

In this paper, we take a more rigorous look at modeling mill run stiffness–strength populations
by mixtures of bivariate normals.

In Section 2, we review the graphical evidence for mixtures of bivariate normals as stiffness–
strength distributions.

In Section 3, we describe goodness-of-fit tests that we performed to test this hypothesis (and
we provide a link to a page on our web site at which we provide the Fortran software that we
developed to perform the tests).

In Section 4, we describe the effects of pseudo-truncation applied to a mixture of two bivariate
normal distributions, and in Section 5, we discuss a series of recent results, including those presented
in the current paper, that conflict (to some extent) with current lumber strength standards. We
argue that these conflicts suggest that some current lumber strength standards may eventually need
to be revised, and/or new strength prediction techniques may need to be developed. We emphasize
that we are not currently proposing any changes in standards. Any such proposal would need to
be based on much additional work.
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2 Graphical evidence for a mixture of bivariate normals

The models discussed in section 4.1 of Verrill et al. (2017) were “univariate” models. That is,
they were models for the distributions of single variables (sb MOE1, ecomp1, dire1, or MOR1).
Our univariate work suggested that sb MOE, ecomp, and dire might be modeled as normals or as
mixtures of two univariate normals, and that MOR might be modeled by a skew normal distribution
or a mixture of two univariate normals.

Because strength and stiffness are positively correlated, there is extra information to be gained
by modeling the joint behavior of sb MOE and MOR (or ecomp and MOR or dire and MOR). In
this section, we discuss a bivariate model — a mixture of two bivariate normals — that is suggested
by the data. We note that if a bivariate stiffness–strength distribution is a mixture of bivariate
normals, then the corresponding univariate (or “marginal”) stiffness and strength distributions
will be mixtures of univariate normals. (This is well known to statisticians but we provide an
“elementary” proof in Appendix A.) Thus, a stiffness–strength distribution that is well modeled
by a mixture of bivariate normals would explain the fact that sb MOE, ecomp, dire, and MOR are
individually well modeled by mixtures of univariate normals.

What is the graphical evidence for a mixture of bivariate normals? Statisticians know that
if variables X and Y have a bivariate normal distribution, then a plot of Y versus X values
will be an approximately elliptical cloud of data points. In Figures 1–3, we plot MOR versus sb
MOE, MOR versus ecomp, and MOR versus dire, respectively. All three scatter plots suggest that
the bivariate stiffness–strength distributions might be well approximated by mixtures of bivariate
normal distributions. To investigate this possibility further, we used maximum likelihood methods
to fit mixtures of two bivariate normal distributions to the sb MOE–MOR, ecomp–MOR, and dire–
MOR data sets. (The density of a mixture of two bivariate normal distributions is provided in
Equation (6) in Appendix A.) The programs that we wrote to perform these fits can be found at
http://www1.fpl.fs.fed.us/mix bivn code.html.

In Table 1 we report the parameter estimates from these fits. The lower left cloud in the
appropriate MOE–MOR scatter plot (Figures 1–3) corresponds to the “Left bivariate normal” fit
in Table 1. The upper right cloud corresponds to the “Right bivariate normal” fit in Table 1.

The fitted µ̂MOE,1, σ̂MOE,1, ρ̂1, µ̂MOR,1, σ̂MOR,1, µ̂MOE,2, σ̂MOE,2, ρ̂2, µ̂MOR,2, σ̂MOR,2, and p̂ in
Table 1 correspond to the parameters µX1, σX1, ρ1, µY1, σY1, µX2, σX2, ρ2, µY2, σY2, and p of
Equation (6) in Appendix A. In particular, p̂ is our estimate of the proportion of specimens that
come from the lower left bivariate normal population.

The bivariate fits can be used to calculate “probability contours.” For example, for a bivariate
normal distribution, a 0.90 probability contour is an ellipse centered at the bivariate mean of the
distribution that will (over the long run) contain 90% of (X,Y ) pairs randomly drawn from the
distribution. In each of Figures 4–6 we have superimposed 0.90 probability ellipses corresponding
to the two bivariate normal components (the component whose probability density function (pdf)
is multiplied by p in Equation (6) and the component whose pdf is multiplied by 1 − p) of the
mixed bivariate normal distributions fitted to the sb MOE–MOR, ecomp–MOR, and dire–MOR
data clouds displayed in Figures 1–3. In Figures 7–9 we plot 0.90 probability contours for the full
mixed bivariate normal distributions (as opposed to the 0.90 content ellipses corresponding to the
components). The plots do not prove anything. However, the plots do lend support to the intuition

1sb MOE (static bending MOE) and MOR were measured on an Instron R© universal testing machine (Instron
Corporation, Norwood, Massachusetts, USA). Ecomp was obtained by measuring transverse vibration via a
Metriguard E-computer Model 340 (Metriguard, Pullman, Washington, USA). Dire was obtained by measuring
acoustic velocity via a Fibre-gen Director HM200 (Fibre-gen, Christchurch, New Zealand). Details can be found in
section 3 of Verrill et al. (2017).
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that mill run lumber stiffness–strength distributions will likely be mixtures of distributions. In our
case the stiffness–strength distributions appear to be mixtures of two bivariate normal distributions
(at least approximately).

In the next section we supplement this “graphical” evidence with results from formal tests of
goodness-of-fit.

3 Chi-squared goodness-of-fit tests

We chose to implement a “chi-squared” goodness-of-fit test for a mixture of bivariate normals. Chi-
squared goodness-of-fit tests are described in many statistical textbooks. In chapter 3 of D’Agostino
and Stephens (1986), David Moore provides a detailed description of “Tests of Chi-Squared Type.”
In that chapter, Moore suggests that an appropriate number of “cells” lies between 1.88×n2/5 and
3.76 × n2/5 where n is the sample size. For a sample of size 200, this suggests a number of cells
between 16 and 32. We chose to work with 20 cells, each of which (under the null hypothesis of a
mixture of two bivariate normal distributions) contained about 0.05 of the probability. That is, the
expected number of observations in each cell was approximately 200 × 0.05 = 10. (In D’Agostino
and Stephens (1986), Moore recommends that cells should be of approximately equal probability.)

We followed several steps to perform the test:

1. Obtain a maximum likelihood (ML) fit of a mixture of two bivariate normals to the set of
200 stiffness–strength data pairs.

2. Choose a rectangular region (e.g., 0 to 3 by 0 to 15 for a stiffness–strength region [MOE
values divided by 1,000,000, MOR values divided by 1,000]) that contains essentially all the
probability (e.g., 0.997 and above).

3. Divide this region into 1,000,000 (1,000 by 1,000) rectangles.

4. Take as the estimate of the probability of one of these small rectangles,

(pdf at center of small rectangle)× (area of small rectangle)

(This amounts to numerical integration.)

5. Use the small rectangles to divide the large rectangle into J columns, each of which contains
approximately 1/J of the probability.

6. Use the small rectangles to divide each of the J columns into I rows (where J × I = 20), each
of which contains approximately 0.05 of the probability. The exact probability associated with
a cell will be the sum of all the probabilities associated with the small rectangles contained
in the cell. For the ijth cell, j ∈ {1, . . . , J}, i ∈ {1, . . . , I}, denote this probability by pij .

7. Take the chi-squared statistic to be

χ2 =

J∑
j=1

I∑
i=1

(Oij − Eij)2/Eij

where Oij is the observed number of stiffness–strength pairs in the ijth cell and Eij = pij×200.
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8. Because we used full data maximum likelihood techniques rather than grouped data maximum
likelihood techniques to estimate the parameters of the mixture of bivariate normals, the “chi-
squared” statistic is not actually distributed as a chi-squared random variable (see Moore’s
section 3.2.2.1 in D’Agostino and Stephens (1986)). Thus, we needed to do a “parametric
bootstrap” (a kind of simulation) to obtain estimates of the p-values associated with the
statistic. For each of the chi-squared tests we performed 1000 simulations. In each of these
simulations we generated a sample of size 200 from the fitted (to the original stiffness–strength
data) mixture of bivariate normals. For each of these simulated data sets, we calculated a
chi-squared statistic by the same method used to calculate the chi-squared statistic for the
original data. This resulted in the original chi-squared statistic based on the original data,
and 1000 chi-squared statistics based on 1000 samples of size 200 drawn from the mixed
bivariate normal distribution that was fit to the original data.

9. From these simulations it is possible to obtain an approximate p-value and an “exact” lower
bound on the true p-value. If we order the 1000 simulated chi-squared values from smallest
to largest, and the original chi-squared value calculated from the real data lies between the
mth and (m + 1)th of the 1000 ordered chi-squared values, then the approximate p-value is
(1000−m)/1000. Thus, for example, if the original chi-squared statistic lies below only 100 of
the 1000 simulated chi-squared values, we would say that the approximate p-value is 0.10. If
the original chi-squared statistic lies below only 50 of the 1000 simulated chi-squared values,
we would say that the approximate p-value is 0.05.

In Appendix C we describe how the “exact” lower bound on the p-value is obtained.

For sb MOE, we performed chi-squared goodness-of-fit tests with

• J = 5, I = 4

• J = 4, I = 5

• J = 10, I = 2

• J = 2, I = 10

We did this because we wanted to have some assurance that the results were not heavily dependent
on how the 20 cells were formed. The conclusions were not dependent on how the 20 cells were
formed, so in the ecomp and dire cases, we performed chi-squared goodness-of-fit tests only with
J = 5, I = 4.

A listing of one version of the program that we wrote to perform the chi-squared tests and
simulations can be found at http://www1.fpl.fs.fed.us/mixbivn.html (the program also performed
maximum likelihood estimation of mixed bivariate normals and produced various plots).

Figures 10–15 display data clouds overlaid with overall mixed bivariate normal 0.90 contours
(as opposed to the component bivariate normal 0.90 contours displayed in Figures 4–6) and the
cells that were used in the chi-squared tests.

Tables 2–7 contain the corresponding observed and expected values for the 20 cells in each test.
Table 8 contains the approximate p-values and the “exact” lower bounds on p-values for the

various chi-squared goodness-of-fit tests.
Taken together, the plots and the chi-squared tests suggest that we cannot reject the hypothesis

that the stiffness–strength values measured for the 200 pieces of lumber are drawn from a mixture
of two bivariate normals. (Having said this, we realize that a mixture of bivariate normals model
cannot be completely correct because it predicts non-zero probabilities for negative stiffness and
strength values.)
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4 Consequences of pseudo-truncation and a parent population
that is a mixture of bivariate normals

Before discussing the implications of a parent population that is a mixture of two bivariate normals,
we first need to present some additional plots. (We used a version of the Fortran program available
at http://www1.fpl.fs.fed.us/mixbivn.html together with the R statistical package (R Core
Team (2013)) to produce these plots.) In Figure 16, we plot in solid black the density of the
marginal MOR mixture of normals (calculated from the fit of the mixture of bivariate sb MOE–
MOR normals). We also include the p × fMOR,L (in dashed red) and (1 − p) × fMOR,R (in
dotted blue) components contributed to this density from the “lower left” and “upper right” fitted
subpopulations. (Here, the f values denote the probability density functions of the left and right
components of the marginal MOR mixture of normals. See Equation (7) in Appendix A. The fitted
value for p was 0.55.) From right to left, the dotted blue vertical lines are at the theoretical 0.05,
0.01, 0.001, and 0.0001 quantiles of the right subpopulation. From right to left, the dashed red lines
are at the theoretical 0.05, 0.01, 0.001, and 0.0001 quantiles of the left subpopulation (obviously,
the model breaks down for the leftmost tail of the left component as it yields negative strength
values for the theoretical 0.001 and 0.0001 quantiles). This plot makes clear the substantial left tail
differences between the two subpopulations. This should (perhaps) start us worrying. However,
these are mill run results. We would expect that by using visual grades or MOE binning, we would
be “accounting for” such differences. That is, the lower quality pieces in the left tail of the left
population would be screened out.

To investigate this assumption, we performed sb MOE binning on the sample. That is, we
looked at the pseudo-truncated MOR population that is obtained by considering only that subset
of the mixture of bivariate normals for which the sb MOE value lies between the 0.4 and 0.8
quantiles of the full marginal sb MOE population.

The sb MOE population used in this 0.4,0.8 truncating is illustrated in Figure 17. There we
plot in solid black the density of the marginal sb MOE mixture of normals (calculated from the fit
of the mixture of bivariate sb MOE–MOR normals). The vertical black lines are at the 0.4 and 0.8
quantiles of this population — 1.332 and 1.721. We also include the p×fMOE,L (in dashed red) and
(1− p)× fMOE,R (in dotted blue) components contributed to this density from the “lower left” and
“upper right” fitted subpopulations. (Here, the f values denote the probability density functions
of the left and right components of the marginal sb MOE mixture of normals. See Equation (8) in
Appendix A.)

Figure 18 includes a scatter plot of MOR versus sb MOE, 0.90 probability content contours
for the two bivariate normal components of the fitted mixed bivariate normal model, and dashed
vertical lines at the 0.4 and 0.8 sb MOE quantiles estimated from the marginal sb MOE distribution
calculated from the fitted mixed bivariate normal model.

Figure 19 illustrates the effect of pseudo-truncation via sb MOE limits on the left (p = 1) and
right (p = 0) MOR subpopulations. The subpopulation pdfs (without the p and 1− p multipliers)
prior to pseudo-truncation are plotted as dashed lines. Pseudo-truncation via the 0.4, 0.8 quantiles
of the marginal sb MOE distribution (the pdf is derived in Appendix B and displayed in Equation
(18)) yields the solid lines.

Note that the pseudo-truncation has shifted the left subpopulation to the right (as we would
hope) and has narrowed both the left and right subpopulations. However, even after pseudo-
truncation via sb MOE limits, the two subpopulations remain quite different. Their differences will
be quantified when we discuss Figure 21 below.

The density of the resulting 0.4,0.8 pseudo-truncated (on sb MOE) full MOR population is
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plotted in Figure 20 together with dashed vertical lines at its 5th percentile and “allowable property”
values. (The fifth is 5.03 and the “allowable property” — 5th/2.1 — is 2.40.) Comparing Figures
16 and 20 (compare, for example, the pdf values at MOR = 5 for the two plots, or the pdf values at
MOR = 12 for the two plots), we see that (as we would expect) the pseudo-truncation thins both
the left and right tails of the MOR distribution.

(The derivations of the marginal non-pseudo-truncated and pseudo-truncated MOR probability
density functions are provided in Appendices A and B.)

In Figure 21, we present plots of the pseudo-truncated MOR pdfs based on p = 1 (dashed red)
and p = 0 (dotted blue) values — that is, pseudo-truncated MOR pdfs derived from the “lower
left” and “upper right” bivariate normals in the scatter plots. (These pdfs match the solid red and
blue pdfs in Figure 19.) From right to left, the dotted blue vertical lines are at the 0.05, 0.01, 0.001,
and 0.0001 quantiles of the right subpopulation. From right to left, the dashed red lines are at the
0.05, 0.01, 0.001, and 0.0001 quantiles of the left subpopulation.

As we noted in our discussion of Figure 19, the means of these two subpopulations are closer to
each other than the means of the corresponding non-pseudo-truncated subpopulations plotted in
Figure 16. However, it is clear from Figure 21 that even after pseudo-truncation via MOE limits,
the remaining left and right subpopulations differ considerably in their strength properties. The
means, standard deviations, and 0.0001, 0.001, 0.01, 0.05, and 0.50 quantiles for the subpopulations
(left and right non-pseudo-truncated and left and right pseudo-truncated) are presented in Table 9.

5 Discussion

This paper and past work have raised concerns about some aspects of current ASTM lumber
strength standards:

1. Visual grade or MOE bin based strength populations from a mill will be pseudo-truncated
versions of mill run strength populations. Thus, even if, for example, the mill run MOR
distribution of 2x4’s produced by a mill were a normal or a lognormal or a Weibull, No. 2
lumber from that mill would not be normal, lognormal, or Weibull. It would be “pseudo-
truncated” normal, lognormal, or Weibull. This fact and its implications are discussed in
detail in Verrill et al. (2012, 2013, 2014, 2015, 2018).

2. The data discussed in the current paper and in Verrill et al. (2017) and Owens et al. (2018)
suggest that the mill run MOR distribution at one mill is not normal, lognormal, or Weibull.
The mill run distribution might be a skew normal or a mixture of two normals. We will be
replicating this study as well as investigating mill run strength distributions at three other
mills.

3. As suggested in Verrill et al. (2017) and established more rigorously in the current paper,
the mill run bivariate sb MOE–MOR distribution (at the mill under investigation) can be
well modeled as a mixture of two bivariate normals (with mixture proportions 0.55 and
0.45). These data can be assumed to be derived from a random sample of the 2x4 lumber
produced by the mill over a period of several hours. Some possible causes of such a mixture
population include a mixture of trees from a fast-grown plantation stand and a suppressed
stand, trees of two separate species, small-diameter trees and large-diameter trees, and 2x4’s
from the pith region versus 2x4’s from the bark region. In any event, we have found that the
strength properties of the two populations that make up the mixture of two bivariate normals
are considerably different. This suggests that unless mixtures and mixture proportions are
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constant across mills and over time (this seems unlikely), the quality of output could vary
significantly over time and among mills depending upon the particular mixture and mixture
proportions. (The variability will surprise no one. The ability to quantify one source of
variability — varying mixture proportions — and to potentially model its conseqences is
new.)

4. It could be argued that visual grading/MOE binning protects us from the effects of input
streams of varying quality. However, after performing virtual MOE binning based on our
sample of 200 boards, we saw that we could still have large swings in strength properties
depending upon which of the two bivariate normal distributions was providing the boards.
We chose as our MOE cutoffs the 40th and 80th percentiles of the combined MOE population.
We then calculated the resulting pseudo-truncated normal MOR distributions associated with
drawing solely from the “lower quality” (0.55 proportion in our sample) population or solely
from the “higher quality” (0.45 proportion in our sample) population. (In the absence of
detailed knowledge about the sources of the two populations, it certainly seems conceivable
that there might be days [or periods within a day] during which most of the logs processed
come from the lower quality population.) We found that even if we impose the 0.4,0.8 MOE
full population cutoffs, the MOR distribution that will result from drawing solely from the
“lower quality” bivariate normal will be significantly left-shifted (a significantly lower mean
and quantiles) from the MOR distribution that will result from drawing solely from the
“higher quality” bivariate normal. This might make one worry about the consistency of a
mill’s product. (We note that this concern cannot directly apply to MSR lumber. In addition
to being based on MOE limits, MSR lumber also involves visual grade restrictions, knot size
limitations, and quality assurance via mandated and frequent MOR testing.)

5. The fact that MOE bin and visual-grade based MOR strength distributions are not two-
parameter Weibulls (and that assuming that they are can lead to large over- or underestimates
of probabilities of failure at allowable property loads — see Verrill et al. 2013, 2014, 2018)
suggests that the current ASTM (2017b) LRFD approach (which is based on a two-parameter
Weibull strength distribution assumption) might need to be re-evaluated and improved.

We believe that the issues raised in this section may eventually need to be addressed by
standards-writing bodies. Currently, we are engaged in additional studies that should give us
a better idea of the manner in which bivariate MOE–MOR distributions change from mill to mill
and from time to time. These studies should help us determine whether we should be concerned
about the validity of some of the reliability models that appear in current lumber standards.

6 Summary

Verrill et al. (2012, 2015) demonstrated theoretically that the MOR population associated with a
specific visual grade or specific MOE bounds will not have the same theoretical form as the mill
run MOR population from which the visual grade or the MOE binned subpopulation is drawn. In
particular, they showed that if the mill run population strength distribution is a two-parameter
Weibull, the strength distribution of a visual grade or a grade based on truncated MOE values
cannot be a two-parameter Weibull. Instead, it has a “pseudo-truncated Weibull” distribution.
Pseudo-truncated Weibull or normal or lognormal distributions will have tails that are “thinned”
or “tightened” compared to non-pseudo-truncated Weibull, normal, or lognormal distributions.
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Verrill et al. (2012, 2015) started with a bivariate normal–Weibull MOE–MOR distribution
and derived the form of the corresponding pseudo-truncated Weibull model for MOR (for sub-
populations formed by specimens subject to specific MOE bounds). However, the actual form
of the pseudo-truncated MOR values will depend upon the exact relationship between MOE and
MOR. If MOE and MOR do not have the particular bivariate normal–Weibull relationship assumed
in Verrill et al. (2012, 2015), the pdf of a pseudo-truncated MOR population based on MOE bounds
will differ from the pseudo-truncated Weibull form derived by Verrill et al. (2012, 2015).

The bivariate normal–Weibull assumption upon which Verrill et al. based their theoretical work
is “commonly accepted” (that is, many researchers assume that MOE is distributed as a normal and
MOR is distributed as a Weibull). However, these assumptions are based on the work of researchers
who were fitting distributions to grades of lumber (as in the In-Grade work) rather than to mill
run populations.

This fact, and the need for an accurate estimate of the MOR probability density function
in reliability calculations led us to perform the experiment described in Verrill et al. (2017) and
Owens et al. (2018) — an experiment designed to yield estimates of mill run bivariate MOE–MOR
distributions (which, in turn, yield estimates of marginal pseudo-truncated MOR distributions).

For this initial study, we restricted ourselves to the population of lumber produced at a single
mill during a single day. We concluded from our analyses that the mill run MOR data set
was not well fit by normal, lognormal, three-parameter beta, or two- or three-parameter Weibull
distributions, but it might be well fit by a skew normal distribution or a mixture of two normal
distributions. We also concluded that mill run MOE data might be well fit by a single normal
distribution or a mixture of two normal distributions. We reported these results in Verrill et al.
(2017) and Owens et al. (2018).

In this paper we have extended the formal univariate analyses reported in Verrill et al. (2017)
and Owens et al. (2018) to formal analyses of the bivariate relationships between measures of
MOE and MOR. We conclude that, for the sample studied, these relationships are well modeled by
mixtures of two bivariate normals. (Some possible sources of two component mixture relationships
include a mixture of trees from a fast-grown plantation stand and a suppressed stand, trees of
two separate species, small-diameter trees and large-diameter trees, and 2x4’s from the pith region
versus 2x4’s from the bark region.)

These analyses permit us to obtain quantitative estimates of the effects of changes in the mixture
of raw materials entering a saw mill. This permits us to conclude that, potentially, variable sources
of supply may occasionally lead to reduced reliability results even if we require that specimens meet
certain stiffness standards. (Of course, reliability results will improve in the presence of added visual
requirements and quality control standards.)

This is clearly very preliminary work that is based on a single sample of size 200 from a single mill
on a single day. We are currently engaged in a broader study involving a total of seven additional
samples of size 200 from four mills. This study will yield information on strength predictors in
addition to stiffness measures. It will also permit us to determine whether skew normal and mixed
normal distributions continue to fit relatively well to mill run MOR data, and whether Weibull,
normal, and lognormal distributions (for example) continue to fit poorly.
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8 Appendix A — Proof that the marginal distributions of a bivariate
normal are univariate normals, and the marginal distributions of
a mixture of two bivariate normals are mixtures of two univariate
normals

Statisticians know that the marginal distributions of a bivariate normal distribution are univariate
normals. (See, for example, Roussas (1973).) For the reader’s convenience, we supply the standard
“elementary” proof (it relies only upon calculus) below.

The probability distribution function of a bivariate normal distribution is

f(x, y;µX , σX , ρ, µY , σY ) =
1

2π
× 1

σXσY
√

1− ρ2
× exp (−arg) (1)

where

arg =

[(
x− µX
σX

)2

− 2ρ

(
x− µX
σX

)(
y − µY
σY

)
+

(
y − µY
σY

)2
]
÷ (2(1− ρ2))

and µX , σX are the mean and standard deviation of X; ρ is the correlation between X and Y ; and
µY , σY are the mean and standard deviation of Y .

Thus

Prob(Y ≤ y) =

∫ y

−∞

∫ ∞
−∞

f(s, t;µX , σX , ρ, µY , σY ) ds dt

=

∫ y

−∞

1√
2π

1

σY

∫ ∞
−∞

1√
2π
× 1

σX
√

1− ρ2
× exp(−arg)

× exp

(
ρ2
(
t− µY
σY

)2

÷ (2(1− ρ2))

)

× exp

(
−
(
t− µY
σY

)2

÷ (2(1− ρ2))

)
ds dt (2)

where

arg =

(
s− µX
σX

− ρ× t− µY
σY

)2

÷ (2(1− ρ2))
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or

Prob(Y ≤ y) =

∫ y

−∞

1√
2π

1

σY
exp

(
−
(
t− µY
σY

)2

÷ 2

)

×
∫ ∞
−∞

1√
2π

1

σX
√

1− ρ2
exp

(
−
(
s− µX
σX

− ρ× t− µY
σY

)2

÷ (2(1− ρ2))

)
ds dt

=

∫ y

−∞

1√
2π

1

σY
exp

(
−
(
t− µY
σY

)2

÷ 2

)

×
∫ ∞
−∞

1√
2π

1

σX
√

1− ρ2
exp

(
−
(
s

σX
− ρ× t− µY

σY

)2

÷ (2(1− ρ2))

)
ds dt

=

∫ y

−∞

1√
2π

1

σY
exp

(
−
(
t− µY
σY

)2

÷ 2

)

×
∫ ∞
−∞

1√
2π

1√
1− ρ2

exp

(
−
(
s− ρ× t− µY

σY

)2

÷ (2(1− ρ2))

)
ds dt

=

∫ y

−∞

1√
2π

1

σY
exp

(
−
(
t− µY
σY

)2

÷ 2

)

×
∫ ∞
−∞

1√
2π

1√
1− ρ2

exp
(
−s2/(2(1− ρ2))

)
ds dt

=

∫ y

−∞

1√
2π

1

σY
exp

(
−
(
t− µY
σY

)2

÷ 2

)

×
∫ ∞
−∞

1√
2π

exp
(
−s2/2

)
ds dt

=

∫ y

−∞

1√
2π

1

σY
exp

(
−
(
t− µY
σY

)2

÷ 2

)
dt (3)

That is, the marginal pdf of Y is

d

dy
Prob(Y ≤ y) =

1√
2π

1

σY
exp

(
−
(
y − µY
σY

)2

÷ 2

)
(4)

Similarly, the marginal pdf of X is

d

dx
Prob(X ≤ x) =

1√
2π

1

σX
exp

(
−
(
x− µX
σX

)2

÷ 2

)
(5)

More generally, by essentially the same argument, we can show that if we begin with the mixed
bivariate normal pdf

fM(x, y;µX1, σX1, ρ1, µY 1, σY 1, p, µX2, σX2, ρ2, µY 2, σY 2) (6)

= p× f(x, y;µX1, σX1, ρ1, µY 1, σY 1) + (1− p)× f(x, y;µX2, σX2, ρ2, µY 2, σY 2)

where the f(x, y)’s on the right side of the equation are given by Equation (1), we end up with

p× 1√
2π

1

σY 1
exp

(
−
(
y − µY 1

σY 1

)2

÷ 2

)
+ (1− p)× 1√

2π

1

σY 2
exp

(
−
(
y − µY 2

σY 2

)2

÷ 2

)
(7)
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as the marginal Y pdf, and

p× 1√
2π

1

σX1
exp

(
−
(
x− µX1

σX1

)2

÷ 2

)
+ (1− p)× 1√

2π

1

σX2
exp

(
−
(
x− µX2

σX2

)2

÷ 2

)
(8)

as the marginal X pdf.

9 Appendix B — The cumulative distribution function (cdf) and
probability density function (pdf) of a pseudo-truncated mixture
of bivariate normals

Let (X,Y ) have a mixture of bivariate normals distribution. That is, their bivariate pdf function
has the form

fM(x, y;µX1, σX1, ρ1, µY 1, σY 1, p, µX2, σX2, ρ2, µY 2, σY 2) (9)

= p× f(x, y;µX1, σX1, ρ1, µY 1, σY 1) + (1− p)× f(x, y;µX2, σX2, ρ2, µY 2, σY 2)

where p is the mixing fraction (at any given “draw”, we draw from population 1 with probability
p and from population 2 with probability 1 − p); µX1, σX1, ρ1, µY 1, σY 1 are the parameters of
the population 1 bivariate normal; µX2, σX2, ρ2, µY 2, σY 2 are the parameters of the population 2
bivariate normal; and f(w, z;µW , σW , ρ, µZ , σZ) is the pdf of a single bivariate normal given by

f(w, z;µW , σW , ρ, µW , σZ) =
1

2π
× 1

σWσZ
√

1− ρ2
× exp (−arg) (10)

where

arg =

[(
w − µW
σW

)2

− 2ρ

(
w − µW
σW

)(
z − µZ
σZ

)
+

(
z − µZ
σZ

)2
]
÷ (2(1− ρ2))

and µW , σW are the mean and standard deviation of W ; ρ is the correlation between W and Z;
and µZ , σZ are the mean and standard deviation of Z.

Then, by definition, the marginal cdf of a pseudo-truncated (truncated on X) mixture of
bivariate normals is given by

FPT(y) = Prob(Y ≤ y|cL ≤ X ≤ cU)

= Prob(Y ≤ y and cL ≤ X ≤ cU)/Prob(cL ≤ X ≤ cU) (11)

This is the probability that Y ≤ y given that X lies between cL and cU (for example, the probability
that the MOR lies below y given that the MOE lies between the 40th and 80th percentiles of the
MOE distribution).

FPT will have 13 parameters — those of X,Y and cL and cU. These latter two parameters will
be known in the case of MOE binning.

In Appendix A we (essentially) showed that the marginal distributions of a non-pseudo-truncated
mixture of bivariate normals will be mixtures of univariate normals.

In the material below we obtain the marginal distribution of the pseudo-truncated Y portion
of a mixture of bivariate normals after a truncation of the correlated X portion.
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9.1 Denominator of Equation (11)

In the pseudo-truncated case, we have

Prob(cL ≤ X ≤ cU) = Prob (X drawn from pop 1 and cL ≤ X1 ≤ cU)

+ Prob (X drawn from pop 2 and cL ≤ X2 ≤ cU)

= p× Prob

(
cL − µX1

σX1
≤ X1 − µX1

σX1
≤ cU − µX1

σX1

)
+ (1− p)× Prob

(
cL − µX2

σX2
≤ X2 − µX2

σX2
≤ cU − µX2

σX2

)
= p×

(
Φ

(
cU − µX1

σX1

)
− Φ

(
cL − µX1

σX1

))
+ (1− p)×

(
Φ

(
cU − µX2

σX2

)
− Φ

(
cL − µX2

σX2

))
(12)

where Φ denotes the N(0,1) cumulative distribution function.

9.2 Numerator of Equation (11)

We have

Prob(Y ≤ y and cL ≤ X ≤ cU) = p× Prob(Y1 ≤ y and cL ≤ X1 ≤ cU)

+ (1− p)× Prob(Y2 ≤ y and cL ≤ X2 ≤ cU) (13)

and for bivariate normal X,Y , we have (following the same kind of argument as that made in
Appendix A)

Prob(Y1 ≤ y and cL ≤ X1 ≤ cU) =

∫ y

−∞

∫ cU

cL

f(s, t;µX1, σX1, ρ1, µY 1, σY 1) ds dt

=

∫ y

−∞

1√
2π

1

σY 1

∫ cU

cL

1√
2π
× 1

σX1

√
1− ρ21

× exp(−arg)

× exp

(
ρ21

(
t− µY 1

σY 1

)2

÷ (2(1− ρ22))

)

× exp

(
−
(
t− µY 1

σY 1

)2

÷ (2(1− ρ21))

)
ds dt

where

arg =

(
s− µX1

σX1
− ρ1 ×

t− µY 1

σY 1

)2

÷ (2(1− ρ21))

or

Prob(Y1 ≤ y and cL ≤ X1 ≤ cU) =

∫ y

−∞

1√
2π

1

σY 1
exp

(
−
(
t− µY 1

σY 1

)2

÷ 2

)
×R1(t) dt (14)
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where

R1(t) =

∫ cU

cL

1√
2π

1

σX1

√
1− ρ21

exp

(
−
(
s− µX1

σX1
− ρ1 ×

t− µY 1

σY 1

)2

÷ (2(1− ρ21))

)
ds

=

∫ cU−µX1

cL−µX1

1√
2π

1

σX1

√
1− ρ21

exp

(
−
(

s

σX1
− ρ1 ×

t− µY 1

σY 1

)2

÷ (2(1− ρ21))

)
ds

=

∫ cU−µX1
σX1

cL−µX1
σX1

1√
2π

1√
1− ρ21

exp

(
−
(
s− ρ1 ×

t− µY 1

σY 1

)2

÷ (2(1− ρ21))

)
ds

=

∫ cU−µX1
σX1

−ρ1×
t−µY 1
σY 1

cL−µX1
σX1

−ρ1×
t−µY 1
σY 1

1√
2π

1√
1− ρ21

exp
(
−s2/(2(1− ρ21))

)
ds

=

∫ (
cU−µX1
σX1

−ρ1×
t−µY 1
σY 1

)
/
√

1−ρ21(
cL−µX1
σX1

−ρ1×
t−µY 1
σY 1

)
/
√

1−ρ21

1√
2π

exp
(
−s2/2

)
ds (15)

= Φ

((
cU − µX1

σX1
− ρ1 ×

t− µY 1

σY 1

)
÷
√

1− ρ21
)

−Φ

((
cL − µX1

σX1
− ρ1 ×

t− µY 1

σY 1

)
÷
√

1− ρ21
)

where Φ denotes the N(0,1) cumulative distribution function.

Similarly,

Prob(Y2 ≤ y and cL ≤ X2 ≤ cU) =

∫ y

−∞

1√
2π

1

σY 2
exp

(
−
(
t− µY 2

σY 2

)2

÷ 2

)
×R2(t) dt (16)

where

R2(t) = Φ

((
cU − µX2

σX2
− ρ2 ×

t− µY 2

σY 2

)
÷
√

1− ρ22
)

− Φ

((
cL − µX2

σX2
− ρ2 ×

t− µY 2

σY 2

)
÷
√

1− ρ22
)

(17)

From results (11)–(17), we can calculate the marginal distribution function, FPT(y), of a pseudo-
truncated mixture of bivariate normals. By taking the derivative of FPT(y) with respect to y, we
get the pdf at y. That is,

fPT(y) =
dFPT(y)

dy

=

(
dProb(Y ≤ y and cL ≤ X ≤ cU)

dy

)
÷ Prob(cL ≤ X ≤ cU) (18)

where the numerator of Equation (18) is

p× 1√
2π

1

σY 1
exp

(
−
(
y − µY 1

σY 1

)2

÷ 2

)
×R1(y)
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+ (1− p)× 1√
2π

1

σY 2
exp

(
−
(
y − µY 2

σY 2

)2

÷ 2

)
×R2(y)

where R1(y) and R2(y) are given by Equations (15) and (17), and the denominator of Equation (18)
is

p×
(

Φ

(
cU − µX1

σX1

)
− Φ

(
cL − µX1

σX1

))
+ (1− p)×

(
Φ

(
cU − µX2

σX2

)
− Φ

(
cL − µX2

σX2

))

10 Appendix C — “Exact” lower bound on goodness-of-fit p-value

In Section 2 we described a “chi-sqared goodness-of-fit test” for a mixture of bivariate normals.
The approximate p-value for the test was taken to be (1000 − m)/1000 where the test statistic
based on the original data lay between the mth and m+1th order statistics of the 1000 chi-squared
values obtained in the 1000 simulation trials.

We reported these approximate p-values for six tests in Table 8. In Table 8 we also reported
“exact” lower bounds on these p-values. In this appendix we describe the manner in which these
lower bounds were calculated.

As we noted in Section 3, because we used full data maximum likelihood techniques, the “chi-
squared” statistics will not actually have chi-squared distributions. They will have some other
distribution F . We approximate this distribution by the empirical distribution obtained from the
1000 trials. If x(1) ≤ . . . ≤ x(1000) are the order statistics obtained in the 1000 trials, then the
empirical approximation, F1000, distribution is the step function that jumps by 1/1000 at each of
the 1000 x(i) order statistics.

If we knew the true statistic distribution F and we observed a test statistic value equal to x,
then the p-value would be 1− F (x).

However, we have only the approximation F1000 based on the 1000 trials, and given an observed
test statistic equal to x, the approximate p-value provided in Table 8 is 1−F1000(x) or 1−m/1000
for x between the mth and m+ 1th order statistics, x(m) and x(m+1).

Because x < x(m+1), F (x) ≤ F (x(m+1)). If we can get an upper bound on F (x(m+1)), we have
an upper bound on F (x) and thus a lower bound on the exact p-value 1− F (x).

Let ξq denote the qth quantile of F . That is, F (ξq) = q. We have

Prob(x(m+1) ≤ ξq) = Prob(exactly m+ 1 of the x(i) ≤ ξq) (19)

+ Prob(exactly m+ 2 of the x(i) ≤ ξq)
+ . . .

+ Prob(exactly 1000 of the x(i) ≤ ξq)

=

(
1000
m+ 1

)
qm+1(1− q)1000−(m+1) + . . .+

(
1000
1000

)
q1000(1− q)0

This sum can be obtained via the incomplete beta function.
At http://www1.fpl.fs.fed.us/mixbivn.c.html we provide a listing of a program that made
use of the incomplete beta function to find the smallest q for which this probability is 1. That tells
us that, with certainty, F (x) ≤ F (x(m+1)) ≤ F (ξq) = q so

p-value = 1− F (x) ≥ 1− q

This provides the lower bound on the p-value provided in Table 8.
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Left bivariate normal Right bivariate normal
MOE µ̂MOE,1 σ̂MOE,1 ρ̂1 µ̂MOR,1 σ̂MOR,1 µ̂MOE,2 σ̂MOE,2 ρ̂2 µ̂MOR,2 σ̂MOR,2 p̂

sb MOE 1.26 0.28 0.54 6.68 2.40 1.63 0.32 0.79 9.29 1.35 0.55

ecomp 1.46 0.29 0.39 6.49 2.40 1.79 0.37 0.65 9.23 1.36 0.51

dire 1.41 0.28 0.45 6.68 2.45 1.76 0.35 0.63 9.25 1.32 0.55

Table 1: Parameter estimates from mixed bivariate normal fits. “sb MOE” denotes static bending
MOE, “ecomp” denotes E-computer MOE, and “dire” denotes Director MOE. The MOE data were
in pounds per square inch divided by 1,000,000. The MOR data were in pounds per square inch
divided by 1,000.

Column Row Observed Expected

1 1 10 10.038

1 2 8 10.045

1 3 6 10.008

1 4 10 10.475

2 1 11 10.026

2 2 11 10.014

2 3 11 10.114

2 4 18 9.998

3 1 10 10.012

3 2 14 10.105

3 3 9 10.104

3 4 9 10.214

4 1 9 10.067

4 2 6 10.146

4 3 10 10.079

4 4 6 10.000

5 1 15 10.021

5 2 8 10.140

5 3 12 10.128

5 4 7 8.266

Table 2: “Chi-squared” goodness-of-fit test results. Actual and expected counts for the 20 cells. sb
MOE–MOR data. 5 columns, 4 rows per column.
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Column Row Observed Expected

1 1 12 10.009

1 2 10 10.105

1 3 6 10.009

1 4 5 10.024

1 5 14 10.106

2 1 7 10.013

2 2 14 10.080

2 3 16 10.121

2 4 9 10.079

2 5 10 9.935

3 1 12 10.073

3 2 11 10.180

3 3 7 10.152

3 4 7 10.029

3 5 10 9.598

4 1 11 10.168

4 2 13 10.008

4 3 7 10.009

4 4 12 10.017

4 5 7 9.286

Table 3: “Chi-squared” goodness-of-fit test results. Actual and expected counts for the 20 cells. sb
MOE–MOR data. 4 columns, 5 rows per column.
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Column Row Observed Expected

1 1 12 10.054

1 2 10 10.250

2 1 6 10.029

2 2 6 10.233

3 1 11 10.012

3 2 14 10.277

4 1 14 10.047

4 2 14 10.603

5 1 10 10.019

5 2 7 10.527

6 1 12 10.055

6 2 11 10.516

7 1 12 10.006

7 2 8 10.556

8 1 6 10.082

8 2 6 10.166

9 1 12 10.084

9 2 11 10.164

10 1 13 10.041

10 2 5 6.276

Table 4: “Chi-squared” goodness-of-fit test results. Actual and expected counts for the 20 cells. sb
MOE–MOR data. 10 columns, 2 rows per column.
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Column Row Observed Expected

1 1 10 10.076

1 2 13 10.026

1 3 6 10.097

1 4 12 10.010

1 5 4 10.222

1 6 10 10.208

1 7 15 10.210

1 8 12 10.229

1 9 10 10.117

1 10 11 9.287

2 1 12 10.038

2 2 9 10.190

2 3 7 10.047

2 4 11 10.348

2 5 13 10.419

2 6 10 10.151

2 7 10 10.183

2 8 6 10.029

2 9 13 10.012

2 10 6 8.102

Table 5: “Chi-squared” goodness-of-fit test results. Actual and expected counts for the 20 cells. sb
MOE–MOR data. 2 columns, 10 rows per column.
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Column Row Observed Expected

1 1 9 10.064

1 2 8 10.039

1 3 9 10.069

1 4 12 10.068

2 1 10 10.033

2 2 10 10.093

2 3 9 10.022

2 4 11 10.570

3 1 12 10.002

3 2 15 10.002

3 3 12 10.004

3 4 3 10.337

4 1 13 10.083

4 2 8 10.096

4 3 11 10.055

4 4 14 9.894

5 1 8 10.114

5 2 8 10.121

5 3 10 10.056

5 4 8 8.280

Table 6: “Chi-squared” goodness-of-fit test results. Actual and expected counts for the 20 cells.
ecomp–MOR data. 5 columns, 4 rows per column.
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Column Row Observed Expected

1 1 8 10.023

1 2 9 10.015

1 3 4 10.069

1 4 15 10.414

2 1 13 10.031

2 2 11 10.042

2 3 11 10.036

2 4 11 10.063

3 1 12 10.074

3 2 14 10.032

3 3 13 10.061

3 4 8 10.221

4 1 10 10.072

4 2 6 10.139

4 3 7 10.120

4 4 10 9.981

5 1 10 10.148

5 2 9 10.115

5 3 9 10.026

5 4 10 8.320

Table 7: “Chi-squared” goodness-of-fit test results. Actual and expected counts for the 20 cells.
dire–MOR data. 5 columns, 4 rows per column.
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GoF Statistic Approximate “Exact” lower bound
Stiffness Columns Rows value p-value on p-value

5 4 17.36 0.204 0.15
sb MOE 4 5 17.15 0.230 0.18

10 2 15.36 0.433 0.37
2 10 14.79 0.429 0.36

ecomp 5 4 13.60 0.455 0.39

dire 5 4 11.80 0.634 0.57

Table 8: “Chi-squared goodness-of-fit test” results. We are testing the null hypothesis that the
stiffness–strength distribution is a mixture of two bivariate normal distributions.

Standard Quantiles
Type Subpopulation Mean deviation .0001 .001 .01 .05 .50

non-PT left 6.68 2.40 -2.26 -.75 1.09 2.73 6.68
right 9.29 1.35 4.26 5.11 6.14 7.07 9.29

0.4,0.8 PT left 7.71 2.09 -.031 1.27 2.86 4.28 7.71
right 8.97 0.92 5.59 6.15 6.84 7.46 8.97

Table 9: Means, standard deviations, and quantiles of marginal MOR left and right subpopulations
obtained from non-pseudo-truncated and pseudo-truncated mixtures of bivariate normal distributions
fitted to the sample of 200 sb MOE–MOR data pairs.
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Figure 16: Mixed univariate normal MOR pdf (tall, solid, black) corresponding to the mixed
bivariate normal for sb MOE–MOR (prior to pseudo-truncation); left pdf component (dashed red);
right pdf component (dotted blue); 0.0001, 0.001, 0.01, 0.05 quantiles for left component (dashed
red vertical lines); 0.0001, 0.001, 0.01, 0.05 quantiles for right component (dotted blue vertical
lines).
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Figure 17: Mixed univariate normal sb MOE pdf (tall, black) corresponding to the mixed bivariate
normal for sb MOE–MOR; black vertical lines at 40th and 80th percentiles of the mixed univariate
normal sb MOE distribution; left pdf component (dashed red); right pdf component (dotted blue).
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Figure 18: Scatter plot of MOR versus sb MOE, and 0.90 probability content contours for the two
bivariate normal components of the fitted mixed bivariate normal model. The vertical lines are at
the 0.40 and 0.80 sb MOE quantiles estimated from the marginal sb MOE distribution calculated
from the fitted mixed bivariate normal model.
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Figure 19: The pdfs of the MORs of the left and right bivariate subpopulations associated with
the non-pseudo-truncated mixed bivariate normal model are plotted as dashed lines. The pdfs of
the pseudo-truncated (via the 0.40 and 0.80 sb MOE quantiles) MOR distributions associated with
the left and right bivariate subpopulations are plotted as solid lines.
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Figure 20: Pseudo-truncated (on sb MOE) univariate mixed normal MOR pdf corresponding to
the mixed bivariate normal sb MOE–MOR distribution (for p = 0.55). The dashed lines are at the
5th percentile and at the “allowable property” (5th/2.1).
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Figure 21: For p = 1 (left population, dashed red) and p = 0 (right population, dotted blue),
we plot the pseudo-truncated (on sb MOE) univariate mixed normal MOR pdfs corresponding to
the mixed bivariate normal sb MOE–MOR distribution. The vertical dashed red lines are at the
0.0001, 0.001, 0.01, and 0.05 quantiles of the left population. The vertical dotted blue lines are at
the 0.0001, 0.001, 0.01, and 0.05 quantiles of the right population.
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