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Abstract
It is common practice to assume that a two-parameter 
Weibull probability distribution is suitable for modeling 
lumber properties. Verrill and co-workers demonstrated 
theoretically and empirically that the modulus of rupture 
(MOR) distribution of visually graded or machine stress 
rated (MSR) lumber is not distributed as a Weibull. Instead, 
the tails of the MOR distribution are thinned via “pseudo-
truncation.” The theoretical portion of Verrill’s argument 
was based on the assumption of a bivariate normal–Weibull 
(Gaussian–Weibull) MOE–MOR distribution for the full 
population of lumber (as opposed to the bivariate distribu-
tion of visual or MSR grades of lumber). We felt that it was 
important to investigate this assumption. In the absence 
of data sets in the literature that were drawn from the full 
population at a mill, we determined to obtain such a sample 
for analysis. In this paper, we report the results from this 
analysis. From the current experiment on mill run lumber, 
we conclude that if reliability engineers are entertaining the 
idea of obtaining new efficiencies via careful probability 
modeling of strength properties, then additional experimen-
tal research must be done on the fundamental question of 
valid models for stiffness and strength distributions for full 
populations of lumber from a single mill on a single day. 
Further, we suspect that even if research determines that a 
simple model can characterize such a distribution, further 
research will determine that this simple model varies from 
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day to day, mill to mill, and region to region so that an 
ever-changing mixture model is the correct model. In this 
case, to ensure that reliability goals are efficiently met, reli-
ability engineers might need to develop detailed computer 
models that yield real-time, in-line estimates of lumber 
strength based on measurements of stiffness, specific grav-
ity, knot size and location, slope of grain, and other strength 
predictors.

Keywords: normal distribution, mixed normal distribution, 
two-parameter Weibull distribution, three-parameter beta 
distribution, skew normal distribution, mixed bivariate nor-
mal distribution, bivariate Gaussian–Weibull distribution, 
pseudo-truncated Weibull distribution, machine stress rated 
data, MSR data, probability density functions, goodness-of-
fit, mill run, thin tail, lumber property distribution
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1 Introduction

Wood reliability engineers have commonly modeled modulus of elasticity (MOE) as a normal dis-
tribution and modulus of rupture (MOR) as a normal, lognormal, or two-parameter Weibull dis-
tribution (Green and Evans 1987; Evans et al. 1997; ASTM 2010, 2015a). However, Verrill et al.
(2014, 2015) established that even if the strength distribution of the full MOR population were
a two-parameter Weibull, the strength distributions of subpopulations formed by visual grading
or machine stress rating (MSR) would not be two-parameter Weibulls. Instead, they would be
relatively \thin-tailed" pseudo-truncated Weibulls. Verrill et al. (2014) further established that if
one �ts a two-parameter Weibull to pseudo-truncated Weibull data, estimates of probabilities of
breakage when loads are at \allowable" limits (see, for example, ASTM (2016)) can be seriously in
error.

We note that the Verrill et al. work depends on the assumption that the full bivariate MOE-
MOR population has a bivariate Gaussian{Weibull (normal{Weibull) distribution. We felt that
it was quite important to investigate this assumption. However, we could �nd no reports in the
literature of studies in which the full MOE-MOR joint distribution or the full marginal distributions
were sampled. Instead, samples have been obtained for speci�c visual grades or speci�c MSR limits.

Consequently, we determined that it was important to obtain a sample from a full \mill run"
bivariate MOE-MOR population. For our initial study, we decided to restrict ourselves to the
population of lumber produced at a single mill during a single day. We realize that populations
obtained over multiple days from multiple mills in multiple regions are almost certain to have a more
complicated structure. However, we felt that it would be useful to �rst address the fundamental
question of whether a \simple" population could be modeled by a \simple" distribution such as
a normal or two-parameter Weibull. Thus, in this paper, we report the MOE-MOR data and the
distribution �ts for a sample of 200 pieces of \mill run" 2x4 lumber obtained from a single mill on
a single day.

1now President, American Lumber Standard Committee, Inc., Frederick, MD
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2 Materials and Methods

Two hundred kiln dried, rough-sawn southern yellow pine (Pinus spp.) 2x4s were procured from a
large regional sawmill in central Mississippi.

The dimension mill that donated the lumber has a single line primary breakdown followed by
a curve gang resaw. It produces 2x4 through 2x12 pine dimension lumber from its log supply. Its
annual production is approximately 200 million board feet. The mill is optimized to a large degree
throughout with the intention of maximizing board foot recovery from each log.

Mill managers were unaware of the objectives of the research. The mill was asked to pull
200 pieces of 2x4 lumber as the material was removed from the kiln and taken o� sticks. The
material was removed from the production line after kiln drying but prior to the planing and
grading stations. All material was of su�cient character to make it through the optimizing edger
and trimmer. Subject only to this condition, the quality of the pieces was unrestricted (the pieces
were drawn from the full lumber population rather than from a single grade) and the resulting
specimens constitute a full \mill run" sample.

Although the material was not pulled in accord with a random sampling scheme, we believe
that the mechanical shu�ing of lumber prior to the unscrambler and the kiln stacker randomized
the pieces. It can be argued that the material represents a random sample from several hours of a
day's production.

The rough dry target dimensions for the mill were 1.7 x 3.7 in. (4.32 x 9.40 cm). The nominal
length of the specimens was 8 ft (244 cm), with approximately 1 in. (2.54 cm) of overlength.

The material was transported to Mississippi State University where it was planed on all four
sides to �nal dressed dimensions of 1.5 x 3.5 in. (3.81 x 8.89 cm). Although the material was selected
from production and tested as mill-run lumber, the material was graded after planing by a Southern
Pine Inspection Bureau (SPIB) certi�ed inspector to provide additional data for future analyses.
A visual grade was recorded for each piece. Each board was labeled with a unique identi�cation
number and pre-marked to indicate the positioning of the specimen within the third-point bending
�xture used in destructive testing. First, the positioning of the 59.5-in. (151.13-cm) test span within
the 8-ft-long specimen was determined by a randomly generated number and marked on the top
edge of each test piece. This action ensured random placement of the maximum bending moment
along the length of each board. Then the corresponding load head positions were marked. Finally,
the lumber was stacked unwrapped outside on wooden saw horses under a covered breezeway to
protect it from the elements, aid in moisture equalization, and minimize further drying associated
with interior storage.

Universal testing machine �xturing and destructive testing procedures were performed in ac-
cordance with ASTM D198-15 per the Flexure Test Method (ASTM 2015b). Nondestructive tests
were performed per the operating instructions of each device manufacturer. Mechanical properties
were adjusted for moisture content di�erences per ASTM D1990-16 (ASTM 2016).

3 Testing

The specimens were subjected to both nondestructive evaluation and static bending tests. The
nondestructive testing devices were Fibre-gen's Director HM200 (Fibre-gen, Christchurch, New
Zealand) (hereafter Director or \dire") and Metriguard's E-computer Model 340 (Metriguard, Pull-
man, Washington, USA) (hereafter E-computer or \ecomp").

The Director is a handheld device that estimates MOE by measuring the acoustic velocity (in
feet per second or meters per second) of a longitudinal stress wave traveling through a specimen.
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For the Director test, each specimen was supported in a 
atwise orientation by two sawhorses
allowing approximately 1 ft (30 cm) of specimen overhang on each end. The device's sensor was
held against one end of the specimen while a tap was administered to the same end with a hammer.
The device generated an acoustic velocity output in feet per second from which a dynamic MOE
value in pounds per square inch was calculated via E = �V 2, where E is elasticity, � is density, and
V is acoustic velocity (Ross and Pellerin 1994). The E value was recorded for subsequent analysis.

The E-computer device estimates MOE by measuring transverse vibration. For the E-computer
test, each specimen was supported near its ends by two metal tripods. One tripod was topped with
a transducer connected by a cord to a laptop computer. The transducer measured the transverse
vibration of the test piece. All pieces were tested in a 
atwise orientation. After a specimen was
weighed, its ends were aligned with the tops of the tripods allowing for a 1-in. (2.54-cm) overhang
at each end. Oscillation was initiated by lightly tapping each specimen near its midpoint. The
transducer sensed the vibration, and the laptop generated a dynamic MOE output recorded in
pounds per square inch. The software calculates the elasticity value via the formula

E = f2 �W � S3=(C � I � g)

where E is modulus of elasticity, f is the frequency of the specimen's vibration, W is the weight of
the specimen, S is the span, C is a constant, I is the moment of inertia, and g is the acceleration
due to gravity (Ross and Pellerin 1994).

The static bending tests were performed on an Instron universal testing machine (Instron Cor-
poration, Norwood, Massachusetts, USA) per the Flexure Test Method under ASTM D198-15
(ASTM 2015b) (Fig. 1). We refer to the MOE estimate obtained from the static bending tests as
\sb MOE." The specimens were loaded in an edgewise orientation. Although third-point loading
and a span-to-depth ratio of 17:1 were used (59.5 in, or 151.13 cm), the test pieces were not trimmed
to this length. Instead, the specimens were placed in the �xture such that the randomly-determined
span boundaries and corresponding load head placement markers lined up with the reaction sup-
ports and the load heads, respectively. Whatever overhang there was on either end was allowed to
remain.

The moisture content of each piece at the time of testing was measured from its face approx-
imately halfway between the load head markings with a Delmhorst J-88 pin-type moisture meter
(Delmhorst Instrument Company, Towaco, New Jersey, USA) to a depth of approximately 8 mm.
Prior to zeroing the extensometer (used to measure de
ection), each specimen was loaded with
approximately 222.4 N to ensure proper placement and seating of the load heads. The test was
then applied until full rupture. The average length of time until rupture was approximately 5 min.

Prior to analysis, all MOR and MOE values for all tests were adjusted per ASTM D1990-
16 (ASTM 2016) to a nominal moisture content of 15%. The average moisture content prior to
adjustment was 13.3%.

4 Evaluation of Statistical Models for the MOE andMORDistributions

The objective of this study was to identify (if possible) statistical distributions that yield good
models for full MOE or MOR populations (as opposed to populations corresponding to speci�c
visual grades or speci�c MSR limits). To this end, we �t various univariate distributions to the
samples of 200 MOE or MOR values. These �ts are discussed in Section 4.1.

We also �t mixtures of bivariate normal distributions to the samples of 200 pairs of MOE and
MOR values. These �ts are discussed in Section 4.2.

3



4.1 Univariate Models

We �t three univariate models | two-parameter Weibull, normal, and mixed normal | to each
of the MOE measures. We �t �ve univariate models | two-parameter Weibull, normal, three-
parameter beta, skew normal, and mixed normal | to the MOR values. The probability density
functions of these probability distributions are provided in the Appendix.

A summary of the (maximum likelihood) parameter estimates for the univariate distributions
is provided in Table 1, and a summary of our tests of the goodness-of-�t of various distributions is
provided in Table 2.

The univariate normal �ts and the Shapiro-Wilk test of normality were performed in the R
programming environment (R Core Team, 2013). The maximum likelihood �ts for the other uni-
variate distributions and the associated Cram�er-von Mises and likelihood ratio tests were performed
via Fortran programs written by the authors. The source code for these programs can be found
at http://www1.fpl.fs.fed.us/mordist.html. The Cram�er-von Mises test for a two-parameter
Weibull distribution is based on sections 4.10 and 4.11 of D'Agostino and Stephens (1986) and
makes use of their table 4.17 to calculate critical values for the test. For the other distributions,
critical values were obtained via a \parametric bootstrap" (a particular type of computer simulation
| please see the source code of the programs for details).

4.1.1 Static Bending MOE (\sb MOE")

Figures 2-4 provide probability plots of two-parameter Weibull, normal, and mixed normal �ts to
the sb MOE data. Figure 5 provides a histogram of the sb MOE data overlaid with the �tted
normal and Weibull distributions. Figure 6 provides a histogram of the sb MOE data overlaid with
the �tted normal and mixed normal distributions. Figure 7 provides a histogram of the sb MOE
data overlaid with the �tted mixed normal distribution and its two components.

A Cram�er-von Mises test rejects the null hypothesis of a two-parameter Weibull with a p-value
of 0.01. A Shapiro-Wilk test of normality does not reject the null hypothesis of a normal distribution
(the p-value equals 0.37.) A likelihood ratio test does not reject the null hypothesis of a normal
distribution versus the alternative of a mixed normal distribution (the p-value equals 0.35).

4.1.2 Dynamic MOE | E-computer (\ecomp")

Figures 8-10 provide probability plots of two-parameter Weibull, normal, and mixed normal �ts to
the ecomp data. Figure 11 provides a histogram of the ecomp data overlaid with the �tted normal
and Weibull distributions. Figure 12 provides a histogram of the ecomp data overlaid with the
�tted normal and mixed normal distributions. Figure 13 provides a histogram of the ecomp data
overlaid with the �tted mixed normal distribution and its two components.

A Cram�er-von Mises test rejects the null hypothesis of a two-parameter Weibull with a p-value
of 0.01. A Shapiro-Wilk test of normality does not reject the null hypothesis of a normal distribution
(the p-value equals 0.32.) A likelihood ratio test does not reject the null hypothesis of a normal
distribution versus the alternative of a mixed normal distribution (the p-value equals 0.46).

4.1.3 Dynamic MOE | Director (\dire")

Figures 14-16 provide probability plots of two-parameter Weibull, normal, and mixed normal �ts
to the dire data. Figure 17 provides a histogram of the dire data overlaid with the �tted normal
and Weibull distributions. Figure 18 provides a histogram of the dire data overlaid with the �tted

4



normal and mixed normal distributions. Figure 19 provides a histogram of the dire data overlaid
with the �tted mixed normal distribution and its two components.

A Cram�er-von Mises test rejects the null hypothesis of a two-parameter Weibull with a p-value of
0.01. A Shapiro-Wilk test of normality does not reject the null hypothesis of a normal distribution
(the p-value equals 0.19.) However, a likelihood ratio test does reject the null hypothesis of a
normal distribution versus the alternative of a mixed normal distribution (the p-value equals 0.01).
A Cram�er-von Mises test does not reject the null hypothesis of a mixed normal distribution (the
p-value equals 0.67).

4.1.4 MOR

Unlike the MOE data, the MOR data were left-skewed. This led us to consider two additional
distributions: a three-parameter beta and a skew normal. (See the Appendix for the probability
density functions of the �ve distributions.)

Figures 20-24 provide probability plots of two-parameter Weibull, normal, three-parameter
beta, skew normal, and mixed normal �ts to the MOR data. Figure 25 provides a histogram
of the MOR data overlaid with the �tted normal and Weibull distributions. Figure 26 provides a
histogram of the MOR data overlaid with the �tted normal and three-parameter beta distributions.
Figure 27 provides a histogram of the MOR data overlaid with the �tted skew normal distribution.
Figure 28 provides a histogram of the MOR data overlaid with the �tted normal and skew normal
distributions. Figure 29 provides a histogram of the MOR data overlaid with the �tted normal and
mixed normal distributions. Figure 30 provides a histogram of the MOR data overlaid with the
�tted mixed normal distribution and its two components.

A Cram�er-von Mises test rejects the null hypothesis of a two-parameter Weibull at a 0.01
signi�cance level. (An Anderson-Darling test also rejects the null hypothesis of a two-parameter
Weibull at a 0.01 signi�cance level.) A Shapiro-Wilk test of normality rejects the null hypothesis
of a normal distribution at a 0.001 signi�cance level. Also, a likelihood ratio test rejects the null
hypothesis of a normal distribution versus the alternative of a mixed normal distribution (the p-
value equals 0.0007). A Cram�er-von Mises test rejects the null hypothesis of a three-parameter beta
distribution at a 0.01 signi�cance level. A Cram�er-von Mises test does not reject the null hypothesis
of a skew normal distribution (the p-value was 0.65). A Cram�er-von Mises test does not reject the
null hypothesis of a mixed normal distribution (the p-value was 0.66).

4.2 Bivariate Models

The models discussed in Section 4.1 are \univariate" models. That is, they are models for the
distributions of single variables (sb MOE, ecomp, dire, or MOR). However, strength and sti�ness
are positively correlated, and there is extra information to be gained by modeling the joint behavior
of sb MOE and MOR (or ecomp and MOR or dire and MOR). Our univariate work suggests that
MOR might be modeled by a skew normal distribution or a mixture of two univariate normals, and
sb MOE, ecomp, and dire might be modeled as normals or mixtures of two univariate normals.

It can be shown that if a bivariate sti�ness-strength distribution is a mixture of bivariate
normals, then the corresponding univariate (or \marginal") sti�ness and strength distributions will
be mixtures of univariate normals. Statisticians also know that if variablesX and Y have a bivariate
normal distribution, then a plot of Y versus X values will be an approximately elliptical cloud of
data points. In Figures 31-33, we plot MOR versus sb MOE, MOR versus ecomp, and MOR versus
dire. All three scatter plots suggest that the bivariate sti�ness-strength distributions might be
well-approximated by mixtures of bivariate normal distributions. To investigate this possibility we
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used maximum likelihood methods to �t mixtures of two bivariate normal distributions to the sb
MOE-MOR, ecomp-MOR, and dire-MOR data sets. The programs that we wrote to perform these
�ts can be found at http://www1.fpl.fs.fed.us/mix bivn code.html. The density of a mixture
of two bivariate normal distributions is provided in the Appendix.

In Table 3 we report the parameter estimates from these �ts. The lower left cloud in the
appropriate MOE-MOR scatter plot (Figures 31-33) corresponds to the \Left bivariate normal" �t
in Table 3. The upper right cloud corresponds to the \Right bivariate normal" �t in Table 3.

The �tted �̂MOE;1, �̂MOE;1, �̂1, �̂MOR;1, �̂MOR;1, �̂MOE;2, �̂MOE;2, �̂2, �̂MOR;2, �̂MOR;2, and p̂
in Table 3 correspond to the parameters �X;1, �X;1, �1, �Y;1, �Y;1, �X;2, �X;2, �2, �Y;2, �Y;2, and
p described in Section 7.6 of the Appendix. In particular, p̂ is our estimate of the proportion of
specimens that come from the lower left bivariate normal population.

The bivariate �ts can be used to calculate \probability contours." For example, for a bivariate
normal distribution, a 0.90 probability contour is an ellipse centered at the bivariate mean of the
distribution that will (over the long run) contain 90% of (X;Y ) pairs randomly drawn from the
distribution. In each of Figures 34-36 we have superimposed 0.90 probability ellipses corresponding
to the two bivariate normal components of the mixed bivariate normal distributions �tted to the
sb MOE-MOR, ecomp-MOR, and dire-MOR data clouds displayed in Figures 31-33. In Figures
37-39 we plot 0.90 probability contours for the full mixed bivariate normal distributions. The plots
do not prove anything, and we suspect that if we performed formal goodness-of-�t tests (di�cult
for mixed bivariate normals), mixed bivariate normal hypotheses might be rejected. However, the
plots do lend some support to the intuition that full lumber sti�ness-strength distributions will
likely be mixtures of distributions. (In our case, the sti�ness-strength distributions appear to be
mixtures of two roughly bivariate normal distributions.)

5 Summary

Verrill et al. (2014, 2015) demonstrated theoretically and empirically that the MOR distribution
of visually graded or MSR lumber is not a Weibull. Instead, the tails of the MOR distribution are
thinned via \pseudo-truncation."

The theoretical portion of Verrill et al.'s argument was based on the assumption of a bivariate
normal-Weibull (Gaussian-Weibull) MOE-MOR distribution for the full population of lumber (as
opposed to the bivariate distribution of visual or MSR grades of lumber). We felt that it was
worthwhile to investigate this assumption. In the absence of data sets in the literature that were
drawn from the full population at a mill, we determined to obtain such a sample for analysis. In
this paper we have reported the results from this analysis.

Our sample suggests that the full population MOR distribution is not a normal, a two-parameter
Weibull, or a three-parameter beta. Skew normal and mixed normal distributions are not rejected
by our analysis.

This implies that full population bivariate MOE-MOR distributions might not be Gaussian-
Weibull (because full MOR populations might not be Weibull), and thus MOR distributions for
MSR lumber or a visual grade might not be pseudo-truncated Weibulls. (However, the MOR
distributions of MSR lumber or visual grades of lumber will still have \thinned tails.")

We have also found that full population sti�ness values (sb MOE, ecomp, and dire) are not
distributed as two-parameter Weibulls. Analyses of the sb MOE and ecomp data suggest that the
distributions of these two variables might be well-approximated by normals. Analysis of the dire
data rejects a normal distribution. A mixed normal distribution is not rejected for any of the three
sti�ness measures.
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We strongly emphasize that we do not mean to conclude on the basis of a single sample of size
200 from the full MOE-MOR 2x4 lumber population produced during a single day at a single mill
that full population MOEs are normal or mixed normal and full population MORs are skew normal
or mixed normal. From the current experiment, we do mean to conclude that if reliability engineers
are entertaining the idea of obtaining new e�ciencies via careful probability modeling of strength
properties, additional experimental research must be done on the fundamental question of valid
models for sti�ness and strength distributions for full populations of lumber from a single mill on
a single day. (These \full" distributions are then subject to pseudo-truncation in the formation of
visual or MSR grades.) Further, we suspect that even if research determines that a simple model
can characterize such a distribution, further research will determine that this simple model varies
from day to day, mill to mill, and region to region so that an ever-changing mixture model is the
correct model. In this case, designers of new and complex wood structural products would need to
assure themselves that their reliability models are robust to incorrect lumber strength and sti�ness
assumptions.

We intend to perform additional empirical investigations and �ts to the resulting samples to form
part of the foundation for such reliability models. However, such studies are expensive, and given
the fact that we expect that actual distributions may be complicated mixtures of base distributions
that vary from mill to mill, region to region, time to time, size to size, and species to species, it
may be that no satisfactory theoretical form(s) can be identi�ed to form the basis of sophisticated
reliability models that would yield an increase in overly conservative design values.

We suspect that ultimately, if reliability engineers want to obtain accurate reliability estimates,
they will need to develop detailed computer models that yield real-time, in-line estimates of lumber
strength based on measurements of sti�ness, speci�c gravity, knot size and location, slope of grain,
and other strength predictors.
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7 Appendix | Probability Density Functions of the Distributions

7.1 Normal (Univariate Distribution)

The normal probability density function (pdf) is given by

f(x;�; �) =
1p
2�

1

�
exp

�
�(x� �)2=(2�2)

�

for x 2 (�1;1) where � is the mean and � is the standard deviation of the distribution. This
distribution is denoted by the notation N(�; �2).

7.2 Mixed Normal (Univariate Distribution)

In this paper, when we discuss a \mixed normal distribution," we are referring to a mixture of two
normals. Such a mixture results when specimens are drawn with probability p from a N(�1; �

2
1)

distribution and with probability 1� p from a N(�2; �
2
2) distribution. In this case the pdf is given

by

f(x;�1; �1; p; �2; �2) = p� 1p
2�

1

�1
exp

�
�(x� �1)

2=(2�21)
�

+ (1� p)� 1p
2�

1

�2
exp

�
�(x� �2)

2=(2�22)
�

for x 2 (�1;1).
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7.3 Two-parameter Weibull (Univariate Distribution)

The two-parameter Weibull has probability density function

f(w; 
; �) = 
��w��1 exp
�
�(
w)�

�

for w 2 [0;1) where � is the shape parameter and 
 is the inverse of the scale parameter.

7.4 Three-parameter Beta (Univariate Distribution)

The three-parameter beta has probability density function

f(x;�; �;R) =
x��1(R� x)��1

R�+��1
� �(�+ �)

�(�)�(�)

for x 2 [0; R], where � denotes the gamma function.

7.5 Skew Normal (Univariate Distribution)

The skew normal distribution has probability density function

f(x; �; !; �) =
2

!
� �

�
x� �

!

�
� �

�
�

�
x� �

!

��

for x 2 (�1;1), where � denotes the probability density function of a standardized normal, �
denotes the cumulative distribution function of a standardized normal, and �, !, and � are the
parameters of the skew normal distribution.

7.6 Mixture of Two Bivariate Normals (Bivariate Distribution)

The probability density function of a single bivariate normal with mean vector

�
�X
�Y

�

standard deviation vector �
�X
�Y

�

and correlation � is given by

f

0
BBBB@x; y;

0
BBBB@

�X
�X
�Y
�Y
�

1
CCCCA

1
CCCCA =

1

2�

1

�X�Y
p
1� �2

exp
�
�arg=

�
2
�
1� �2

���

for x; y 2 (�1;1), where

arg =

�
x� �X
�X

�2
� 2�

�
x� �X
�X

��
y � �Y
�Y

�
+

�
y � �Y
�Y

�2
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The probability density function of a mixture of two bivariate normals with �rst distribution
proportion p is given by

g

0
BBBB@x; y;

0
BBBB@

�X;1
�X;1
�Y;1
�Y;1
�1

1
CCCCA ;

0
BBBB@

�X;2
�X;2
�Y;2
�Y;2
�2

1
CCCCA ; p

1
CCCCA = p� f

0
BBBB@x; y;

0
BBBB@

�X;1
�X;1
�Y;1
�Y;1
�1

1
CCCCA

1
CCCCA

+ (1� p)� f

0
BBBB@x; y;

0
BBBB@

�X;2
�X;2
�Y;2
�Y;2
�2

1
CCCCA

1
CCCCA
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Normal Weibull 3-parameter Beta Skew normal

�̂ �̂ �̂ = 1=
̂ �̂ �̂ �̂ R̂ �̂ !̂ �̂

sb MOE 1.42 0.35 1.56 4.45 | | | | | |
ecomp 1.62 0.37 1.77 4.74 | | | | | |
dire 1.57 0.36 1.71 4.74 | | | | | |
MOR 7850 2384 8680 3.80 4.35 3.91 14800 10500 3540 -2.46

Table 1a: Parameter estimates from univariate �ts | normal, two-parameter Weibull,
three-parameter beta, and skew normal distributions. \sb MOE" denotes static bending
MOE, \ecomp" denotes E-computer MOE, and \dire" denotes Director MOE. The MOE
�ts were done to MOE data in pounds per square inch divided by 1,000,000. The MOR �ts
were done to MOR data in pounds per square inch.

Mixed Normal
�̂1 �̂1 p̂ �̂2 �̂2

sb MOE 1.34 0.29 0.85 1.91 0.21
ecomp 1.53 0.20 0.23 1.65 0.40
dire 1.46 0.08 0.17 1.60 0.39
MOR/1000 6.96 2.59 0.59 9.13 1.21

Table 1b: Parameter estimates from univariate mixed normal �ts. \sb MOE" denotes static
bending MOE, \ecomp" denotes E-computer MOE, and \dire" denotes Director MOE. The
MOE �ts were done to MOE data in pounds per square inch divided by 1,000,000. The
MOR �t was done to MOR data in pounds per square inch divided by 1,000.



Tests

Variable Distribution S-W CVM LR

sb MOE Weibull | 0.01 |

Normal 0.371 | 0.351

Mixed normal | | |

ecomp Weibull | 0.01 |

Normal 0.318 | 0.463

Mixed normal | | |

dire Weibull | 0.01 |

Normal 0.185 | 0.012

Mixed normal | 0.67 |

MOR Weibull | 0.01 |

3-par Beta | 0.01 |

Skew normal | 0.65 |

Normal 0.001 | 0.0007

Mixed normal | 0.66 |

Table 2: p-values. \S-W" denotes a Shapiro-Wilk goodness-of-�t test for normality. \CVM"

denotes a Cram�er-von Mises goodness-of-�t test for a distribution. \LR" denotes a likeli-

hood ratio test of the null hypothesis that a distribution is a normal distribution versus the

alternative that the distribution is a mixture of two normal distributions. \sb MOE" denotes

static bending MOE, \ecomp" denotes E-computer MOE, and \dire" denotes Director MOE.

Note that the 0.01 and 0.001 values in the table are not exact. The exact values could be

smaller.

Left bivariate normal Right bivariate normal

MOE �̂MOE;1 �̂MOE;1 �̂1 �̂MOR;1 �̂MOR;1 �̂MOE;2 �̂MOE;2 �̂2 �̂MOR;2 �̂MOR;2 p̂

sb MOE 1.26 0.28 0.54 6.68 2.40 1.63 0.32 0.79 9.29 1.35 0.55

ecomp 1.46 0.29 0.39 6.49 2.40 1.79 0.37 0.65 9.23 1.36 0.51

dire 1.41 0.28 0.45 6.68 2.45 1.76 0.35 0.63 9.25 1.32 0.55

Table 3: Parameter estimates from mixed bivariate normal �ts. \sb MOE" denotes static

bending MOE, \ecomp" denotes E-computer MOE, and \dire" denotes Director MOE. The

MOE data were in pounds per square inch divided by 1,000,000. The MOR data were in

pounds per square inch divided by 1,000.



Figure 1: Third-point loading fixture.
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Figure 2: sb MOE. Ordered data versus predicted ordered data under the
best fit Weibull model. The solid line is the y = x line. If a Weibull model
is appropriate, the plotted data points will lie approximately lie along the
y = x line.
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Figure 3: sb MOE. Ordered data versus predicted ordered data under the
best fit normal model. The solid line is the y = x line. If a normal model
is appropriate, the plotted data points will lie approximately lie along the
y = x line.
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Figure 4: sb MOE. Ordered data versus predicted ordered data under the
best fit mixed normal model. The solid line is the y = x line. If a mixed
normal model is appropriate, the plotted data points will lie approximately
lie along the y = x line.
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Figure 5: Histogram of the sb MOE data overlaid with the fitted normal
and Weibull probability density functions.
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Figure 6: Histogram of the sb MOE data overlaid with the fitted normal
and mixed normal probability density functions.
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Figure 7: Histogram of the sb MOE data overlaid with the fitted mixed
normal probability density function and its two components.
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Figure 31: MOR versus sb MOE.
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Figure 32: MOR versus ecomp.
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Figure 33: MOR versus dire.
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Figure 34: Scatter plot of MOR versus sb MOE, and 0.90 probability con-
tent contours for the two bivariate normal components of the fitted mixed
bivariate normal model.
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Figure 35: Scatter plot of MOR versus ecomp, and 0.90 probability con-
tent contours for the two bivariate normal components of the fitted mixed
bivariate normal model.
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Figure 36: Scatter plot of MOR versus dire, and 0.90 probability content
contours for the two bivariate normal components of the fitted mixed bivari-
ate normal model.
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Figure 37: Scatter plot of MOR versus sb MOE, and approximate 0.90
probability content contour for the fitted full mixed bivariate normal model.
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Figure 38: Scatter plot of MOR versus ecomp, and approximate 0.90 prob-
ability content contour for the fitted full mixed bivariate normal model.
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Figure 39: Scatter plot of MOR versus dire, and approximate 0.90 proba-
bility content contour for the fitted full mixed bivariate normal model.
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