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Abstract
As a hardwood tree develops, surface defects such as 
wounds and branch stubs are overgrown or encapsulated 
into the tree. Evidence of such a defect remains present on 
the tree for decades, or for the life of the tree, in the form 
of bumps and changes in bark pattern. During this process, 
the appearance of the defect on the tree changes. The defect 
becomes flatter, the bark texture changes, and its dimensions 
change. This progressive change in appearance is predict-
able, permitting the size and location of the internal defect 
to be reliably estimated. Thus, the shape and size of the 
external defect indicator provide clues as to the type, shape, 
and size of the internal defect. Using log and defect data 
collected from six sites and four common Appalachian hard-
wood species—red oak, white oak, yellow-poplar, and sugar 
maple—a series of multiple linear regression models were 
developed to examine the internal–external defect relation-
ship. The series of equations developed to predict attributes 
of the internal defect are presented.
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Equations for Predicting Internal Log 
Defect Measurements of Common 
Appalachian Hardwoods
Edward Thomas, Research Scientist
Forest Products Laboratory, Madison, Wisconsin

Introduction
For many years, a major area of interest in hardwood re-
search has been the development of methods to determine 
the defects contained within a log. Determining location, 
size, and severity of defects within a log would allow the 
value and recovery potential of the log to be determined be-
fore processing begins. Further, sawing of the log could then 
be optimized such that the maximum value is produced. In 
addition, accurate internal defect information would permit 
researchers to analyze, refine, and expand upon current log 
grading rules, multiproduct potential, stand differences, and 
impacts of silvicultural treatments on log and product qual-
ity in ways previously not possible. 

One method of determining internal log defects is the 
use of x-ray computed tomography (CT) to examine the 
log (Araman et al. 1992). This process generates internal 
imagery where fine details are present that allow internal 
defect structures to be seen. The system also requires im-
age processing and reconstruction systems to automate the 
detection of defects in the two-dimensional CT imagery 
“slices” and assemble a three-dimensional representation of 
the internal defects (Sarigul et al. 2005).

Researchers have studied the relationships among surface 
indicators and internal defect manifestation in depth for 
various hardwood and softwood species. Schultz (1961), in 
examining German beech (Fagus sylvatica), found that the 
ratio of bark distortion width to bark distortion length in this 
species is the same as the ratio of stem diameter when the 
branch was completely healed over to current stem diameter. 
However, for species with heavier irregular bark, such as 
hard maple, he found that it was difficult to judge the clear 
area above the defect in this manner. 

Hyvärinen (1976) explored relationships among the internal 
features of grain orientation and height of clear wood above 
an encapsulated knot defect and the external features of sur-
face rise, width, and length for sugar maple (Acer saccha-
rum). Sugar maple defect data were collected from 44 trees 
obtained from three sites in upper Michigan. Hyvärinen 
used simple linear regression methods to find good cor-
relations among clear wood above defects, bark distortion 
width, length, and rise measurements, as well as age, tree 
diameter, and stem taper. The best, simple correlation was 

with diameter inside bark (DIB) (r = 0.66) and a 0.66-in. 
standard error of estimate. Correlation was further improved 
by using a stepwise regression method. The final model  
(r = 0.74) used bark distortion vertical size and DIB as the 
most significant predictor variables for predicting encapsu-
lation depth.

A similar study was conducted on a sample of 21 black 
spruce (Picea mariana) trees collected from a natural stand 
75 km north of Quebec City (Lemieux et al. 2001). Three 
trees, each with three logs, were selected, from which a 
total of 249 knot defects were dissected and their data 
recorded. The researchers found better correlations between 
external indicator and internal characteristics in the middle 
and bottom logs than in the upper logs. Strong correlations 
(r > 0.89) were found among the length and width of inter-
nal defect zones and external features such as branch stub 
diameter and length. The defects were modeled as having 
three distinct zones corresponding to the manner in which 
the penetration angle changes over time in black spruce. The 
penetration angle is the angle at which a line through the 
center of the defect intersects the log surface. 

Carpenter (1950) examined surface indicators and found 
that although the frequency and occurrence of surface indi-
cators within a given species vary by region, in general the 
same indicator will be found with its defect in the underly-
ing wood. Thus, although certain defect types may be more 
prevalent in some regions, the underlying manifestation 
of the defect would remain more or less consistent across 
regions. Further, growth rate varies from region to region (or 
site to site within the same region), so defect encapsulation 
rate will differ also. However, the rate at which the encapsu-
lation occurs and the degree to which the defect is occluded 
or covered over by clear wood are indicated in the bark 
pattern. Shigo and Larson (1969) discovered that the ratio of 
defect height to width is a strong indicator of defect depth 
with respect to the radius of the stem at the defect (Fig. 1). 
The faster the diameter growth, the faster the defect is en-
capsulated and the faster the bark distortion pattern changes.

More recently, the relationships among external defect 
indicators and internal features were examined for the 
common Appalachian hardwood species of yellow-poplar 
(Tulipifera liriodendron) (Thomas 2008), red oak (Quercus 
rubra) (Thomas 2013), white oak (Quercus alba) (Thomas 
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2012), and sugar maple (Acer saccharum) (Thomas, in 
preparation). These studies consistently found statistically 
significant correlations between external indicators and 
internal features. The strongest correlations occurred with 
the most severe defect types (that is, overgrown knots, 
overgrown knot clusters, sound knots, and unsound knots). 
These defects are the most recent and therefore the least 
occluded. In almost all cases, correlations observed with 
severe defect types were significant (α < 0.01). Conversely, 
the weakest correlations involved the least severe and 
most occluded defect types (that is, adventitious knots, 
adventitious knot clusters, light distortions, and medium 
distortions). In several cases, correlations between external 
and internal features failed to be statistically significant 
(α < 0.01) for the less severe defect types. The prediction 
equations discovered by this research follow.

Methods
A total of 3,657 external defects were collected from six 
sites for the four species (Table 1). In some cases, samples 
for multiple species were collected from the same location. 
Red oak (Quercus rubra) defect samples were collected 
from two sites in West Virginia: West Virginia University 
Forest (WVU) near Morgantown (elevation 2,300 ft) and 
the Mead Westvaco Forest (MWF) near Rupert (elevation 
3,200 ft). The two sites are separated by about 125 miles. 
Thirty-three trees were randomly selected from each site. 
Yellow-poplar defect samples were collected from two 
sites: the West Virginia University Forest (WVU) near 
Morgantown and the Camp Creek State Forest (CCSF) near 
Princeton (elevation 2,590 ft). The two sites are separated 
by approximately 220 miles. From each site, 33 trees were 
randomly selected. White oak (Q. alba) defect samples 
were collected from three sites in West Virginia: Fernow 

Experimental Forest located near Parsons, West Virginia, 
and two forests managed by Mead-Westvaco located in 
Fayette County, West Virginia, named F1 and F2. Thirty-
two trees were randomly selected from the Fernow site, 
and 15 and 16 trees were randomly selected from the F1 
and F2 sites, respectively. Sugar maple defect samples were 
collected from the Fernow and another forest managed by 
Mead-Westvaco located in Fayette County, West Virginia. 
Thirty-three trees were randomly selected from each of 
these sites.

Each tree was bucked into log lengths, and the logs were 
laser-scanned and manually diagrammed, recording the 
location and type of all defects. Numbers of defects by type 
were determined for the entire tree. Counts were used to de-
velop a random sampling plan. The goal was to collect four 
defects of each type from each tree, whenever possible. For 
example, if there were eight sound knots on the tree, every 
second sound knot was selected. Of course, not all trees 
have four defects of every type. In other cases, selecting one 
defect would prevent another from being selected due to 
defect overlap. In these cases, preference went to the least 
common defect type on that tree, and a different occurrence 
of the second defect type was used. The numbers of defect 
samples obtained from each site by defect type is shown in 
Table 1. Once specific defects were selected from a tree, 
they were bucked from the tree and sliced into 1-in. boards 
(Fig. 2).

Sample Processing
All log surface defects were identified according to the 
characteristics defined by Carpenter et al. (1989). Once a 
log surface defect was located and classified, the section 
containing the defect was cut from the log. Typically, defect 
sections ranged from 12 to 24 in. in length. If, upon dis-
section, the inner portion of the defect was not completely 
contained within the section, the sample was discarded. For 
each sample, the following information was recorded: defect 
type, surface width (across grain), surface length (along 
grain), ring count and log diameter at defect location, and 
bark thickness. Next, a groove was cut into the top of the 
sample along the line from the center of the defect to the 
pith of the sample. The groove is used to measure the rake 
angle of the defect as it penetrates into the log sample and 
can be seen in Figure 2 at the top of the slices as a notch. 
The sample was then flat sawn into 1-in.-thick slices. This 
resulted in a photo series showing the defect penetrating 
the log (Fig. 2). The photo series shows a medium distor-
tion defect. This sample had a slab thickness (distance from 
outer cambium to saw-kerf) of 0.9375 in. The faces of the 
first 2-in.-thick slices were clear of any defect and were not 
included in the photo series. For each slice, the depth (in-
cluding any previous saw kerfs, slices, and bark slab), defect 
width, length, and distance of defect center to notch bottom 
were recorded. When a defect terminated between slices, it 
was assumed that it terminated at the halfway point through 
the slice.

Figure 1. Encapsulation depth and stub scar 
relationship ratio (Shigo and Larson 1969).
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Table 1. Number of defect samples examined by species, defect type, and location

Defect 
type

Red oak Yellow-poplar White oak Sugar maple
Total all 
speciesWVU MWV Total WVU CCSF Total Fernow F1a F2b Total Fernow MWV Total

Adventitious 
knot (AK) 54 51 105 66 75 141 41 11 23 75 14 48 62 383
Adventitious 
knot cluster 
(AKC) 27 47 74 68 59 127 82 21 75 178 46 51 97 476
Bump 
(BUMP) 1 6 7 1 3 4 30 11 14 55 40 33 73 139
Heavy 
distortion 
(HD) 52 46 98 60 74 134 31 6 12 49 25 22 47 328
Light 
distortion 
(LD) 2 37 39 6 98 104 41 7 26 74 49 57 106 323
Medium 
distortion 
(MD) 70 63 133 79 91 170 31 7 11 49 35 41 76 428
Overgrown 
knot (OK) 45 114 159 76 87 163 98 69 59 226 107 83 190 738
Overgrown 
knot cluster 
(OKC) 0 48 48 1 20 21 33 17 28 78 24 22 46 193
Sound knot 
(SK) 19 36 55 31 41 72 33 7 5 45 46 22 68 240
Sound knot 
cluster 
(SKC) 1 13 14 0 2 2 19 9 9 37 9 1 10 63
Unsound 
knot (UK) 30 31 61 33 6 39 23 0 8 31 12 21 33 164
Unsound 
knot cluster 
(UKC) 0 13 13 0 0 0 1 1 2 4 1 0 1 18
Wound 
(WOUND) 0 43 43 13 14 27 0 0 0 0 19 33 52 122

Total 301 548 849 434 570 1004 463 166 272 901 427 434 861 3615
aFayette county, West Virginia, Site 1.
bFayette county, West Virginia, Site 2.

Figure 2. Surface indicator and internal defect slices for a medium distortion defect from a red oak log.



Research Paper FPL–RP–687

4

Modeling Statistics
A series of chi-squared tests were used to test for outliers 
in the internal/external data set (Komsta 2006). Any data 
points identified as a potential outliers were remeasured 
using the original sample for verification and corrected, if 
necessary. The data were grouped by defect type. Using the 
R statistical analysis program (R Development Core Team 
2006), stepwise multiple linear regression analyses using the 
StepAIC function were used to test for correlations among 
surface indicators and internal features. StepAIC uses the 
Akaike Information Criterion (AIC) index to choose be-
tween competing models. As such, the index considers both 
the statistical goodness of fit and the number of parameters 
that have to be estimated to achieve the degree of fit by 
imposing a penalty for increasing the number of param-
eters. The independent variables used were surface indica-
tor width (SWID), length (SLEN), rise (SRISE), and log 
diameter outside bark (DOB). These variables were selected 
because they are measurable during log surface inspection. 
Surface area (SWID * SLEN), volume (SWID * SLEN * 
SRISE), SLEN2, SRISE2, SWID2, and all combinations of 
independent variables were examined as potential predictor 
variables. The dependent variables selected were penetra-
tion angle (RAKE), clear wood above defect (EDEPTH), 
total depth (TDEPTH), halfway point cross-section width 
(HWID), and halfway point cross-section length (HLEN). 
The halfway point is the geometric midpoint between the 
surface and total defect penetration depth. Using these vari-
ables, an internal model of a defect can be constructed and 
an approximate internal location determined (Fig. 3).

Within each defect type class, the data were randomly parti-
tioned into two groups using the caTools package (Tuszyn-
ski 2006) for R. The first group contains approximately 
66.7% of the sample and was used for model development 
and determining the internal−external feature correlation 
statistic (model development set). The second set contained 
the remaining records and was used for testing the predic-
tion models (model validation set).

Discussion
Model development and testing correlation results are 
presented in Tables 2 and 3, respectively. A significance 
level of 1% was used for all tests. Correlation coefficient, 
significance, and mean absolute error (MAE) are reported 
for the model development and testing datasets. MAE is the 
mean of the absolute value of the residual errors for the fit-
ted equation. As such, MAE indicates the ± error range that 
can be expected using the fitted equation to predict defect 
features. The significant independent variables for each spe-
cies, defect, and internal feature are listed in Appendix I. 

The fitted equations for predicting internal defect attributes 
of common defect types for the four species are presented 
in Appendix I. To use the equations, you must identify tree 
species, type of defect, diameter of the log adjacent to the 
defect, length, width, and rise of the defect. Carpenter et al. 
(1989) is a good reference on hardwood log defect identifi-
cation and measurement. Hardwood log defects are typi-
cally measured using bark grain patterns for distortion-type 
defects and dimensions of the “bump” for knots and bumps 
(Fig. 4).

During data collection, the type (such as knot, hole, split) 
and condition (sound, decayed, or rotten) of the internal de-
fect was noted for each internal defect slice (Fig. 2). Table 4 
summarizes these data and lists the percentage of samples 
that were completely sound by species and defect type. With 
these data, one can roughly determine the likelihood that an 
internal defect will be completely sound. In our samples, 
yellow-poplar internal defects had the greatest chance of be-
ing completely sound, whereas sugar maple defects were the 
least likely to have a sound interior.

Figure 3. Illustration of internal features predicted 
by the model.

Figure 4. Measuring the surface indicators of (a) a bark 
distortion and (b) an unsound knot.

(a) (b)

Width and length 
at midpoint

Surface 
indicator

Clear
wood

Penetration depth

Rake
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Table 2. Model development results for internal features by species and defect type

Model development resultsa

Red oak Yellow-Poplar White oak Sugar maple

Defect 
type

Internal 
measure-
ment

Multiple 
adjusted 

R2

Mean 
absolute 

error

Multiple 
adjusted 

R2

Mean 
absolute 

error

Multiple 
adjusted 

R2

Mean 
absolute 

error

Multiple 
adjusted 

R2

Mean 
absolute 

error

AK Hwid 0.15 0.27 0.29 0.14 — — 0.09 0.18
Hlen 0.26 0.28 0.48 0.14 — — 0.28 0.23
Rake 0.12 5.04 0.20 4.09 — — 0.02 6.21
Depth 0.24 1.45 0.49 0.70 — — 0.30 0.67

 Clear 0.10 1.27 0.07 0.78 — — 0.16 1.06
AKC Hwid 0.11 0.56 0.27 0.26 — — 0.23 0.31

Hlen 0.36 0.43 0.39 0.23 — — 0.62 0.40
Rake 0.20 7.15 — — — — 0.04 10.39
Depth 0.26 1.35 0.32 0.59 — — 0.63 0.86

 Clear 0.06 1.12 0.15 0.64 — — 0.03 0.80
BUMP Hwid — — — — 0.31 0.43 0.16 0.70

Hlen — — — — 0.31 0.98 0.20 2.10
Rake — — — — 0.32 12.74 0.03 15.51
Depth — — — — 0.81 0.57 0.28 1.18

 Clear — — — — 0.10 0.36 0.19 1.00
HDb Hwid 0.55 0.20 0.36 0.21 0.31 0.33 0.10 0.25

Hlen 0.47 0.43 0.34 0.34 0.30 0.64 0.15 0.37
Rake 0.40 9.29 0.08 8.61 0.09 9.98 0.17 10.11
Depth 0.27 0.86 0.76 0.44 0.67 0.68 0.66 0.45

 Clear 0.08 0.67 0.10 0.61 0.07 0.86 0.16 0.84
LD Hwid 0.19 0.27 0.03 0.21 0.31 0.33 0.21 0.29

Hlen 0.34 0.65 0.02 0.29 0.32 0.61 0.33 0.43
Rake 0.03 10.06 0.07 8.12 0.17 10.43 0.04 13.11
Depth 0.09 1.05 0.56 0.38 0.67 0.67 0.44 0.54

 Clear 0.08 0.94 0.18 0.81 0.18 0.95 0.02 0.96
MDb Hwid 0.13 0.24 0.25 0.20 0.31 0.33 0.10 0.25

Hlen 0.23 0.34 0.27 0.28 0.30 0.64 0.15 0.37
Rake 0.10 10.50 — — 0.09 9.98 0.17 10.11
Depth 0.16 0.80 0.81 0.43 0.67 0.68 0.66 0.45

 Clear 0.10 0.86 0.25 0.73 0.07 0.86 0.16 0.84
OK Hwid 0.53 0.29 0.55 0.24 0.57 0.41 0.40 0.32

Hlen 0.40 0.67 0.49 0.40 0.41 0.96 0.34 0.74
Rake 0.42 10.23 0.31 8.56 0.27 14.83 0.14 14.59
Depth 0.45 0.96 0.76 0.41 0.44 0.83 0.56 0.54

 Clear — — — — — — 0.20 0.54
OKCc,d Hwid 0.65 0.66 0.47 0.27 0.63 0.51 0.47 0.89

Hlen 0.63 1.15 0.46 0.48 0.70 0.92 0.35 1.43
Rake 0.09 9.70 0.22 11.13 0.45 11.78 0.18 15.30
Depth 0.40 0.97 0.73 0.42 0.71 0.57 0.31 0.77

 Clear — — — — — — 0.37 0.39
SKe Hwid 0.65 0.38 0.73 0.31 0.58 0.44 0.27 0.30

Hlen 0.66 0.55 0.73 0.57 0.51 0.96 0.35 0.79
Rake 0.45 9.18 0.70 8.75 0.43 12.16 0.13 11.11
Depth 0.58 0.98 0.63 0.41 0.54 0.79 0.52 0.47

 Clear — — — — — — — —
UK Hwid 0.74 0.30 0.70 0.28 — — — —

Hlen 0.87 0.74 0.65 0.66 — — — —
Rake 0.54 10.29 0.36 8.50 — — — —
Depth 0.63 0.72 0.70 0.48 — — — —

 Clear — — — — — — — —
aBold italic font indicates nonsignificant result at 99% significance level.
bHD and MD data pooled for white oak model.
cRed oak and hard maple models include overgrown, sound, and unsound knot clusters.
dOK and OKC data pooled for yellow-poplar model.
eOK and SK data pooled for white oak model.
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Table 3. Model testing results for internal features by species and defect type

Model testing resultsa

Red oak Yellow-Poplar White oak Sugar maple

Defect 
type

Internal 
measure-
ment

Correlation 
coefficient 

R

Mean 
absolute 

error

Correlation 
coefficient 

R

Mean 
absolute 

error

Correlation 
coefficient 

R2

Mean 
absolute 

error

Correlation 
coefficient 

R

Mean 
absolute 

error

AK Hwid 0.52 0.26 0.53 1.89 — — 0.41 0.20
Hlen 0.32 0.41 0.44 0.25 — — 0.01 0.27
Rake 0.51 0.83 0.11 6.65 — — 0.03 11.57
Depth 0.35 1.57 0.74 1.05 — — 0.58 1.03

 Clear 0.40 0.93 0.33 0.85 — — 0.05 1.40
AKC Hwid 0.61 0.82 0.29 0.12 — — 0.30 0.39

Hlen 0.33 0.81 0.56 0.26 — — 0.48 0.38
Rake 0.12 0.95 — — — — 0.11 7.21
Depth 0.80 0.90 0.74 1.06 — — 0.75 0.60

 Clear 0.37 1.04 0.18 0.52 — — 0.10 0.88
BUMP Hwid — — — — 0.36 0.61 0.46 0.83

Hlen — — — — 0.33 1.56 0.29 2.98
Rake — — — — 0.04 16.39 0.22 16.06
Depth — — — — 0.87 0.67 0.81 1.03

 Clear — — — — 0.11 0.74 0.32 1.15
HDb Hwid 0.43 0.28 0.63 0.69 0.43 1.45 0.39 0.31

Hlen 0.47 0.44 0.67 0.40 0.44 0.74 0.45 0.45
Rake 0.68 8.54 0.25 5.85 0.12 11.53 0.01 14.40
Depth 0.51 0.72 0.90 0.44 0.78 0.71 0.65 0.66

 Clear 0.31 0.62 0.38 0.23 0.15 0.87 0.13 0.97
LD Hwid 0.46 0.41 0.59 0.36 0.39 0.44 0.64 0.28

Hlen 0.25 1.09 0.60 0.19 0.19 0.98 0.78 0.44
Rake 0.14 14.71 0.26 8.83 0.21 10.98 0.44 12.70
Depth 0.39 1.18 0.77 0.46 0.82 0.70 0.70 0.69

 Clear 0.01 1.00 0.37 0.83 0.29 0.87 0.05 1.17
MDb Hwid 0.56 0.29 0.35 0.31 0.43 1.45 0.39 0.31

Hlen 0.61 1.78 0.37 0.28 0.44 0.74 0.45 0.45
Rake 0.46 9.92 — — 0.12 11.53 0.01 14.40
Depth 0.63 0.75 0.84 0.44 0.78 0.71 0.65 0.66

 Clear 0.17 1.09 0.52 0.80 0.15 0.87 0.13 0.97
OK Hwid 0.46 0.40 0.63 0.88 0.60 0.49 0.60 0.32

Hlen 0.44 0.81 0.64 0.59 0.68 1.02 0.47 0.83
Rake 0.60 11.82 0.46 8.84 0.48 12.66 0.36 14.39
Depth 0.62 0.88 0.85 0.45 0.71 0.83 0.80 0.49

 Clear 0.17 0.04 — — — — 0.38 0.54
OKCc,d Hwid 0.58 0.81 0.44 0.89 0.79 0.53 0.80 0.87

Hlen 0.49 1.35 0.47 0.60 0.87 0.83 0.71 1.62
Rake 0.46 10.90 0.52 10.47 0.70 11.62 0.63 13.43
Depth 0.36 1.14 0.86 0.45 0.75 0.73 0.78 0.47

 Clear — — — — — — 0.52 0.30
SKe Hwid 0.50 0.75 0.87 0.66 0.71 0.50 0.77 0.33

Hlen 0.61 0.71 0.79 0.82 0.70 1.07 0.79 0.91
Rake 0.07 19.59 0.71 13.80 0.45 15.36 0.64 10.39
Depth 0.52 1.45 0.78 0.56 0.68 0.95 0.80 0.53

 Clear — — — — — — — —
UK Hwid 0.08 0.77 0.76 0.75 — — — —

Hlen 0.37 1.85 0.45 1.26 — — — —
Rake 0.55 12.22 0.43 9.71 — — — —
Depth 0.45 1.13 0.45 0.87 — — — —

 Clear — — — — — — — —
aBold italic font indicates nonsignificant result at 99% significance level.
bHD and MD data pooled for white oak model.
cRed oak and hard maple models include overgrown, sound, and unsound knot clusters.
dOK and OKC data pooled for yellow-poplar model.
eOK and SK data pooled for white oak model.
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Summary
The severest defects with greatest impact on recovery are 
generally the most recent ones on a tree. Thus, severe log 
surface defect indicators provide the most clues about the 
nature of the encapsulated defect. Distortions and bumps 
are defects that have existed long enough to have become 
significantly encapsulated into the tree and their surface 
indicator obscured by growth. Thus, correlations are weaker 
among external indicators and internal features for less 
severe defects. This has been observed in all four species 
examined thus far.

The goal of this research was to develop models capable 
of predicting internal defect features using external defect 
measurements. These models were developed to comple-
ment automated scanning and detection research that locates 
severe defects on hardwood stems (Thomas and Thomas 
2011). Two validation and confirmation studies have been 
conducted to examine accuracy of the internal defect predic-
tions. The first compared predicted size and position of 
defects on digitally sawn board surfaces to size and position 
of defects on the actual sawn board surface (Thomas 2011a). 
The second examined the impact of different defect sizes 
and position, given the range of prediction errors, on the 
NHLA (NHLA 1998) grade and value of the board (Thomas 
2011b). 

In the first study, it was determined that the models can pre-
dict the occurrence of approximately 80% of all knot-type 
defects. Specifically, the models performed well at predict-
ing the location of knots within a log, that is, the location of 
the defects on the resulting sawn board faces. The median 
error of the measured distance between the actual defect lo-
cation and the predicted defect location was 0.875 in. Given 

the sizes of the knot defects, predicted and actual defect 
areas overlapped more often than not. The models’ predic-
tions for internal defect size were not as accurate but still 
acceptable in most instances. In 22 cases (32.8%), the error 
was less than 2.5 in2. This error approximately corresponds 
to an error of 1.5 in. in defect length and width. The mini-
mum size error observed was 0.02 in2 and the maximum 
was 42.81 in2. Overall, the median error for predicted defect 
area on the board faces was 5.59 in2. This size of error is 
approximately 2.4 in. in defect width and length. In general, 
the model overestimates the size and therefore the severity 
of the internal defect.

The second study examined the impact of these potential 
errors on lumber value. Twenty-five additional red oak logs 
were scanned and digitally sawn. The sawing pattern for 
each log was used five times with different starting rota-
tion angles: 0°, 22.5°, 45°, 90°, and 150°. For each log 
and sawing rotation, four defect prediction variations were 
examined:

1. Normal predicted values.

2. MAE for each feature added to the normal values. This 
resulted in a maximum size defect with a maximum  
location deviation. 

3. MAE for each feature subtracted from the normal values. 
This resulted in a minimum size defect with a minimum 
location deviation. 

4. Random amount of error ranging from −MAE to +MAE 
added to the normal values.

Depending on defect type, the mean absolute error of the 
prediction model varies from 0.4 to 1.8 in. in length and 
0.3 to 0.8 in. in width at the defect cross-sectional size 
at the midpoint depth. For the random variations model, 
there were few instances of significant differences among 
all random defect variation size sets. In five instances, the 
differences were all between a single variation and all other 
variations. In only two instances was the minimum size 
variation in grade significantly different from all other size 
variations. 

There were few significant differences among the random 
only sawn lumber sets. The random variations data are 
likely to be truer to reality than the nonrandom variations 
data that include the “best” and “worst” case scenarios. The 
greatest cross-sectional area error size for the prediction 
models is with knot clusters (Table 2). It could be expected 
that logs with more knot clusters might have greater vari-
ability in sawn lumber quality due to the larger range of 
variability permitted by the prediction models for these 
defect types.

Recent efforts at West Virginia University resulted in a 
computer program (Lin et al. 2011) that generates saw-
ing solutions that optimize recovery according to National 
Hardwood Lumber Association (NHLA) lumber grades, 

Table 4. External defects having internal 
manifestations that are completely 
sound, by species and defect type

Defect 
type

Number of defects where interior is 
completely sound (%)

Red 
oak

Yellow- 
poplar

White 
oak

Sugar 
maple

AK 58.1 91.1 73.3 61.7
AKC 62.2 82.5 66.3 58.6
BUMP 14.3 20.0 20.0 25.3
HD 43.4 43.5 38.8 25.0
LD 28.2 51.2 23.0 29.3
MD 35.6 46.9 34.7 23.8
OK 26.3 62.9 23.5 19.3
OKC 4.3 68.8 37.2 19.6
SK 51.8 88.0 72.3 46.6
SKC 15.4 N/A 75.7 9.1
UK 37.1 90.7 48.4 14.3
UKC 8.3 N/A 50.0 N/A
Wound 69.8 71.4 88.2 94.2
Overall 39.8 67.2 47.2 35.2
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which use the external defect scan and the predicted internal 
defect data from these models. As such, the prediction mod-
els allow the optimizer to know how deeply encapsulated 
a given defect is, how big it is, and how deep the defect 
penetrates the log. For example, the defect models allow the 
optimizer to know if a defect would be removed when a slab 
is sawn from the log.
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Appendix I—Internal Defect Prediction Equations
Four surface defect measurements are used in the internal defect prediction equations presented in this section:
D Diameter of log at defect location
W Measured surface width of defect
L Measured surface length of defect
LW Measured surface length/measured surface width
R Measured surface rise of defect

All input and predicted measurements are in inches, with the exception of rake, which is in degrees.  
The predicted measurement variables are as follows:
totalDepth The total penetration depth of the internal defect
rake The angle at which the defect penetrates the log; also known as penetration angle
clearDepth The depth of clear wood over the encapsulated internal defect; also known as encapsulation depth
midPtWidth The width of the internal defect at the penetration midpoint
midPtLength The length of the internal defect at the penetration midpoint

The equations for these variables are unique to each species and defect type. In addition, there are three internal variables  
that have equations that are common to all defects and species:
midPtDepth The middle point of the internal defect between clear depth and total depth

encapWidth Estimate of the internal defect structure width at the encapsulation endpoint

encapLength Estimate of the internal defect structure length at the encapsulation endpoint

They are calculated as follows:

Appendix I.A—Yellow-Poplar Internal Prediction Equations
Adventitious knots

totalDepth = 0.429 + D*0.381 + R*W*5.322 − D*R*0.913
rake = 0.667 + R*29.330 + L*7.097 − R*W*20.609
clearDepth = − 0.214 + D*0.098 − R*2.168
midPtWidth = 0.269 + W*L*0.114 − R*W*L*0.223
midPtLength = 0.394 − W*0.407 + W*L*0.269 + W*R*0.811 + W*D*0.014 − W*L*R*0.854

Adventitious knot clusters
totalDepth = 3.070 + D*0.099 − W*0.570 + D*W*0.071
rake = 2.3385 − W*1.620 + L*2.358 − W*L*0.589
clearDepth = 0.594 + W*0.404 − R*4.143 − L*0.155 − W*L*0.166 + R*L*1.526
midPtWidth = −1.137 + D*0.152 + W*0.162 − D*W*0.053
midPtLength = 0.356 + W*0.046 + W*L*0.041

midPtDepth = totalDepth −
totalDepth − clearDepth 

2

endcapWidth = W − * (W − midPtWidth)
clearDepth 
midPtDepth

endcapLength = L − * (L − midPtLength)
clearDepth 
midPtDepth
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Light distortions
totalDepth = 0.349 + D*0.392 + W*0.187
rake = 15.850 − W*5.479 + L*6.820
clearDepth = 8.244 − D*0.655 − W*3.489 + D*W*0.339
midPtWidth = 0.588 + L*0.075
midPtLength = 0.697 + L*0.094

Medium distortions
totalDepth = −0.788 + D*0.338 − L*0.158 + D*W*0.031
rake = 20.547 (Note: No rake correlation, uses mean value as substitute)
clearDepth = −3.513 + D*0.406 + W*0.947 − R*3.433 − D*W*0.072
midPtWidth = 0.129 + D*0.057 + L*0.066 − D*R*0.111
midPtLength = 0.071 + L*0.040 − L*W*0.100 + W*D*0.027 − D*R*0.176

Heavy distortions
totalDepth = 0.333 + D*0.444 − R*0.834
rake = 16.577 + D*0.710 + R*21.728
clearDepth = −0.080 + D*0.075 − R*1.401
midPtWidth = −0.757 + D*0.165 + L*0.309 − D*L*0.026
midPtLength = −0.868 + D*0.197 + L*1.237 + D*W*0.076 − D*L*0.112

Overgrown knots
totalDepth = − 0.021 + D*0.415 + W*0.103
rake = 37.717 − D*1.701 + L*4.255
clearDepth = 0.164 − W*0.021 − L*0.030 + W* L*0.004
midPtWidth = − 0.009 + L*0.200 − W*L*0.020 + W*D*0.012
midPtLength = 0.639 + L*D*0.025

Overgrown knot clusters
totalDepth = 0.203 + D*0.405 + W*0.089
rake = 8.312 + L*4.946 + R*23.769 − R*W*2.932
clearDepth = 0.0
midPtWidth = − 0.313 + D*0.072 + L*0.173 + R*0.569 − L*R*0.188 + L*R*W*0.016
midPtLength = − 0.420 + D*0.080 + L*0.298

Sound knots
totalDepth = 1.029 + D*0.331 + L*0.059
rake = −8.614 + W*5.235 + L*4.576 − W*L*0.347
clearDepth = 0.370 − W*0.056 − L*0.0519 + W*L*0.007
midPtWidth = 0.0279 − W*0.34760 + R*1.80206 + W*D*0.05631 − R*D*0.1857
midPtLength = − 0.304 + D*W*0.045 − D*R*0.507

Sound and unsound knot clusters
Insufficient data to develop model for yellow-poplar.

Unsound knots
totalDepth = − 0.821 + D*0.508 + L*0.207 − R*0.496
rake = 25.715 + L*3.458
clearDepth = 0.0
midPtWidth = − 0.436 + L*0.329 + R*0.531 − R*W*0.068
midPtLength = −1.636 − W*0.104 + L*0.838 + R*0.730 − W*R*0.131
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Appendix I.B—Red Oak Internal Prediction Equations
Adventitious knots

totalDepth = −1.375 + D*0.443 + W*0.984 − L*1.251 − R*2.389
rake = 0.9173 + L*5.390 + R*18.247 − R*W*8.148
clearDepth = −0.337 + D*0.169 − R*3.476
midPtWidth = 0.137 + L*0.380 
midPtLength = −0.184 + W*0.214 + L*0.850 − W*L*0.317 + L*R*0.424

Adventitious knot clusters
totalDepth = 0.343 + D*0.351
rake = 7.505 + W*R*10.630 − R*D*1.955
clearDepth = 1.242 − R*2.171
midPtWidth = 0.374 + W*0.205 + R*0.825
midPtLength = 0.080 + L*0.496 + W*R*1.001 − L*R*1.359

Light distortions
totalDepth = 3.302 + D*0.233 − W*0.441 + R*7.710
rake = 21.649 − D*1.236 + D*W*0.295
clearDepth = 2.450 − L*0.501
midPtWidth = 0.033 + D*0.046 + L*0.192
midPtLength = −0.143 + L*0.873 − R*4.121

Medium distortions
totalDepth = 2.270 + D*0.158 + W*0.232
rake = 30.963 − D*1.940 + W*4.140
clearDepth = 1.493 + D*0.066 − W*0.481
midPtWidth = −0.121 + W*0.256 + L*0.342 − L*W*0.071
midPtLength = 0.730 + W*0.663 − D*0.145 + W*L*0.185 + D*L*0.056

Heavy distortions
totalDepth = 0.830 + D*0.236 + W*0.406
rake = 41.254 − D*3.588 + L*8.607
clearDepth = 2.405 − W*0.304 − L*0.968 + W*L*0.180
midPtWidth = 0.598 − D*0.039 − W*0.182 + L*0.183 + D*W*0.026
midPtLength = 0.607 + L*0.390 − D*0.070 + W*D*0.020

Bump uses overgrown knot equations.

Overgrown knots
totalDepth = 1.370 + D*0.172 − L*R*0.049 + D*W*0.025
rake = 20.210 − D*0.618 + L*3.838 + R*31.493 − D*R*2.415
clearDepth = 0.075 − W*0.011
midPtWidth = −0.252 + D*0.033 + L*0.231 + W*R*0.215 − L*R*0.221 
midPtLength = −0.500 + L*0.550 − L*R*0.323 + W*R*0.292

Sound knots
totalDepth = 1.636 + L*1.340 − W*1.943 + W*D*0.233 − L*D*0.141
rake = 17.095 − D*2.622 + W*10.024 − W*L*0.438
clearDepth = 0.0
midPtWidth = 0.172 − W*L*0.008 + W*D*0.009
midPtLength = −0.489 + W*0.412 + R*0.778 − R*L*0.274 + W*R*L*0.020
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Overgrown, sound, and unsound knot clusters
totalDepth = 3.158 + D*0.033 − L*W*0.020 + D*L*0.031
rake = 29.534 − D*1.386 + L*1.389
clearDepth = 0.0
midPtWidth = 2.008 + W*L*0.035 − D*L*0.016
midPtLength = −7.746 + D*0.926 + W*1.614 − L*0.812 + W*L*0.092 − W*D*0.129

Unsound knots
totalDepth = −7.441 + D*0.837 + L*0.754 + W*0.631 − W*L*0.038 − L*D*0.051 
rake = 8.265 + W*10.349 − W*D*0.473
clearDepth = 0.0
midPtWidth = 0.036 + L*0.242 − W* L*0.030 − L*R*0.093 + L*D*0.023
midPtLength = 0.274 + W*0.182 + L*0.332 − R*W*0.227 + W*R*L*0.016

Appendix I.C—White Oak Internal Prediction Equations
Adventitious knots

totalDepth = 1.887 + D*0.236
rake = 0.433 + D*0.639 − W*4.258 + R*15.469
clearDepth = −0.273 + D*0.095 − R*1.514
midPtWidth = 0.240 + D*0.028 
midPtLength = 0.544 + L*0.189

Adventitious knot clusters
totalDepth = 1.202 + D*0.359 − W*0.193
rake = 8.527 + L*1.389 − D*0.374
clearDepth = 0.222 − R*0.527 − L*0.074 + D*0.023
midPtWidth = 0.487 + W*0.220 − R*0.361
midPtLength = 0.943 + L*0.255 − R*0.399

Light distortions
totalDepth = .415 + D*0.423
rake = 19.756 − D*1.245 + W*7.516
clearDepth = −2.639 + D*0.187 + W*0.865 + L*0.621 − W*L*0.325
midPtWidth = 0.604 + W*0.375 
midPtLength = 0.542 + W*0.762

Medium distortions
totalDepth = 0.830 + D*0.304 + L*0.355
rake = 32.458 − D*1.662 + L*4.575
clearDepth = −1.298 + D*0.148 + L*0.662 − D*W*0.049
midPtWidth = 0.533 + W*0.432 − W*D*0.023 + D*L*0.020
midPtLength = 1.409 + W*0.553 + W*L*0.160 − W*D*0.047

Heavy distortions
totalDepth = 0.724 + D*0.401
rake = 1.369 + L*17.145 − L*D*0.780
clearDepth = −1.100 + D*0.157 + W*L*0.275 − D*L*0.059
midPtWidth = 1.251 − R*1.722
midPtLength = 6.470 − W*2.386 − L*3.074 + R*49.641 + W*L*1.491 − W*R*30.131
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Overgrown knots
totalDepth = 3.688 − W*L*0.028 − L*R*0.074 + L*D*0.049
rake = 17.399 + R*45.105 − R*D*2.437
clearDepth = 0
midPtWidth = −1.478 − D*0.066 + D*W*0.021 
midPtLength = −4.201 − D*0.242 + D*L*0.033

Bump
totalDepth = 0.2175 + D*0.435 + W*L*0.008
rake = 25.601 − D*3.669 + W*7.076 + R*62.798 − W*R*7.077
clearDepth = 0.706 − R*0.758
midPtWidth = 1.128 + L*0.153 
midPtLength = 2.608 − D*0.184 + L*0.747 − L*W*0.034

Sound knots
totalDepth = 1.636 + L*1.340 − W*1.943 + W*D*0.233 − L*D*0.141
rake = 17.095 − D*2.622 + W*10.024 − W*L*0.438
clearDepth = 0.0
midPtWidth = 0.172 − W*L*0.008 + W*D*0.009 
midPtLength = −0.489 + W*0.412 + R*0.778 − R*L*0.274 + W*R*L*0.020

Overgrown, sound, and unsound knot clusters
totalDepth = 1.057 + D*0.340 + L*0.196480 − R*0.876 − L*W*0.021 + L*R*0.128
rake = 10.455 − D*1.045 + W*2.766 + R*7.477
clearDepth = 0.0
midPtWidth = 0.182 + W*0.362 + W*R*0.200 − W*D*0.033 − R*L*0.204 + D*L*0.031
midPtLength = −3.223 + D*0.231 + W*1.292 − D*W*0.099 + D*L*0.043

Overgrown and sound knots
totalDepth = 0.517 + D*0.338 + L*0.151
rake = 26.931 − D*1.566 + W*9.546 − R*28.627 − W*L*0.723 + R*L*4.230
clearDepth = 0.075 − W*0.013 − R*0.052 + W*R*0.008
midPtWidth = 0.061 + W*0.290 − R*0.661 + R*D*0.043
midPtLength = 0.585 + W*0.572 + L*0.286 − R*1.635 − W*L*0.044 + L*R*0.219

Unsound knots
totalDepth = −7.441 + D*0.837 + L*0.754 + W*0.631 − W*L*0.038 − L*D*0.051
rake = 8.265 + W*10.349 − W*D*0.473
clearDepth = 0.0
midPtWidth = 0.026 + L*0.242 − W*L*0.030 − L*R*0.093 + L*D*0.023 + L*W*R*0.008
midPtLength = 0.274 + W*0.182 + L*0.332 − R*W*0.227 + W*R*L*0.016

Appendix I.D—Sugar Maple Internal Prediction Equations
Adventitious knots

totalDepth = 1.02441 + D*0.34117
rake = 13.776 + D*0.53
clearDepth = 1.7892 − R*3.5782
midPtWidth = 0.31657 + W*0.09249
midPtLength = 0.72865 + L*0.33344 − D*0.04690
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Adventitious knot clusters
totalDepth = 3.677504 + D*0.014937 − L*0.407776
rake = 27.2754 − D*1.3517
clearDepth = 1.0130 − LW*0.5184
midPtWidth = 0.5462 + W*0.21048
midPtLength = 0.76418 + L2*0.10306

All distortion defects
totalDepth = 2.823228 + D2*0.014982 + W*0.210660
rake = 20.258 + W*1.709 + R*118.573
clearDepth = 1.1806 − L*0.3373 + W*0.3080
midPtWidth = 0.24177 + D*0.02898 + L*0.17355
midPtLength = 0.95531 + L2*0.06575

Overgrown knots
totalDepth = 0.596627 + D*0.392337 + W2*0.008252
rake = 21.4104 + L*2.7397
clearDepth = 0.01417 * D*0.10754 - W*0.15512
midPtWidth = -0.39180 + W*0.26011 − L*0.10510 + LW*0.92677
midPtLength = 0.81563 + L*0.25835

Bump
totalDepth = 2.9218 + D*0.22761
rake = 11.820 + W*2.622
clearDepth = −0.69581 + D*0.12328
midPtWidth = 2.175093 + L2*0.011107 − R*1.683948
midPtLength = 4.01613 + L2*0.05266 − R*5.70239

Sound knots
totalDepth = 0.25073 + D*0.39729 + L*0.09376
rake = 22.704 + W*2.723 
midPtWidth = 0.7075 + W*0.1202
midPtLength = 0.11425 + W*0.35298

Overgrown, sound, and unsound clusters
totalDepth = −0.91407 + D*0.55747
rake = 14.0486 + L*1.9609
clearDepth = 1.1911 − LW*1.1718
midPtWidth = 0.072955 + D*W*0.025206
midPtLength = 1.210521 + W*L*0.037013

Unsound knots
totalDepth = 1.3800258 + D*0.3062578 + W*L*R*0.0021684
rake =27.646 + W*2.483 
midPtWidth = 0.8538 + W*0.1245
midPtLength = 0.9574 + W*0.3059
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Appendix II—Equations for Locating Defects Inside Logs
The following equations are used to determine the boundary 
points of an internal defect for a log. These equations as-
sume that the log is centered on X,Y origin along the Z axis. 
In addition, the equations assume that the point S, the center 
point of a log surface defect, is known.

Then the following points can be determined:
I Interior center point
O0 Center point of the outer defect circumference  

(Fig. 5)
O1..8 Set of points describing the outer circumference of 

the interior log defect (Fig. 5)
M0 Center point of middle describing circumference 

(Fig. 5)
M1..8 Set of points describing the middle circumference of 

the interior log defect (Fig. 5)

d = √S 2x + S 2y 

oOffset = d * tan(rake)
Origin x = 0.0
Origin y = 0.0

Origin z = S z − oOffset

The Origin point is the projection of the log defect from the 
center of the surface point to the geometric center of the log, 
given the rake or penetration angle of the defect. The defect 
model developed here centers the defect structure about the 
SO line. Once O is known, the innermost point, I, and the 
middle cross-section center point, M0, of the defect can be 
determined (Fig. 6).

zOffset = totalDepth * tan(rake)

r = √ totalDepth2 + zOffset2

ΔSOrigin = Origin − S

ΔSO = √ ΔSOrigin2
x
 + ΔSOrigin2

y
 + ΔSOrigin2

z

Scale =  ΔSO
r

I
x
 = S

x
 + Scale * ΔSOrigin

x

I
y
 = S

y
 + Scale * ΔSOrigin

y

I
z
 = S

z
 − zOffset

MZOffset = midPtDepth * tan(rake)

p = √ MZOffset2 + midPtDepth2

Scale =  ΔSO
p

M
0
 = S + Scale * ΔSOrigin

Figure 5. Arrangement of midpoint and outer 
point series that describes defect boundaries.

Figure 6. Graphical description of points and measurements 
used to position internal defects.
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If there is an encapsulation depth (that is, if clear wood has 
grown over the internal defect), then the next step is deter-
mining the outer center point of the defect:

clrOffset = encapDepth * tan(rake)

Scale =
√ encapDepth2 + clrOffset2

ΔSO

O
0
 = S + Scale * ΔSOrigin

OuterWidth = encapWidth /2.0
OuterLength = encapLength /2.0

If there is no encapsulation (that is, the defect extends to the 
surface of the log), then place the outer surface of the defect 
on the log surface:

O
0
 = S

OuterWidth = encapWidth /2.0
OuterLength = encapLength /2.0

Solve for the O
1
, O

3
, O

5
, and O

7
 points using the N

1
, N

3
, N

5
, 

and N
7 

normal vectors calculated earlier when solving for 
the M

1
, M

3
, M

5
, and M

7
 points:

O
1
 = O

0
 + N

1
 * outerWidth

O
5
 = O

0
 + N

5
 * outerWidth

O
3
 = O

0
 + N

3
 * outerLength

O
7
 = O

0
 + N

7
 * outerLength

Last, solve for remaining outer defect boundary points:

dDiag = 
outerWidth + outerLength 

2
D = O

1
 − O

3
Temp = O

3
 + D * 0.50

D = Temp − O
0

√ D 2x + D 2y + D 2z 
Scale = 

dDiag

O
2
 = O

0
 + Scale * D

D = O
3
 − O

5
Temp = O

5
 + D * 0.50

D = Temp − O
0

O
4
 = O

0
 + Scale * D

D = O
3
 − O

7
Temp = O

7
 + D * 0.50

D = Temp − O
0

O
6
 = O

0
 + Scale * D

D = O
7
 − O

1
Temp = O

1
 + D * 0.50

D = Temp − O
0

O
8
 = O

0
 + Scale * D

After the middle cross-section center point, M0, of the defect 
is determined, the points, M1..8, that describe the defect’s 
middle boundary can be determined. Points M1 and M5 are 
found by first determining normal vectors N1 and N5 in the 
planes ISP and IPS, respectively (Fig. 5), where P is a point 
on the Z axis and SP is perpendicular to the Z axis:

Px = 0.0
Py = 0.0
Pz = S z

N1 = ∇ISP
N5 = ∇IPS

M1 = M0 + N1 * midPtWidth
M5 = M0 + N5 * midPtWidth

Determine the points M3 and M7 using normal vectors for 
planes containing M1, M5, and S:

N3 = ∇M1M5S
N7 = ∇M5 M1S

M3 = M0 + N3 * midPtLength
M7 = M0 + N7 * midPtLength

To solve for points M2, M4, M6, and M8, we find the distance 
of a diagonal point T from M0, where the distance is the 
average of the midPtWidth and midPtLength:

dDiag = 
midPtWidth + midPtLength 

2

D = M1 − M3
T = M3 + D * 0.5

D = T − M0

√ D 2x + D 2y + D 2z 
Scale = 

dDiag

M
2
 = M

0
 + Scale * D

D = M
3
 − M

5
T = M

5
 + D * 0.5

D = T − M
0

M
4
 = M

0
 + Scale * D

D = M
5
 − M

7
T = M

7
 + D * 0.5

D = T − M
0

M
6
 = M

0
 + Scale * D

D = M
7
 − M

1
T = M

1
 + D * 0.5

D = T − M
0

M
8
 = M

0
 + Scale * D






