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Abstract
Two important wood properties are stiffness (modulus 
of elasticity or MOE) and bending strength (modulus of 
rupture or MOR). In the past, MOE has often been modeled 
as a Gaussian and MOR as a lognormal or a two or three 
parameter Weibull. It is well known that MOE and MOR are 
positively correlated. To model the simultaneous behavior of 
MOE and MOR for the purposes of wood system reliability 
calculations, in a 2012 paper Verrill, Evans, Kretschmann, 
and Hatfield introduced a bivariate Gaussian–Weibull distri-
bution and the associated pseudo-truncated Weibull. In that 
paper, they obtained asymptotically efficient estimators of 
the parameter vector of the bivariate Gaussian–Weibull. In 
this paper, we discuss computer simulations that investigat-
ed the small sample properties of these parameter estimates.  
We also discuss a Web-based computer program that obtains 
these estimates.

In the course of conducting the computer simulations we 
found that, as one would expect, assuming that the data truly 
have a bivariate Gaussian–Weibull distribution, bivariate 
Gaussian–Weibull estimators are superior to univariate
(marginal) estimators. Also, under conditions likely to be 
encountered by wood scientists, univariate maximum likeli-
hood Weibull estimators are generally superior to univariate 
ordinary least squares Weibull estimators. This latter result 
has implications for ASTM standard D 5457.

Keywords: Reliability, modulus of rupture, modulus of elas-
ticity, normal distribution, Weibull distribution, likelihood 
methods, ASTM D 5457
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Small Sample Properties of Asymptotically Efficient Esti-
mators of the Parameters of a Bivariate Gaussian–Weibull
Distribution

Steve P. Verrill, Mathematical Statistician
James W. Evans, Mathematical Statistician
David E. Kretschmann, Research General Engineer
Cherilyn A. Hatfield, Statistician

Forest Products Laboratory, Madison, Wisconsin

1 Introduction

Two important wood properties are stiffness (modulus of elasticity or MOE) and bending strength
(modulus of rupture or MOR). In the past, MOE has often been modeled as a Gaussian and MOR
as a lognormal or a two- or three-parameter Weibull. (See, for example, ASTM 2010a, Evans and
Green 1988, and Green and Evans 1988.)

Design engineers must ensure that the loads to which wood systems are subjected rarely exceed
the systems’ strengths. To this end, ASTM D 2915 (ASTM 2010a), and ASTM D 245 or ASTM D
1990 (ASTM 2010b,c) describe the manner in which “allowable properties” are assigned to popu-
lations of structural lumber. In essence, an allowable strength property is calculated by estimating
a fifth percentile of a population (actually a 95% content, lower, 75% tolerance bound) and then
dividing that value by “duration of load” (aging) and safety factors. The intent is that the popula-
tion can only be used in applications in which the load does not exceed the allowable property. Of
course there are stochastic issues associated with variable loads, uncertainty in estimation, and the
division of a percentile with no consideration of population variability. Thus, from a statistician’s
perspective, this is not an ideal approach to ensuring reliability of wood systems. However, it is
the currently codified approach.

To apply this approach, one must obtain estimates of the fifth percentiles of MOR distributions.
Currently, one method for obtaining estimates involves fitting a two-parameter Weibull distribution
to a sample of MORs. To obtain this fit, either a maximum likelihood approach or a linear regression
approach based on order statistics is permitted under ASTM D 5457 (ASTM 2010d).

Unfortunately, these methods are often applied to populations that are not really distributed
as two-parameter Weibulls. For example, in the United States, construction grade 2 by 4’s are
often classified into visual categories—select structural, number 1, number 2—or into machine
stress-rated (MSR) grades. In the case of MSR grades, MOE boundaries are selected, MOE is
measured non-destructively, and boards are placed into categories based upon the MOE bins into
which the boards fall. Because MOE and MOR are correlated, bins with higher MOE boundaries
also tend to contain board populations with higher MOR values. The fifth percentiles of these
MOR populations are sometimes estimated by fitting Weibull distributions to these populations.
Statisticians recognize that this poses a problem. Even if the full population of lumber strengths
were distributed as a Weibull, we would not expect that subpopulations formed by visual grades
or MOE binning would continue to be distributed as Weibulls.

In fact, such a subpopulation is not distributed as a Weibull. Instead, if the full joint MOE–
MOR population were distributed as a bivariate Gaussian–Weibull, the subpopulation would be
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distributed as a “pseudo-truncated Weibull” (PTW). Verrill, Evans, Kretschmann, and Hatfield
(2012) obtained the distribution of a PTW and showed how to obtain estimates of its parameters
by using asymptotically efficient methods to fit a bivariate Gaussian–Weibull to the full MOE–MOR
distribution.

In this paper, we use computer simulations to investigate the small sample properties of these
asymptotically efficient estimators. These simulations and their results are described in Sections 2
through 5. We then describe a Web-based computer program that calculates these estimates. This
program is described in Section 6.

In the course of performing the computer simulations, we also found that bivariate Gaussian–
Weibull estimators are superior to univariate (marginal) estimators, and that under conditions
likely to be encountered by wood scientists, univariate maximum likelihood Weibull estimators
are generally superior to univariate ordinary least squares Weibull estimators. These results are
described in Sections 4 and 5.

As an aside, we remark that the bivariate Gaussian–Weibull distribution has uses other than as a
generator of pseudo-truncated Weibulls. For example, engineers who are interested in simulating the
performance of wood systems must begin with a model for the joint stiffness, strength distribution
of the members of the system. Provided that we are considering the full population, a Gaussian–
Weibull is one possible model for this joint distribution.

Bivariate Gaussian–Weibull distributions have not yet appeared in the literature. However,
Gumbel (1960), Freund (1961), Marshall and Olkin (1967), Block and Basu (1974), Clayton (1978),
Lee (1979), Hougaard (1986), Sarkar (1987), Lu and Bhattacharyya (1990), Patra and Dey (1999),
Johnson et al. (1999), and others have previously investigated bivariate Weibulls.

We note that the bivariate Gaussian–Weibull distribution discussed in the current paper is not
the only possible bivariate distribution with Gaussian and Weibull marginals. In essence we begin
with a “Gaussian copula”—a bivariate uniform distribution generated by starting with a bivariate
normal distribution and then applying normal cumulative distribution functions to its marginals.
However, there is a large literature on alternative copulas (multivariate distributions with uniform
marginals). See, for example, Nelsen (1999) and Jaworski (2010). (Also see Wang, Rennolls, and
Tang (2008) for an application of copulas to joint models of tree heights and diameters.) These
alternatives would lead to alternative bivariate Gaussian–Weibulls. Ultimately, the test of the
usefulness of our proposed version of a Gaussian–Weibull for a particular application will depend
on the match between the theoretical distribution and data. Still, we believe that the ability to fit
the version discussed in the current paper represents a useful step in the construction and evaluation
of bivariate Gaussian–Weibull distributions.

2 Simulations of Gaussian–Weibull Fits

In Verrill et al. (2012) we found that the joint probability density function of the proposed Gaussian–
Weibull was

gaussweib(x,w;µ, σ, ρ, γ, β) ≡ γββwβ−1 exp
(
−(γw)β

)
(1)

× 1√
2π

1

σ
√

1− ρ2
exp

(
−
(
x− µ
σ
− ρy

)2

/(2(1− ρ2))

)

where x ∈ (−∞,∞) is the Gaussian value, w > 0 is the Weibull value, µ and σ are the mean and
the standard deviation of the marginal Gaussian, ρ is the generating correlation, γ and β are the
inverse scale and the shape of the marginal two-parameter Weibull (we assumed that β > 1 in our
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development),

y = Φ−1
(

1− exp
(
−(γ × w)β

))
(2)

and Φ denotes the N(0,1) cumulative distribution function. (In figures 1 – 9 of Verrill et al. (2012),
we provide contour plots of the proposed bivariate Gaussian–Weibull distribution for coefficients of
variation equal to 0.35, 0.25, and 0.15, and generating correlations equal to 0.5, 0.7, and 0.9.)

We also established that

√
n




µ̂
σ̂
ρ̂
γ̂

β̂

−


µ
σ
ρ
γ
β


 D→ N(0, I(θ)−1) (3)

where θ ≡ (µ, σ, ρ, γ, β)T , µ̂ and σ̂ are one-step Newton estimators based on the bivariate Gaussian–
Weibull theory (that is, the gradient and Hessian used to calculate the Newton step correspond
to the first and second partials of the full Gaussian–Weibull likelihood) that start at the stan-
dard univariate normal maximum likelihood estimators of the mean and standard deviation of a
Gaussian, γ̂ and β̂ are one-step Newton estimators based on the bivariate Gaussian–Weibull theory
that start at the standard univariate maximum likelihood estimators of 1/scale and shape for a
Weibull, ρ̂ is a one-step Newton estimator based on the bivariate Gaussian–Weibull theory that
starts at the

√
n-consistent estimator of ρ introduced in appendix B of Verrill et al. (2012), and the

elements of I(θ) are listed in Appendix A of the current paper. However, these are “asymptotic” or
“large sample” results. To apply these results, we need to know what sample sizes are required to
ensure that the large sample approximations are satisfactory. We are also interested in the biases,
variabilities, and mean squared errors associated with these estimators.

To investigate these questions, we performed computer simulations. In particular, for coefficients
of variation of 0.10, 0.20, 0.30, and 0.40 (for both the Gaussian and Weibull marginals), generating
correlations of 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95 (the “generating correlations” are approximately
equal to the observed correlations between the Gaussian random variable and the Weibull random
variable—see Table 1), and sample sizes of 15, 30, 60, 120, 240, and 480, we did the following:

1. Obtained the actual coverages of nominal 75%, 90%, 95%, and 99% confidence intervals on
the five parameters of the distribution (µ, σ, ρ, γ, and β).

2. Used these actual coverages at known sample sizes to estimate the sample sizes required to
obtain actual coverages that fell in the narrow ranges [.74,.76], [.89,.91], [.94,.96], [.985,.995]
and the wider ranges [.73,.77], [.88,.92], [.93,.97], [.98,.995].

3. Obtained estimates of the percent biases of the asymptotically efficient estimators.

4. Obtained estimates of the percent standard deviations of the estimators.

5. Calculated the ratios of the theoretical variances of the estimators of the parameters in the
univariate and bivariate cases.

6. Obtained simulation estimates of the mean squared error ratios for the parameter estimators
in the univariate and bivariate cases.

The simulations were based on 10,000 trials of each condition. In these simulations the generat-
ing µ was set at 100, the generating σ was set at 10, 20, 30, or 40 (for coefficients of variation equal to
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0.10, 0.20, 0.30, or 0.40), the generating β was set at 12.154, 5.7974, 3.7138, or 2.6956 (for coefficients
of variation equal to 0.10, 0.20, 0.30, or 0.40), and the generating γ was set at a value that would
yield a Weibull median of 100 (given the β value). In the optimizations that were performed by the
programs, no constraints were placed on the µ estimate, the ρ estimate was constrained to lie within
the interval [−1, 1], the σ and γ estimates were constrained to be non-negative, and the β estimate
was constrained to lie within the interval [1, 50.59] (that is, the coefficient of variation was con-
strained to lie between 1 and 0.025). Listings of the computer programs that were used to perform
these simulations can be found at http://www1.fpl.fs.fed.us/sim gauss weib.html. (A single
instance of a bivariate Gaussian–Weibull was generated as follows: Obtain independent N(0,1)’s,
X1, X2, via a Gaussian random number generator. Set X = µ+ σX1 and Y = ρX1 +

√
1− ρ2X2.

Then X is distributed as a N(µ, σ2), Y is distributed as a N(0,1), and their correlation is ρ. Now
let U = Φ(Y ). Then U is a Uniform(0,1) random variable that is correlated with X. Finally, let
W = (− log(1 − U))1β/γ. Then W is distributed as a Weibull with shape parameter β and scale
parameter 1/γ, and together X and W have our joint “bivariate Gaussian–Weibull” distribution.)

To perform the simulation work, we needed to be able to obtain maximum likelihood estimates of
two-parameter Weibull parameters. To perform these optimizations, we needed initial estimates of
the shape and scale parameters. We used the regression estimates specified in ASTM D 5457 (ASTM
2010d). This permitted us to compare the mean squared errors associated with the regression and
maximum likelihood estimators, and to conclude that the regression estimators can be highly
inefficient. This work is described in Section 5. Our (limited) results are in accord with the results
from an extensive simulation study performed by Genschel and Meeker (2010). Other authors
have found that for small samples (“small” from the perspective of wood research), regression
methods (especially generalized least squares) can outperform maximum likelihood methods. See,
for example, Engeman and Keefe (1982) and Al-Baidhani and Sinclair (1987).

3 n’s Needed for Satisfactory Confidence Interval Coverages

The theory embodied in result (3) is asymptotic. That is, the approximation becomes better as
sample sizes increase. Thus, for smaller samples, nominal confidence interval coverages based on
(3) might not be good matches for actual confidence interval coverages.

To evaluate the sample sizes needed to yield actual confidence interval coverages that are good
matches to nominal coverages, for coefficients of variation 0.10, 0.20, 0.30, and 0.40, and generating
correlations 0.50, 0.60, 0.70, 0.80, 0.90, and 0.95, we performed simulations of samples of size 15,
30, 60, 120, 240, and 480. Then, for nominal coverages of 0.75, 0.90, 0.95, and 0.99, we used least
squares to fit the linear model

actual coverage− nominal coverage = a1/
√
n+ a2/n+ a3/n

3/2 (4)

to the data. Here n denotes the sample size. Two examples of the data and the associated fits to
the data are given in Figures 1 and 2.

Given these fits, we could calculate the n needed to ensure that coverages lay in, for example,
[.73,.77] (one of the “Wide” cases). In this case, if a curve approached the horizontal 0.77 line from
above (as does the simulation-based curve in Fig. 1), then we would obtain the needed n by using
a nonlinear equation solver to solve

0.77 = 0.75 + a1/
√
n+ a2/n+ a3/n

3/2

for n where a1, a2, and a3 were obtained from the least squares fit of model (4). That is, we would
find the n at which the upper curved line in Figure 1 intersected the upper horizontal line. If a
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curve approached the horizontal 0.73 line from below (as does the theory-based curve in Fig. 1),
then we would obtain the needed n by using a nonlinear equation solver to solve

0.73 = 0.75 + a1/
√
n+ a2/n+ a3/n

3/2

for n. Note that if a curve already lay between 0.73 and 0.77 for n = 15, then we reported
the needed n as 15. Thus, in our tables, 15 is the minimum value. Similar techniques were
used to obtain the n needed to ensure that coverages lay in [.88,.92], [.93,.97], [.980,.995] (“Wide”
cases) or [.74,.76], [.89,.91], [.94,.96], [.985,.995] (“Narrow” cases) for nominal 75%, 90%, 95%,
99% confidence intervals, respectively. Results from the complete simulations can be found at
http://www1.fpl.fs.fed.us/n needed gauss weib.html. Here, we report a summary of these
simulations.

We considered three types of confidence intervals on the parameters.

1. Simulation-based (sim) confidence intervals:

θ̂biv ± z1−α/2 × σsim (5)

2. Univariate (uni) asymptotic theory confidence intervals:

θ̂uni ± z1−α/2 × σuni/
√
n (6)

3. Bivariate (biv) asymptotic theory confidence intervals:

θ̂biv ± z1−α/2 × σbiv/
√
n (7)

Here, θ denotes one of the five parameters (µ, σ, ρ, γ, β). z1−α/2 denotes the appropriate N(0,1)

quantile. (For example, for a 95% confidence interval, α = 0.05 and z1−α/2 = 1.96.) θ̂uni denotes
the maximum likelihood estimate of the parameter based on standard univariate theory. (µ̂ and
σ̂ from univariate maximum likelihood theory for a Gaussian, γ̂ and β̂ from univariate maximum
likelihood theory for a 2-parameter Weibull.) θ̂biv denotes the asymptotically efficient estimate of
the parameter based on the bivariate Gaussian–Weibull theory developed in Verrill et al. (2012).

σuni denotes the square root of the appropriate element of the appropriate asymptotic covariance
matrix (obtained from the inverse of the information matrix) in the univariate case. σbiv denotes
the square root of the appropriate element of the asymptotic covariance matrix (obtained from the
inverse of the information matrix) in the bivariate case. σsim is obtained from the simulation. It is
given by

σsim =

√√√√10000∑
i=1

(
θ̂i − ¯̂

θ
)2
/9999 (8)

where θ̂i is the asymptotically efficient estimate of the parameter in the ith simulation trial and
¯̂
θ

is the average of the 10000 θ̂i’s.
For a given coefficient of variation, correlation, and sample size the actual coverage associated

with the sim (for example) type of confidence interval was the fraction of trials in which θ̂biv ±
z1−α/2 × σsim included the true θ value.

For µ, we found that in all cases, a sample size of 15 was sufficient to ensure that the actual
coverages of all three types of confidence interval lay within narrow bounds around the nominal cov-
erages ([.74,.76], [.89,.91], [.94,.96], and [.985,.995] for nominal 75%, 90%, 95%, and 99% coverages,
respectively).
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For γ, we found that in most but not all cases sample sizes of 15 were sufficient. The n’s needed
did not appear to depend on the generating ρ, but they did depend on the coefficient of variation
and the nominal confidence level. Details are provided in Table 2.

For σ and ρ, we found that needed n’s did not depend on the coefficient of variation, but they
did depend on the generating ρ and the nominal confidence level. Details are provided in Table 3.

For β, we found that needed n’s did not depend on either the coefficient of variation or the
generating ρ. They did depend on the nominal confidence level. The sim confidence intervals
yielded adequate coverages for lower sample sizes than did the uni and biv intervals. Details are
provided in Table 4.

In designing an experiment in which one wants to obtain confidence intervals on bivariate
Gaussian–Weibull parameters, one should consult Tables 2–4 to choose an adequate sample size.
However, our Web program provides some protection against inadequate sample sizes at the analysis
stage. It provides nominal 75%, 90%, 95%, and 99% simulation and theoretical confidence intervals
on the parameters. However, it also provides on-the-fly simulation estimates of the actual coverages
of these confidence intervals. (Details on the manner in which on-the-fly simulation estimates of
coverages are calculated are provided in point 7 of Appendix B.) If these simulation estimates of
coverages significantly diverge from the nominal coverages, then this fact should be reported and
the simulation estimates of coverages should be used rather than the nominal coverages.

It is very important to draw a distinction between two types of “needed sample sizes.” We have
been talking about the n’s needed to ensure that we can trust the nominal confidence levels. That
is, we want the sample size that ensures that a confidence interval constructed to cover the true
value of a parameter at least 95% (for example) of the time really does cover the parameter at
least 95% of the time. This is distinct from a separate sample size issue. The separate issue is
whether the sample size is large enough to ensure that a confidence interval is narrow enough or
that our ability to detect a difference (statistical power) is large enough. It is quite possible that
the n needed to ensure that actual confidence levels are close to nominal confidence levels could
be as low as 15 while the n needed to ensure that confidence interval widths are sufficiently small
could be much higher than 15. These are two separate issues. We do not consider the second issue
in this paper.

4 Biases, Variances, and Mean Squared Errors of Parameter Es-
timates

Likelihood theory tells us that our estimators are asymptotically efficient. However, this is large
sample theory and will hold to a greater or lesser extent for small samples. In the course of our
coverage simulations, we also investigated the biases, variances, and mean squared errors of the
estimators for coefficients of variation 0.10, 0.20, 0.30, and 0.40, generating correlations 0.50, 0.60,
0.70, 0.80, 0.90, and 0.95, and sample sizes 15, 30, 60, 120, 240, and 480.

The percent biases in the uni and biv estimators are provided in Tables 5–8. Clearly, the
absolute percent biases decrease as sample sizes increase. (Also see Figs. 3 and 4.) The generating
correlation has little to no effect for the µ, σ, and γ estimators. It has a more significant effect on
the bias of the ρ estimator (absolute percent bias decreases as generating correlation increases). See
Figure 3. It has a subtle effect on the bias of the β estimators—the bias in the biv estimator declines
below that of the uni estimator as the generating correlation increases. The only noticeable effect
of an increase in the coefficient of variation is an increase in the (small) biases in the estimators of
γ as the coefficient of variation increases. See Figure 4.

The percent standard deviations (sample standard deviation times 100 divided by generating
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parameter) associated with the uni and biv estimators are provided in Tables 9–12. The generating
correlation has no effect on these values for the µ and γ estimators. It has a very large effect
on the percent standard deviation for the ρ estimator—the percent standard deviation decreases
significantly as the generating correlation increases. See Figure 5. It has a more subtle effect on
the percent standard deviations of the σ and β estimators—the percent standard deviations in the
biv estimators of these two parameters decline below those of the uni estimators as the generating
correlation increases. The coefficient of variation has no effect on percent standard deviation for σ,
ρ, and β. However, as the coefficent of variation increases, the percent standard deviations of the
µ and γ estimators increase. See Figure 6.

We were interested in any efficiency increases that we could obtain by fitting the bivariate
Gaussian–Weibull rather than by fitting the marginal Gaussian and Weibull distributions sepa-
rately. For large samples, the relative efficiency ratio is given by the asymptotic variabilities that
we obtain from the inverses of the information matrices. For small samples, we can look at the
ratios of mean squared errors obtained from the simulations. These ratios did not depend (except
in a negligible fashion) on the coefficients of variation. We summarize the results in Table 13. Note
that for smaller sample sizes, there is bias in the estimates so the mean squared error ratios differ
from the relative asymptotic efficiencies. However, as the sample sizes increase, the simulation
estimates of mean squared error ratios approach the expected asymptotic ratios. Also note that for
high generating correlations, there can be important efficiency increases in the σ and β estimations
when we take a bivariate Gaussian–Weibull approach rather than fitting the Gaussian and Weibull
data separately. See Figure 7.

5 Regression and Maximum Likelihood (ML) Estimators of the
Parameters of a Two-Parameter Weibull

As noted above, to obtain asymptotically efficient bivariate Gaussian–Weibull estimators for γ and
β, we begin with univariate ML estimates, and to obtain these, we begin with regression estimates.
The regression estimates are based on the approximations

log(win) ≈ − log(γ) +
1

β
× log(− log(1− (i− 0.3)/(n+ 0.4))) (9)

and

log(− log(1− (i− 0.3)/(n+ 0.4))) ≈ β log(γ) + β × log(win) (10)

where win is the ith order statistic in a sample of n from a Weibull population with scale parameter
1/γ and shape parameter β. (These approximations are in turn based on the fact that if U is a
Uniform(0,1) random variable and FW is the distribution function of a Weibull(γ, β) then F−1

W (U)
is distributed as a Weibull(γ, β). See, for example, the discussion of Weibull probability plots in
D’Agostino and Stephens (1986).)

Approximation (9) suggests that we can regress

yi = log(win)

on

xi = log(− log(1− (i− 0.3)/(n+ 0.4)))

to obtain

β̂ = 1/b̂
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and

γ̂ = exp(−â)

where â, b̂ are the intercept and the slope from the regression. We refer to this as regression
approach 1. Regression approach 1 is permitted as an alternative to a maximum likelihood approach
to estimating γ and β in ASTM standard D 5457 (ASTM 2010d).

Approximation (10) suggests that we can regress

yi = log(− log(1− (i− 0.3)/(n+ 0.4)))

on

xi = log(win)

to obtain

β̂ = b̂

and

γ̂ = exp
(
â/b̂
)

where â, b̂ are the intercept and the slope from the regression. This is regression approach 2.

Our simulations permitted us to compare the mean squared errors of the regression 1, re-
gression 2, and univariate maximum likelihood (ML) estimators of γ and β. The ratios of the
regression 1 to ML and regression 2 to ML estimators are reported in Table 14 and plotted in
Figure 8 (there will be no correlation effect and we found no coefficient of variation effect). These
ratios indicate that the regression estimates can be competitive with the maximum likelihood esti-
mates for samples of size 15. However, for samples of size 30 and larger, the maximum likelihood
estimators are superior to the regression estimators, and much superior for β. We believe that
ASTM D 5457 (ASTM 2010d) should be modified to reflect these facts.

We note that other authors have previously investigated the efficiency of regression estimators
of Weibull parameters. Our limited results are in accord with the results from an extensive simu-
lation study performed by Genschel and Meeker (2010). Other authors have found that for small
samples (“small” from the perspective of wood research), generalized least squares techniques can
outperform maximum likelihood techniques. See, for example, Engeman and Keefe (1982) and
Al-Baidhani and Sinclair (1987). Any modification of ASTM D 5457 (ASTM 2010d) would also
have to take into account these results. (It is possible that other standards (e.g., IEC 2008), should
also be modified. However, censoring and very small samples cloud the issue, and we can make no
general recommendations for other standards based on our limited studies. However, see Genschel
and Meeker (2010) for results that are more broadly relevant.)

For sample sizes of 15 or larger, we found that regression approach 1 is as good as or better
than regression approach 2 for estimating γ. For sample sizes of 30 or larger, regression approach 1
is as good as or better than regression approach 2 for estimating β. See Table 14 and Figure 8.
Lawrence and Shier (1981) compared the two regression approaches for samples of size 20, 30, 40,
50, and 100. They used the Hazen plotting position, (i − .5)/n, rather than the Benard position,
(i− .3)/(n+ .4), and they performed 100 trials rather than 10,000. Their results conflict with ours
(they find an advantage for regression approach 2 more often than we do). We suspect that this
is due to the limited number of trials that they conducted. We reran a portion of their simulation
with 10,000 trials per condition. In Table 15, we compare our results with those that they reported
in table III of their paper.
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6 Web Program to Estimate the Parameters of a Bivariate Gaussian–
Weibull

Based on the theory in Verrill et al. (2012), we have developed a computer program that ob-
tains asymptotically efficient estimates of the parameters of a bivariate Gaussian–Weibull. The
program also returns nominal 75%, 90%, 95%, and 99% sim and biv (Equations (5) and (7))
confidence intervals on the parameters. Finally, it performs simulations to obtain estimates of
the actual coverages of these intervals. Algorithmic details of the program are provided in Ap-
pendix B. The Web program can be run at http://www1.fpl.fs.fed.us/fit gauss weib.html.
The code for a standalone FORTRAN program that performs these same functions can be found
at http://www1.fpl.fs.fed.us/fit gauss weib code.html.

In Figures 9–13 we provide screen shots of the Web program. There are are five fields that need
to be filled:

1. A user must specify a data file name. The data file must be a txt file that contains two
columns. (By default, Notepad and Emacs create txt files. Wordpad and Word can be
directed to create txt files.) The first column must contain the values from the Gaussian
distribution. The second column must contain the corresponding values from the Weibull
distribution. The user must have previously sent the data file by FTP to our Web server.
Directions for doing this are provided at the “provide the data file” link near the top of the
Web page.

2. A user can specify a results file name. Directions for retrieving the results file appear above
the results field on the page. In fact, however, a user need not specify a results file as the
results are displayed in tabular form after the execute button is clicked. These results can be
printed or saved to the user’s machine.

3. The user must specify the sample size (n in this paper). Currently, the program cannot
handle sample sizes larger than 2000 observations. If this presents a problem for you, please
contact Steve Verrill at sverrill@fs.fed.us.

4. The user must specify the number of trials in the simulation. Currently, this cannot exceed
10000. If this presents a problem for you, please contact Steve Verrill at sverrill@fs.fed.us.

5. The user must provide an integer starting value for the random number generator. This istart
value cannot exceed 231 − 1 = 2147483647.

After filling these five fields, the user clicks the execute button and the program runs. Results
are then displayed in tabular form. The program produces results for four confidence levels—75%,
90%, 95%, and 99%. For each confidence level, it produces two tables. The first table (see, for
example, Fig. 12) contains the asymptotically efficient estimates of the five parameters together
with simulation-based and asymptotic theory-based confidence intervals on those parameters. The
second table (see, for example, Fig. 13) contains simulation estimates of the actual coverages (rather
than the nominal 75%, 90%, 95%, or 99%) of the two types of confidence intervals. It also contains
confidence intervals (based on the arcsin square root transformation) on these actual coverages.
If simulation estimates of actual coverages differ significantly from nominal coverages, then this
fact should be reported and the simulation estimates of coverages should be used rather than the
nominal coverages.

Important The response will not be immediate. Because simulations are being run, there will
be a delay before the results appear. An approximate formula for the number of seconds needed
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to perform the simulations is (3.3 + 0.36 × n) × N/10000 where n is the sample size and N is
the number of trials. The time needed to run 10000 trials of samples of size 15 is approximately
9 seconds. The time needed to run 10000 trials of samples of size 480 is approximately 177 seconds.

If you encounter problems while running this program, please contact Steve Verrill at sverrill@fs.fed.us
or 608-231-9375. As of June 2012, the program is a beta program. That is, we have tried to be
very careful in its development. However, it might still contain bugs. If you believe that you have
encountered a bug, please contact us.

7 Summary

In the context of wood strength modeling, Verrill et al. (2012) introduced a bivariate Gaussian–
Weibull distribution and the associated pseudo-truncated Weibull distribution. In that paper, we
also developed asymptotically efficient estimators of the parameters of the bivariate Gaussian–
Weibull. In this paper, we have discussed a Web-based computer program that implements the
asymptotically efficient estimation technique. We have also discussed computer simulations that
investigate the small sample properties of this technique.

In the course of conducting these computer simulations we also found that, as one would ex-
pect, bivariate Gaussian–Weibull estimators are superior to univariate (marginal) estimators, and
that, under conditions likely to be encountered by wood scientists, univariate maximum likelihood
Weibull estimators are generally superior to univariate ordinary least squares Weibull estimators.
This latter result suggests that ASTM standard D 5457 should be modified to reflect this superiority
of maximum likelihood Weibull estimators.

In a future paper, we will investigate the question of whether allowable property estimates based
on a Weibull assumption can be poor if the strength population is actually a pseudo-truncated
Weibull population.
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9 Appendix A–Elements of the Information Matrix

Denote the information by

I(θ) ≡


a11 a12 a13 a14 a15
a12 a22 a23 a24 a25
a13 a23 a33 a34 a35
a14 a24 a34 a44 a45
a15 a25 a35 a45 a55


Then, from appendices D and E2 of Verrill et al. (2012) we have

a11 = −E
(
∂2 log(f(x,w))

∂µ2

)
=

1

σ2(1− ρ2)
(11)

a22 = −E
(
∂2 log(f(x,w))

∂σ2

)
=

2− ρ2

σ2(1− ρ2)
(12)

a33 = −E
(
∂2 log(f(x,w))

∂ρ2

)
=

(1 + ρ2)

(1− ρ2)2
(13)

a44 = −E
(
∂2 log(f(x,w))

∂γ2

)
=

ρ2

1− ρ2
E

((
∂y

∂γ

)2
)

+
β2

γ2
(14)

where y is given by (2) and

∂y

∂γ
=
√

2π × βγβ−1 × wβ × exp
(
−(γw)β

)
× exp

(
y2/2

)

a55 = −E
(
∂2 log(f(x,w))

∂β2

)
=

ρ2

1− ρ2
E

((
∂y

∂β

)2
)

+
1

β2
(15)

+E
(

(log(w))2
)

+
2

β
E (log(w))

+2 log(γ)E (log(w)) +
2 log(γ)

β

+ (log(γ))2

where
∂y

∂β
=
√

2π × (γw)β log(γw)× exp
(
−(γw)β

)
× exp

(
y2/2

)

a12 = −E
(
∂2 log(f(x,w))

∂µ∂σ

)
= 0 (16)

a13 = −E
(
∂2 log(f(x,w))

∂µ∂ρ

)
= 0 (17)

a14 = −E
(
∂2 log(f(x,w))

∂µ∂γ

)
=

ρ

1− ρ2
E

(
∂y

∂γ

)(
1

σ

)
(18)
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a15 = −E
(
∂2 log(f(x,w))

∂µ∂β

)
=

ρ

1− ρ2
E

(
∂y

∂β

)(
1

σ

)
(19)

a23 = −E
(
∂2 log(f(x,w))

∂σ∂ρ

)
=

−ρ
σ(1− ρ2)

(20)

a24 = −E
(
∂2 log(f(x,w))

∂σ∂γ

)
=

ρ2

σ(1− ρ2)
E

(
y
∂y

∂γ

)
(21)

a25 = −E
(
∂2 log(f(x,w))

∂σ∂β

)
=

ρ2

σ(1− ρ2)
E

(
y
∂y

∂β

)
(22)

a34 = −E
(
∂2 log(f(x,w))

∂ρ∂γ

)
=

ρ

1− ρ2
× E

(
y
∂y

∂γ

)
(23)

a35 = −E
(
∂2 log(f(x,w))

∂ρ∂β

)
=

ρ

1− ρ2
× E

(
y
∂y

∂β

)
(24)

a45 = −E
(
∂2 log(f(x,w))

∂γ∂β

)
=

ρ2

1− ρ2
E

(
∂y

∂γ

∂y

∂β

)
+
β

γ
× E (log(w))

+
1

γ
+
β log(γ)

γ
(25)

10 Appendix B—The Algorithm

The program is straightforward. It performs the following tasks:

1. It obtains initital estimates of µ and σ. These are simply the standard univariate maximum
likelihood estimates—x̄ and

√∑n
i=1(xi − x̄)2/n.

2. It obtains initial estimates of γ and β. First, it obtains regression estimates. We have

FW (w) = 1− exp
(
−(γ × w)β

)
so

F−1
W (y) = (− log(1− y))1/β /γ

If U denotes a Uniform(0,1) random variable, then we know that F−1
W (U) is distributed as W .

Thus, if Uin denotes the ith order statistic from a sample of n Uniform(0,1)’s, F−1
W (Uin) is the

ith order statistic from a sample of n Weibulls. So, if we approximate Uin by (i− .3)/(n+ .4),
we obtain

Win ≈ F−1
W ((i− .3)/(n+ .4))

where Win is the ith order statistic from the Weibull distribution. Thus,

Win ≈ (− log(1− (i− .3)/(n+ .4)))1/β /γ

and
log(Win) ≈ (1/β)× log(− log(1− (i− .3)/(n+ .4)))− log(γ)

So, if we regress the log(Win) on the log(− log(1− (i− .3)/(n+ .4))) we obtain

β ≈ 1/b̂ (26)
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and
γ ≈ exp(−â) (27)

where b̂ and â are the slope and intercept from the regression.

We can then use the β and γ from Equations (26) and (27) as starting values in a nonlinear
optimization of the two parameter Weibull likelihood function. We use the public domain
nonlinear optimizer UNCMIN to perform this optimization. The results from this optimiza-
tion are univariate maximum likelihood estimates of β and γ. We use these as the starting
values in the bivariate optimization.

3. We obtain an initial estimate of ρ. We do this by calculating the sample correlation between
the univariate Gaussian values, xi, and the corresponding transformed Weibull values:

yi = Φ−1
(

1− exp
(
−(γ̂ × wi)β̂

))
where β̂ and γ̂ are the univariate maximum likelihood estimators of β and γ.

4. Given these
√
n-consistent initial estimates of µ, σ, ρ, γ, and β, UNCMIN then employs the

Newton method modified by a backtracking line search technique to find a maximum of the
of the bivariate likelihood function. It can be shown (see Appendix C) that this approach
ensures that we are left with (at least) a

√
n-consistent estimate of the parameter vector. We

then perform a full Newton step to obtain our final estimate of the parameter vector.

5. We calculate the information matrix from the results in Appendix A. To do so, we need to per-

form a number of numerical integrations — E

((
∂y
∂γ

)2)
, E

((
∂y
∂β

)2)
, E

(
∂y
∂γ

∂y
∂β

)
, E

(
y ∂y∂γ

)
,

E
(
y ∂y∂β

)
, E

(
∂y
∂γ

)
, and E

(
∂y
∂β

)
. We use the QUADPACK routine dqags to perform these.

E
(

(log(w))2
)

and E (log(w)) are related to the Euler–Mascheroni constant (see Verrill et al.

2012) and can be calculated from it.

6. We invert the information matrix using the LINPACK routines dpofa and dpodi.

7. We perform a simulation that has two purposes. First, it permits us to calculate the σsim used
to calculate the simulation-based confidence intervals (5). Second, it permits us to estimate
the coverage of both the simulation-based and theory-based (7) confidence intervals.

Let n denote the size of a sample provided by a user of the Web program. From the sample,
the program first obtains asymptotically efficient estimates µ̂, σ̂, ρ̂, γ̂, and β̂ as described
above. From Equations (11)–(25), it also obtains an estimate of the information matrix and
(via dpofa and dpodi) its inverse. This yields σ̂biv for all five parameters. Then it generates
N samples of size n from a bivariate Gaussian–Weibull distribution with parameters µ̂, σ̂,
ρ̂, γ̂, and β̂. (Here, N is the number of trials specified by the user.) For the ith generated

sample, it obtains estimates (as above) of the five parameters, ˆ̂µi, ˆ̂σi, ˆ̂ρi, ˆ̂γi, and
ˆ̂
βi. For each

of the five parameters, the program calculates

σ̂sim =

√√√√ N∑
i=1

(
ˆ̂
θi −

¯̂
θ̂

)2

/(N − 1)

For all five parameters, the program reports the theory-based confidence intervals

θ̂ ± z1−α/2 × σ̂biv/
√
n
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and the simulation-based confidence intervals

θ̂ ± z1−α/2 × σ̂sim

It obtains estimates of the coverages of these intervals by going back through the N groups

of ˆ̂µi, ˆ̂σi, ˆ̂ρi, ˆ̂γi, and
ˆ̂
βi and calculating the fraction of the time in which (for the theory-based

intervals)

θ̂ ∈ ˆ̂
θi ± z1−α/2 × σ̂biv/

√
n (28)

or (for the simulation-based confidence intervals)

θ̂ ∈ ˆ̂
θi ± z1−α/2 × σ̂sim

Note that, ideally, the σ̂biv in Equation (28) should be based on the ith simulation sample of
size n rather than the original sample of data. However, the calculation of the information
matrix involves numerical integrations and, if done for a number of trials, could lead to an
additional slowdown.

11 Appendix C—UNCMIN and
√
n-consistent Estimators

In Appendix B we noted that the optimization program UNCMIN employs the Newton method
modified by a backtracking line search technique to find a maximum of the bivariate likelihood
function (actually, it finds the minimum of the negative log likelihood). Thus, at each iteration,
rather than taking the full Newton step

−H−1g

where g is the gradient of the negative log likelihood and H is the corresponding Hessian, the
modified algorithm takes a step of the form

−δ ×H−1g

where δ ∈ (0, 1]. Our claim is that such a “partial Newton step” leaves us with an estimate of the
parameter vector that is still

√
n-consistent. We will only sketch a proof of the claim here.

Let θn,c denote the vector of
√
n-consistent initial estimates of the parameters, θn,δ,Newt denote

the result of a partial Newton step from θn,c, and θ0 denote the true vector of parameters. Then,
by the definition of

√
n-consistency, we have

√
n(θn,c − θ0) = Op(1) (29)

Thus, if we can show √
n(θn,δ,Newt − θn,c) = Op(1) (30)

we will have √
n(θn,δ,Newt − θ0) = Op(1) (31)

which is what we are claiming.
We have

√
n(θn,δ,Newt − θn,c) =

√
n(θn,c − δH−1

n,cgn,c − θn,c)

=
√
n
(
−δH−1

n,cgn,c
)

= δ (−Hn,c/n)−1√ngn,c/n (32)
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Under the conditions needed to establish our Theorem 1 in Verrill et al. (2012), we can use
Taylor expansions and the law of large numbers to show that

(−Hn,c/n)−1 p→ I(θ)−1 (33)

Similarly, we can show that √
n (gn,c/n− gθ0/n) = Op(1) (34)

and √
ngθ0/n

D→ N(0, I(θ)) (35)

Results (32)–(35) establish result (30), which is what we needed to obtain result (31).
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Generating Correlation
CV .5 .7 .9 1.0

.05 .489 .685 .881 .979

.10 .494 .690 .888 .986

.15 .498 .695 .893 .992

.20 .498 .697 .897 .996

.25 .497 .699 .899 .999

.30 .498 .699 .899 .999

.35 .499 .699 .899 .999

.40 .498 .698 .897 .997

Table 1. Sample correlations between Gaussian and Weibull. Based on
1,000,000 trials. CV denotes coefficient of variation. (For the Gaussian,
CV = σ/µ. For the Weibull, CV depends solely on the shape parameter, β.
Higher CV’s correspond to lower β’s.)



Nominal
confidence Interval Bounds

COV level type Wide Narrow

sim 15 16
75 uni 15 15

biv 15 15
sim 15 15

.10 90 uni 15 15
biv 15 15
sim 15 15

95 uni 15 15
biv 15 15
sim 15 15

99 uni 15 16
biv 15 16

sim 15 16
75 uni 15 15

biv 15 15
sim 15 15

.20 90 uni 15 15
biv 15 15
sim 15 15

95 uni 15 16
biv 15 16
sim 15 16

99 uni 15 20
biv 15 20

Table 2. Sample sizes needed for “correct” γ confidence intervals. Wide—n
needed for the actual coverage to lie in [.73,.77], [.88,.92], [.93,.97], [.980,.995]
for nominal 75%, 90%, 95%, and 99% confidence intervals, respectively.
Narrow—n needed for the actual coverage to lie in [.74,.76], [.89,.91], [.94,.96],
[.985,.995] for nominal 75%, 90%, 95%, and 99% confidence intervals, respec-
tively. 15 indicates that the actual coverage already lies between the limits
for sample sizes of 15.



Nominal
confidence Interval Bounds

COV level type Wide Narrow

sim 15 20
75 uni 15 15

biv 15 15
sim 15 15

.30 90 uni 15 15
biv 15 15
sim 15 15

95 uni 15 16
biv 15 16
sim 15 19

99 uni 15 26
biv 16 26

sim 15 29
75 uni 15 15

biv 15 15
sim 15 15

.40 90 uni 15 15
biv 15 15
sim 15 15

95 uni 15 17
biv 15 17
sim 15 26

99 uni 17 36
biv 17 34

Table 2 continued. Sample sizes needed for “correct” γ confidence intervals.
Wide—n needed for the actual coverage to lie in [.73,.77], [.88,.92], [.93,.97],
[.980,.995] for nominal 75%, 90%, 95%, and 99% confidence intervals, respec-
tively. Narrow—n needed for the actual coverage to lie in [.74,.76], [.89,.91],
[.94,.96], [.985,.995] for nominal 75%, 90%, 95%, and 99% confidence inter-
vals, respectively. 15 indicates that the actual coverage already lies between
the limits for sample sizes of 15.



Nominal Bounds
confidence Generating Interval σ ρ

level correlation type Wide Narrow Wide Narrow

sim 21 38 16 23
.50 uni 17 28 – –

biv 17 31 24 45
sim 22 39 24 47

.60 uni 19 37 – –
biv 19 36 18 41
sim 23 43 37 76

75 .70 uni 21 35 – –
biv 22 39 15 17
sim 21 39 52 100

.80 uni 18 32 – –
biv 21 37 15 15
sim 21 41 69 127

.90 uni 18 34 – –
biv 29 53 15 16
sim 19 37 70 135

.95 uni 20 38 – –
biv 40 73 15 35

sim 15 24 15 25
.50 uni 15 20 – –

biv 15 21 15 23
sim 15 23 15 38

.60 uni 15 18 – –
biv 15 20 15 22
sim 15 24 17 48

90 .70 uni 15 21 – –
biv 15 25 15 17
sim 15 22 25 63

.80 uni 15 17 – –
biv 15 22 15 16
sim 15 27 37 81

.90 uni 15 16 – –
biv 19 38 15 17
sim 16 26 41 92

.95 uni 15 23 – –
biv 29 53 15 27

Table 3. Sample sizes needed for “correct” σ and ρ confidence intervals. Wide—n needed for
the actual coverage to lie in [.73,.77], [.88,.92], [.93,.97], [.980,.995] for nominal 75%, 90%, 95%,
and 99% confidence intervals, respectively. Narrow—n needed for the actual coverage to lie in
[.74,.76], [.89,.91], [.94,.96], [.985,.995] for nominal 75%, 90%, 95%, and 99% confidence intervals,
respectively. 15 indicates that the actual coverage already lies between the limits for sample sizes
of 15.



Nominal Bounds
confidence Generating Interval σ ρ

level correlation type Wide Narrow Wide Narrow

sim 15 15 15 15
.50 uni 15 15 – –

biv 15 15 15 22
sim 15 15 15 15

.60 uni 15 15 – –
biv 15 15 15 25
sim 15 15 15 15

95 .70 uni 15 15 – –
biv 15 17 18 30
sim 15 15 15 15

.80 uni 15 15 – –
biv 15 16 19 36
sim 15 17 15 15

.90 uni 15 15 – –
biv 15 24 23 45
sim 15 17 15 15

.95 uni 15 15 – –
biv 20 42 26 49

sim 15 15 15 21
.50 uni 15 15 – –

biv 15 15 22 36
sim 15 15 18 36

.60 uni 15 15 – –
biv 15 15 31 65
sim 15 15 23 51

99 .70 uni 15 15 – –
biv 15 15 38 78
sim 15 15 31 68

.80 uni 15 15 – –
biv 15 15 53 108
sim 15 15 37 77

.90 uni 15 15 – –
biv 15 15 65 122
sim 15 15 40 84

.95 uni 15 15 – –
biv 15 22 66 128

Table 3 continued. Sample sizes needed for “correct” σ and ρ confidence intervals. Wide—n needed
for the actual coverage to lie in [.73,.77], [.88,.92], [.93,.97], [.980,.995] for nominal 75%, 90%, 95%,
and 99% confidence intervals, respectively. Narrow—n needed for the actual coverage to lie in
[.74,.76], [.89,.91], [.94,.96], [.985,.995] for nominal 75%, 90%, 95%, and 99% confidence intervals,
respectively. 15 indicates that the actual coverage already lies between the limits for sample sizes
of 15.



Nominal
confidence Interval Bounds

level type Wide Narrow

sim 31 64
75 uni 47 104

biv 51 110

sim 15 17
90 uni 57 118

biv 61 124

sim 20 43
95 uni 57 113

biv 61 122

sim 50 108
99 uni 82 165

biv 84 165

Table 4. Sample sizes needed for “correct” β confidence intervals. Wide—n
needed for the actual coverage to lie in [.73,.77], [.88,.92], [.93,.97], [.980,.995]
for nominal 75%, 90%, 95%, and 99% confidence intervals, respectively.
Narrow—n needed for the actual coverage to lie in [.74,.76], [.89,.91], [.94,.96],
[.985,.995] for nominal 75%, 90%, 95%, and 99% confidence intervals, respec-
tively. 15 indicates that the actual coverage already lies between the limits
for sample sizes of 15.



Parameter
Generating Sample µ σ ρ γ β
correlation size uni biv uni biv uni biv uni biv uni biv

15 0.0 0.0 −4.9 −5.0 — −2.9 0.2 0.2 10.3 10.3
30 0.0 0.0 −2.6 −2.6 — −1.6 0.1 0.1 5.1 5.1

.50 60 0.0 0.0 −1.3 −1.4 — −0.9 0.0 0.0 2.5 2.5
120 0.0 0.0 −0.6 −0.6 — −0.4 0.0 0.0 1.2 1.3
240 0.0 0.0 −0.3 −0.3 — −0.2 0.0 0.0 0.6 0.6
480 0.0 0.0 −0.2 −0.2 — −0.2 0.0 0.0 0.3 0.3

15 0.0 0.0 −5.2 −5.3 — −2.7 0.2 0.2 10.6 10.7
30 0.0 0.0 −2.5 −2.6 — −1.5 0.1 0.1 5.1 5.1

.60 60 0.0 0.0 −1.3 −1.3 — −0.7 0.1 0.1 2.5 2.5
120 0.0 0.0 −0.7 −0.7 — −0.3 0.0 0.0 1.2 1.2
240 0.0 0.0 −0.3 −0.3 — 0.0 0.0 0.0 0.6 0.6
480 0.0 0.0 −0.2 −0.2 — −0.1 0.0 0.0 0.3 0.3

15 0.0 0.0 −5.0 −5.1 — −2.0 0.2 0.2 10.9 10.9
30 −0.1 0.0 −2.6 −2.7 — −1.0 0.1 0.1 4.7 4.7

.70 60 0.0 0.0 −1.2 −1.2 — −0.3 0.1 0.1 2.2 2.1
120 0.0 0.0 −0.7 −0.8 — −0.3 0.0 0.0 1.2 1.2
240 0.0 0.0 −0.3 −0.4 — −0.1 0.0 0.0 0.5 0.5
480 0.0 0.0 −0.2 −0.2 — −0.1 0.0 0.0 0.4 0.4

15 0.0 0.0 −5.1 −5.2 — −1.5 0.3 0.3 10.6 10.5
30 0.0 0.0 −2.5 −2.5 — −0.4 0.1 0.1 4.7 4.6

.80 60 0.0 0.0 −1.2 −1.3 — −0.2 0.1 0.1 2.2 2.2
120 0.0 0.0 −0.6 −0.6 — −0.1 0.0 0.0 1.2 1.2
240 0.0 0.0 −0.3 −0.3 — −0.1 0.0 0.0 0.6 0.6
480 0.0 0.0 −0.1 −0.1 — 0.0 0.0 0.0 0.2 0.2

15 0.0 0.0 −5.1 −5.2 — −0.6 0.2 0.2 10.6 10.3
30 0.0 0.0 −2.6 −2.8 — −0.3 0.1 0.1 5.0 5.0

.90 60 0.0 0.0 −1.3 −1.4 — −0.1 0.1 0.1 2.4 2.3
120 0.0 0.0 −0.6 −0.6 — −0.1 0.0 0.0 1.1 1.1
240 0.0 0.0 −0.3 −0.3 — 0.0 0.0 0.0 0.6 0.5
480 0.0 0.0 −0.1 −0.2 — 0.0 0.0 0.0 0.3 0.3

15 0.0 0.1 −4.9 −5.1 — −0.2 0.2 0.2 10.5 10.0
30 0.0 0.0 −2.4 −2.6 — −0.1 0.1 0.1 4.9 4.7

.95 60 0.0 0.0 −1.1 −1.2 — −0.1 0.1 0.1 2.3 2.2
120 0.0 0.0 −0.6 −0.6 — 0.0 0.0 0.0 1.2 1.1
240 0.0 0.0 −0.3 −0.4 — 0.0 0.0 0.0 0.6 0.6
480 0.0 0.0 −0.1 −0.1 — 0.0 0.0 0.0 0.2 0.2

Table 5. Simulation estimates of percent biases. uni—univariate estimates. biv—bivariate esti-
mates. Coefficient of variation equal to 0.10.



Parameter
Generating Sample µ σ ρ γ β
correlation size uni biv uni biv uni biv uni biv uni biv

15 0.0 0.0 −5.1 −5.1 — −2.9 0.6 0.6 10.5 10.5
30 0.0 0.0 −2.7 −2.7 — −1.1 0.3 0.3 4.7 4.7

.50 60 0.0 0.0 −1.2 −1.2 — −0.4 0.1 0.1 2.2 2.2
120 0.0 0.0 −0.6 −0.7 — −0.3 0.1 0.1 1.2 1.2
240 0.0 0.0 −0.3 −0.4 — −0.2 0.0 0.0 0.5 0.5
480 0.0 0.0 −0.2 −0.2 — −0.1 0.0 0.0 0.3 0.3

15 0.0 0.0 −5.0 −5.2 — −2.5 0.6 0.6 10.3 10.4
30 0.0 0.0 −2.5 −2.6 — −1.2 0.3 0.3 4.9 4.9

.60 60 0.0 0.0 −1.2 −1.2 — −0.6 0.1 0.1 2.5 2.5
120 0.0 0.0 −0.6 −0.7 — −0.3 0.1 0.1 1.2 1.2
240 0.0 0.0 −0.2 −0.2 — −0.1 0.0 0.0 0.5 0.5
480 0.0 0.0 −0.1 −0.1 — 0.0 0.0 0.0 0.3 0.3

15 0.0 0.1 −5.2 −5.4 — −2.1 0.5 0.5 10.4 10.4
30 0.0 0.0 −2.8 −2.8 — −0.9 0.3 0.3 4.5 4.5

.70 60 0.0 0.0 −1.3 −1.3 — −0.4 0.1 0.1 2.5 2.5
120 0.0 0.0 −0.6 −0.6 — −0.2 0.1 0.1 1.1 1.1
240 0.0 0.0 −0.3 −0.3 — −0.1 0.0 0.0 0.6 0.6
480 0.0 0.0 −0.1 −0.2 — 0.0 0.0 0.0 0.3 0.3

15 −0.1 0.0 −4.9 −5.1 — −1.3 0.6 0.6 10.0 10.0
30 0.0 0.0 −2.6 −2.7 — −0.7 0.3 0.3 4.9 4.9

.80 60 0.0 0.0 −1.2 −1.3 — −0.2 0.1 0.1 2.4 2.3
120 0.0 0.0 −0.7 −0.7 — −0.1 0.1 0.1 1.1 1.1
240 0.0 0.0 −0.3 −0.3 — −0.1 0.0 0.0 0.6 0.6
480 0.0 0.0 −0.1 −0.2 — −0.1 0.0 0.0 0.3 0.3

15 0.0 0.0 −5.1 −5.4 — −0.7 0.6 0.6 10.5 10.3
30 0.0 0.0 −2.6 −2.7 — −0.3 0.3 0.3 4.9 4.9

.90 60 0.0 0.0 −1.2 −1.3 — −0.1 0.1 0.1 2.4 2.4
120 0.0 0.0 −0.6 −0.6 — −0.1 0.1 0.1 1.2 1.2
240 0.0 0.0 −0.3 −0.3 — −0.1 0.0 0.0 0.7 0.6
480 0.0 0.0 −0.1 −0.1 — 0.0 0.0 0.0 0.3 0.3

15 0.0 0.0 −5.0 −5.2 — −0.3 0.6 0.6 10.3 9.9
30 0.0 0.0 −2.5 −2.6 — −0.1 0.3 0.3 4.8 4.6

.95 60 0.0 0.0 −1.2 −1.2 — 0.0 0.1 0.1 2.3 2.1
120 0.0 0.0 −0.6 −0.6 — 0.0 0.1 0.0 1.1 1.1
240 0.0 0.0 −0.4 −0.4 — 0.0 0.0 0.0 0.6 0.6
480 0.0 0.0 −0.2 −0.2 — 0.0 0.0 0.0 0.3 0.3

Table 6. Simulation estimates of percent biases. uni—univariate estimates. biv—bivariate esti-
mates. Coefficient of variation equal to 0.20.



Parameter
Generating Sample µ σ ρ γ β
correlation size uni biv uni biv uni biv uni biv uni biv

15 0.0 0.1 −5.1 −5.2 — −2.7 1.0 1.0 10.6 10.6
30 0.0 0.0 −2.3 −2.4 — −0.9 0.5 0.5 4.8 4.8

.50 60 0.0 0.0 −1.3 −1.3 — −0.5 0.2 0.2 2.3 2.3
120 0.0 0.0 −0.6 −0.6 — −0.3 0.1 0.1 1.2 1.2
240 0.0 0.0 −0.3 −0.3 — −0.1 0.0 0.0 0.7 0.7
480 0.0 0.0 −0.2 −0.2 — −0.1 0.0 0.0 0.3 0.3

15 0.0 0.0 −5.1 −5.3 — −2.6 1.0 1.0 10.6 10.6
30 0.0 0.0 −2.3 −2.4 — −1.2 0.5 0.5 4.9 4.9

.60 60 0.0 0.0 −1.3 −1.4 — −0.5 0.2 0.2 2.4 2.4
120 0.0 0.0 −0.6 −0.7 — −0.4 0.1 0.1 1.2 1.2
240 0.0 0.0 −0.3 −0.4 — 0.0 0.0 0.0 0.6 0.6
480 0.0 0.0 −0.1 −0.1 — −0.1 0.0 0.0 0.3 0.3

15 0.0 0.1 −5.4 −5.5 — −2.3 1.1 1.1 10.4 10.3
30 0.1 0.1 −2.5 −2.6 — −0.8 0.4 0.4 5.0 5.0

.70 60 0.1 0.1 −1.3 −1.4 — −0.5 0.2 0.2 2.4 2.4
120 0.0 0.0 −0.6 −0.6 — −0.2 0.1 0.1 1.2 1.2
240 0.0 0.0 −0.3 −0.4 — −0.1 0.1 0.1 0.6 0.6
480 0.0 0.0 −0.1 −0.1 — −0.1 0.0 0.0 0.2 0.2

15 0.0 0.1 −5.0 −5.2 — −1.1 1.0 1.0 10.0 9.9
30 0.1 0.1 −2.5 −2.6 — −0.6 0.4 0.4 4.8 4.8

.80 60 0.1 0.1 −1.5 −1.5 — −0.5 0.2 0.2 2.6 2.5
120 0.0 0.0 −0.6 −0.6 — −0.2 0.1 0.1 1.2 1.2
240 0.0 0.0 −0.3 −0.4 — −0.1 0.1 0.1 0.6 0.6
480 0.0 0.0 −0.1 −0.1 — 0.0 0.0 0.0 0.3 0.3

15 0.0 0.0 −4.9 −5.2 — −0.6 1.0 1.0 10.3 10.2
30 −0.2 −0.1 −2.6 −2.8 — −0.3 0.6 0.6 4.8 4.7

.90 60 0.0 0.0 −1.1 −1.2 — −0.1 0.2 0.2 2.1 2.1
120 0.0 0.0 −0.6 −0.6 — 0.0 0.1 0.1 1.1 1.1
240 0.0 0.0 −0.3 −0.3 — 0.0 0.1 0.1 0.5 0.5
480 0.0 0.0 −0.2 −0.2 — 0.0 0.0 0.0 0.3 0.3

15 −0.2 −0.1 −4.9 −5.2 — −0.3 1.1 1.1 10.1 9.8
30 0.0 0.0 −2.5 −2.6 — −0.1 0.5 0.5 4.9 4.6

.95 60 0.0 0.0 −1.3 −1.4 — −0.1 0.3 0.3 2.4 2.2
120 0.0 0.0 −0.6 −0.7 — 0.0 0.1 0.1 1.2 1.1
240 0.0 0.0 −0.3 −0.4 — 0.0 0.1 0.1 0.6 0.6
480 0.0 0.0 −0.2 −0.2 — 0.0 0.0 0.0 0.3 0.3

Table 7. Simulation estimates of percent biases. uni—univariate estimates. biv—bivariate esti-
mates. Coefficient of variation equal to 0.30.



Parameter
Generating Sample µ σ ρ γ β
correlation size uni biv uni biv uni biv uni biv uni biv

15 0.0 0.1 −5.3 −5.4 — −2.7 1.5 1.5 10.3 10.2
30 0.1 0.1 −2.5 −2.6 — −1.3 0.7 0.7 4.9 4.9

.50 60 0.0 0.0 −1.3 −1.4 — −0.8 0.4 0.4 2.4 2.4
120 0.0 0.0 −0.6 −0.6 — −0.2 0.2 0.2 1.2 1.2
240 0.0 0.0 −0.3 −0.3 — −0.1 0.1 0.1 0.7 0.7
480 0.0 0.0 −0.1 −0.1 — −0.1 0.0 0.0 0.3 0.3

15 0.1 0.1 −5.3 −5.4 — −2.7 1.4 1.4 10.6 10.6
30 −0.1 0.0 −2.7 −2.7 — −0.9 0.8 0.8 4.7 4.7

.60 60 0.0 0.1 −1.3 −1.4 — −0.7 0.4 0.4 2.4 2.4
120 0.0 0.0 −0.6 −0.6 — −0.1 0.1 0.1 1.2 1.2
240 0.0 0.0 −0.3 −0.3 — −0.1 0.1 0.1 0.6 0.6
480 0.0 0.0 −0.2 −0.2 — −0.1 0.0 0.0 0.3 0.3

15 −0.1 0.0 −5.1 −5.3 — −2.2 1.6 1.6 10.5 10.4
30 −0.1 −0.1 −2.5 −2.5 — −0.9 0.7 0.7 5.1 5.1

.70 60 −0.1 −0.1 −1.3 −1.3 — −0.4 0.4 0.4 2.4 2.4
120 0.0 0.0 −0.6 −0.7 — −0.2 0.2 0.2 1.2 1.2
240 0.0 0.0 −0.4 −0.3 — −0.1 0.1 0.1 0.6 0.6
480 0.0 0.0 −0.2 −0.2 — −0.1 0.0 0.0 0.4 0.4

15 0.0 0.0 −5.0 −5.1 — −1.2 1.5 1.5 10.2 10.1
30 0.0 0.0 −2.2 −2.3 — −0.5 0.8 0.8 4.7 4.6

.80 60 0.0 0.0 −1.3 −1.4 — −0.3 0.4 0.4 2.4 2.4
120 0.0 0.0 −0.7 −0.7 — −0.1 0.2 0.2 1.2 1.1
240 0.0 0.0 −0.3 −0.3 — 0.0 0.1 0.1 0.5 0.5
480 0.0 0.0 −0.2 −0.2 — 0.0 0.0 0.0 0.3 0.3

15 −0.2 −0.1 −5.1 −5.3 — −0.6 1.7 1.7 10.0 9.8
30 0.0 0.1 −2.5 −2.7 — −0.3 0.7 0.7 5.1 5.1

.90 60 −0.1 0.0 −1.4 −1.4 — −0.1 0.4 0.4 2.3 2.2
120 0.0 0.0 −0.6 −0.6 — −0.1 0.2 0.2 1.1 1.1
240 0.0 0.0 −0.4 −0.3 — 0.0 0.1 0.1 0.6 0.5
480 0.0 0.0 −0.2 −0.2 — 0.0 0.0 0.0 0.3 0.3

15 0.0 0.0 −5.2 −5.4 — −0.3 1.6 1.5 10.3 9.9
30 0.0 0.1 −2.5 −2.6 — −0.1 0.7 0.7 5.0 4.7

.95 60 0.0 0.0 −1.4 −1.3 — −0.1 0.4 0.4 2.4 2.2
120 0.0 0.0 −0.6 −0.7 — 0.0 0.2 0.2 1.2 1.2
240 0.1 0.1 −0.2 −0.3 — 0.0 0.0 0.0 0.6 0.6
480 0.0 0.0 −0.2 −0.2 — 0.0 0.1 0.1 0.3 0.2

Table 8. Simulation estimates of percent biases. uni—univariate estimates. biv—bivariate esti-
mates. Coefficient of variation equal to 0.40.



Parameter
Generating Sample µ σ ρ γ β
correlation size uni biv uni biv uni biv uni biv uni biv

15 2.6 2.6 18.2 18.2 — 42.2 2.3 2.3 24.6 24.6
30 1.8 1.8 12.9 12.9 — 28.7 1.6 1.6 15.9 15.9

.50 60 1.3 1.3 9.1 9.1 — 19.6 1.1 1.1 10.7 10.7
120 0.9 0.9 6.4 6.4 — 13.8 0.8 0.8 7.4 7.4
240 0.6 0.6 4.6 4.6 — 9.5 0.6 0.6 5.1 5.1
480 0.5 0.5 3.2 3.2 — 6.8 0.4 0.4 3.6 3.5

15 2.6 2.6 18.3 18.2 — 30.3 2.3 2.3 25.1 25.1
30 1.8 1.8 12.8 12.8 — 20.5 1.6 1.6 15.9 15.8

.60 60 1.3 1.3 9.1 9.0 — 14.0 1.1 1.1 10.7 10.7
120 0.9 0.9 6.5 6.4 — 9.8 0.8 0.8 7.3 7.3
240 0.6 0.6 4.6 4.6 — 6.8 0.6 0.6 5.1 5.1
480 0.5 0.5 3.2 3.2 — 4.8 0.4 0.4 3.6 3.6

15 2.6 2.6 18.1 18.0 — 21.1 2.3 2.3 24.9 24.8
30 1.8 1.8 13.0 12.9 — 14.2 1.6 1.6 15.9 15.9

.70 60 1.3 1.3 9.1 9.1 — 9.6 1.1 1.1 10.7 10.6
120 0.9 0.9 6.5 6.4 — 6.6 0.8 0.8 7.3 7.3
240 0.6 0.6 4.5 4.5 — 4.7 0.6 0.6 5.1 5.0
480 0.5 0.5 3.2 3.2 — 3.3 0.4 0.4 3.6 3.6

15 2.6 2.6 18.0 17.8 — 13.7 2.3 2.3 25.3 25.1
30 1.8 1.8 12.9 12.7 — 8.7 1.6 1.6 15.9 15.8

.80 60 1.3 1.3 9.1 8.9 — 6.0 1.1 1.1 10.5 10.4
120 0.9 0.9 6.4 6.3 — 4.1 0.8 0.8 7.4 7.2
240 0.6 0.6 4.6 4.5 — 2.9 0.6 0.6 5.1 5.0
480 0.5 0.5 3.2 3.1 — 2.0 0.4 0.4 3.6 3.5

15 2.6 2.6 17.9 17.7 — 6.5 2.3 2.3 25.2 24.7
30 1.8 1.8 12.8 12.3 — 4.2 1.6 1.6 16.0 15.6

.90 60 1.3 1.3 9.2 8.8 — 2.8 1.1 1.1 10.7 10.4
120 0.9 0.9 6.4 6.1 — 1.9 0.8 0.8 7.3 7.0
240 0.6 0.6 4.5 4.3 — 1.3 0.6 0.6 5.0 4.8
480 0.5 0.5 3.2 3.1 — 0.9 0.4 0.4 3.6 3.5

15 2.6 2.6 18.1 17.2 — 3.2 2.3 2.3 25.2 24.2
30 1.8 1.8 12.8 11.9 — 2.0 1.6 1.6 15.9 14.9

.95 60 1.3 1.3 9.2 8.4 — 1.3 1.1 1.1 10.6 9.8
120 0.9 0.9 6.5 5.9 — 0.9 0.8 0.8 7.3 6.8
240 0.6 0.6 4.6 4.1 — 0.6 0.6 0.6 5.1 4.7
480 0.5 0.5 3.2 2.9 — 0.4 0.4 0.4 3.5 3.2

Table 9. Simulation estimates of sample standard deviation of parameter estimate times 100 di-
vided by parameter value. uni—univariate estimates. biv—bivariate estimates. The coefficients of
variation of the generating normal and Weibull distributions were equal to 0.10.



Parameter
Generating Sample µ σ ρ γ β
correlation size uni biv uni biv uni biv uni biv uni biv

15 5.1 5.1 18.2 18.2 — 42.0 4.8 4.8 24.9 24.9
30 3.6 3.6 12.8 12.8 — 28.5 3.3 3.3 15.7 15.7

.50 60 2.6 2.6 9.0 9.0 — 19.5 2.3 2.3 10.4 10.4
120 1.8 1.8 6.4 6.4 — 13.8 1.7 1.7 7.3 7.2
240 1.3 1.3 4.6 4.5 — 9.6 1.2 1.2 5.1 5.0
480 0.9 0.9 3.2 3.2 — 6.8 0.8 0.8 3.6 3.5

15 5.2 5.2 18.1 18.0 — 30.5 4.9 4.9 25.2 25.2
30 3.7 3.7 12.9 12.8 — 20.4 3.3 3.3 15.9 15.9

.60 60 2.6 2.6 9.2 9.2 — 14.2 2.4 2.4 10.8 10.7
120 1.8 1.8 6.5 6.4 — 9.8 1.7 1.7 7.3 7.3
240 1.3 1.3 4.6 4.6 — 6.8 1.2 1.2 5.0 5.0
480 0.9 0.9 3.2 3.2 — 4.8 0.8 0.8 3.6 3.6

15 5.1 5.1 18.2 18.1 — 21.3 4.8 4.8 25.5 25.5
30 3.6 3.6 12.9 12.9 — 13.9 3.3 3.3 15.6 15.5

.70 60 2.6 2.6 9.1 9.0 — 9.6 2.3 2.3 10.6 10.5
120 1.8 1.8 6.5 6.4 — 6.8 1.6 1.6 7.3 7.2
240 1.3 1.3 4.6 4.5 — 4.6 1.2 1.2 5.1 5.0
480 0.9 0.9 3.2 3.2 — 3.3 0.8 0.8 3.6 3.5

15 5.1 5.1 18.2 18.0 — 13.5 4.8 4.8 24.3 24.2
30 3.6 3.6 12.7 12.5 — 8.9 3.4 3.4 15.8 15.6

.80 60 2.6 2.6 9.1 8.9 — 5.9 2.4 2.4 10.6 10.4
120 1.8 1.8 6.4 6.3 — 4.1 1.6 1.6 7.2 7.1
240 1.3 1.3 4.6 4.5 — 2.9 1.2 1.2 5.0 5.0
480 0.9 0.9 3.2 3.1 — 2.0 0.8 0.8 3.6 3.5

15 5.2 5.2 18.0 17.6 — 6.6 4.8 4.8 24.8 24.5
30 3.6 3.6 13.0 12.5 — 4.2 3.4 3.3 15.9 15.5

.90 60 2.6 2.6 9.1 8.7 — 2.8 2.4 2.4 10.7 10.4
120 1.8 1.8 6.5 6.2 — 1.9 1.7 1.7 7.3 7.0
240 1.3 1.3 4.6 4.4 — 1.3 1.2 1.2 5.2 4.9
480 0.9 0.9 3.2 3.0 — 0.9 0.8 0.8 3.6 3.4

15 5.2 5.2 18.4 17.3 — 3.3 4.9 4.9 25.4 24.4
30 3.7 3.7 13.0 12.0 — 2.0 3.4 3.4 16.1 15.2

.95 60 2.6 2.6 9.2 8.4 — 1.3 2.4 2.4 10.7 10.0
120 1.8 1.8 6.4 5.8 — 0.9 1.7 1.7 7.2 6.7
240 1.3 1.3 4.5 4.1 — 0.6 1.2 1.2 5.1 4.7
480 0.9 0.9 3.2 2.9 — 0.4 0.8 0.8 3.6 3.3

Table 10. Simulation estimates of sample standard deviation of parameter estimate times 100
divided by parameter value. uni—univariate estimates. biv—bivariate estimates. The coefficients
of variation of the generating normal and Weibull distributions were equal to 0.20.



Parameter
Generating Sample µ σ ρ γ β
correlation size uni biv uni biv uni biv uni biv uni biv

15 7.8 7.8 18.1 18.0 — 42.5 7.6 7.6 25.0 25.0
30 5.6 5.6 12.8 12.7 — 28.1 5.3 5.3 15.7 15.7

.50 60 3.9 3.9 9.1 9.1 — 19.5 3.7 3.7 10.6 10.6
120 2.7 2.7 6.5 6.5 — 13.9 2.6 2.6 7.3 7.3
240 1.9 1.9 4.6 4.6 — 9.8 1.8 1.8 5.1 5.1
480 1.4 1.4 3.2 3.2 — 6.7 1.3 1.3 3.6 3.6

15 7.6 7.6 18.1 18.0 — 30.2 7.6 7.6 24.9 24.9
30 5.4 5.4 12.8 12.8 — 20.4 5.2 5.2 15.9 15.8

.60 60 3.9 3.9 9.0 9.0 — 14.1 3.7 3.7 10.7 10.6
120 2.7 2.7 6.4 6.3 — 9.7 2.6 2.6 7.3 7.2
240 1.9 1.9 4.6 4.6 — 6.9 1.8 1.8 5.1 5.0
480 1.4 1.4 3.2 3.2 — 4.8 1.3 1.3 3.6 3.6

15 7.7 7.7 18.0 17.9 — 21.5 7.6 7.6 24.6 24.6
30 5.5 5.5 12.8 12.7 — 13.8 5.2 5.2 15.7 15.6

.70 60 3.9 3.9 9.1 9.0 — 9.5 3.7 3.7 10.5 10.4
120 2.7 2.7 6.4 6.3 — 6.7 2.6 2.6 7.3 7.2
240 1.9 1.9 4.6 4.6 — 4.7 1.8 1.8 5.2 5.1
480 1.4 1.4 3.2 3.2 — 3.3 1.3 1.3 3.6 3.6

15 7.7 7.7 18.2 17.9 — 13.5 7.5 7.5 24.8 24.6
30 5.5 5.5 12.8 12.6 — 8.8 5.3 5.3 15.9 15.8

.80 60 3.9 3.9 9.1 8.9 — 6.1 3.7 3.7 10.8 10.6
120 2.8 2.8 6.5 6.3 — 4.2 2.6 2.6 7.3 7.2
240 1.9 1.9 4.6 4.5 — 2.9 1.9 1.9 5.1 5.0
480 1.4 1.4 3.2 3.2 — 2.0 1.3 1.3 3.6 3.5

15 7.7 7.7 18.3 17.7 — 6.6 7.6 7.5 25.7 25.3
30 5.5 5.5 12.7 12.2 — 4.1 5.3 5.3 15.9 15.4

.90 60 3.9 3.9 9.2 8.8 — 2.8 3.7 3.7 10.6 10.3
120 2.8 2.8 6.4 6.2 — 1.9 2.6 2.6 7.3 7.0
240 1.9 1.9 4.6 4.3 — 1.3 1.8 1.8 5.1 4.9
480 1.4 1.4 3.2 3.0 — 0.9 1.3 1.3 3.6 3.4

15 7.8 7.8 18.0 17.1 — 3.3 7.6 7.6 24.5 23.7
30 5.4 5.4 12.9 11.9 — 2.0 5.2 5.2 16.0 15.0

.95 60 3.9 3.9 9.0 8.3 — 1.3 3.7 3.7 10.5 9.8
120 2.7 2.7 6.4 5.8 — 0.9 2.6 2.6 7.3 6.7
240 1.9 1.9 4.6 4.2 — 0.6 1.8 1.8 5.1 4.7
480 1.4 1.4 3.2 2.9 — 0.4 1.3 1.3 3.6 3.3

Table 11. Simulation estimates of sample standard deviation of parameter estimate times 100
divided by parameter value. uni—univariate estimates. biv—bivariate estimates. The coefficients
of variation of the generating normal and Weibull distributions were equal to 0.30.



Parameter
Generating Sample µ σ ρ γ β
correlation size uni biv uni biv uni biv uni biv uni biv

15 10.4 10.4 18.1 18.1 — 42.0 10.6 10.6 24.9 24.9
30 7.3 7.3 12.8 12.8 — 28.4 7.2 7.2 15.9 15.9

.50 60 5.1 5.1 9.1 9.1 — 19.8 5.1 5.1 10.6 10.6
120 3.6 3.6 6.4 6.4 — 13.7 3.6 3.6 7.3 7.3
240 2.5 2.5 4.6 4.5 — 9.7 2.5 2.5 5.1 5.1
480 1.8 1.8 3.3 3.3 — 6.7 1.8 1.8 3.6 3.6

15 10.3 10.3 18.2 18.1 — 30.8 10.3 10.3 25.0 25.0
30 7.3 7.3 12.9 12.8 — 20.5 7.3 7.3 16.0 16.0

.60 60 5.1 5.1 9.2 9.1 — 14.2 5.1 5.1 10.6 10.5
120 3.6 3.6 6.4 6.4 — 9.8 3.6 3.6 7.3 7.3
240 2.6 2.6 4.5 4.5 — 6.9 2.5 2.5 5.0 5.0
480 1.8 1.8 3.2 3.2 — 4.9 1.8 1.8 3.5 3.5

15 10.3 10.3 18.3 18.1 — 21.5 10.4 10.4 25.2 25.1
30 7.2 7.2 12.7 12.6 — 14.1 7.3 7.3 15.9 15.8

.70 60 5.1 5.1 9.0 8.9 — 9.6 5.1 5.1 10.5 10.4
120 3.6 3.6 6.5 6.4 — 6.6 3.6 3.6 7.2 7.2
240 2.6 2.6 4.6 4.5 — 4.7 2.5 2.5 5.1 5.1
480 1.9 1.9 3.3 3.2 — 3.3 1.8 1.8 3.6 3.6

15 10.3 10.3 18.2 18.1 — 13.6 10.5 10.5 24.9 24.8
30 7.3 7.3 12.8 12.6 — 8.7 7.3 7.3 15.9 15.7

.80 60 5.1 5.1 9.0 8.9 — 5.9 5.1 5.1 10.6 10.5
120 3.7 3.7 6.5 6.4 — 4.1 3.6 3.6 7.4 7.3
240 2.6 2.6 4.6 4.5 — 2.9 2.6 2.6 5.1 5.0
480 1.8 1.8 3.2 3.2 — 2.0 1.8 1.8 3.6 3.5

15 10.2 10.2 18.1 17.5 — 6.6 10.5 10.5 24.4 23.9
30 7.3 7.3 12.9 12.3 — 4.2 7.3 7.3 16.0 15.6

.90 60 5.1 5.1 9.1 8.7 — 2.8 5.1 5.1 10.6 10.2
120 3.6 3.6 6.5 6.2 — 1.9 3.6 3.6 7.3 7.0
240 2.6 2.5 4.5 4.3 — 1.3 2.5 2.5 5.0 4.8
480 1.8 1.8 3.2 3.1 — 0.9 1.8 1.8 3.6 3.4

15 10.4 10.3 18.1 17.3 — 3.3 10.5 10.5 25.1 24.3
30 7.3 7.2 12.9 12.0 — 2.0 7.3 7.3 15.9 15.0

.95 60 5.2 5.2 9.2 8.4 — 1.3 5.1 5.1 10.6 10.0
120 3.7 3.7 6.5 5.9 — 0.9 3.6 3.6 7.3 6.8
240 2.6 2.6 4.5 4.1 — 0.6 2.5 2.5 5.1 4.7
480 1.8 1.8 3.2 2.9 — 0.4 1.8 1.8 3.6 3.3

Table 12. Simulation estimates of sample standard deviation of parameter estimate times 100
divided by parameter value. uni—univariate estimates. biv—bivariate estimates. The coefficients
of variation of the generating normal and Weibull distributions were equal to 0.40.



Parameter
Generating Sample µ σ γ β
correlation size sim th sim th sim th sim th

15 1.000 1.001 1.000 1.001
30 1.000 1.004 1.000 1.003

.50 60 1.000 1.001 1.003 1.005 1.000 1.000 1.004 1.007
120 1.001 1.003 1.000 1.004
240 1.001 1.003 1.000 1.007
480 1.000 1.005 1.000 1.008

15 1.000 1.004 1.000 1.000
30 1.000 1.008 1.000 1.007

.60 60 1.001 1.001 1.009 1.010 1.000 1.000 1.010 1.012
120 1.000 1.010 1.000 1.012
240 1.001 1.007 1.000 1.010
480 1.001 1.010 1.000 1.013

15 1.001 1.008 1.000 1.005
30 1.000 1.010 1.000 1.012

.70 60 1.001 1.001 1.018 1.021 1.000 1.000 1.018 1.020
120 1.001 1.021 1.000 1.018
240 1.001 1.022 1.000 1.020
480 1.002 1.020 1.000 1.018

15 1.001 1.023 1.000 1.011
30 1.001 1.030 1.000 1.019

.80 60 1.001 1.002 1.036 1.044 1.000 1.000 1.028 1.037
120 1.002 1.042 1.000 1.036
240 1.002 1.045 1.000 1.037
480 1.002 1.043 1.000 1.034

15 1.002 1.046 1.001 1.035
30 1.002 1.074 1.000 1.056

.90 60 1.003 1.003 1.089 1.109 1.000 1.001 1.067 1.087
120 1.003 1.097 1.001 1.081
240 1.004 1.106 1.001 1.088
480 1.002 1.109 1.000 1.083

15 1.002 1.100 1.002 1.079
30 1.004 1.150 1.002 1.125

.95 60 1.004 1.005 1.181 1.228 1.002 1.001 1.153 1.188
120 1.005 1.202 1.002 1.168
240 1.005 1.213 1.001 1.176
480 1.005 1.236 1.002 1.185

Table 13. Ratio of Univariate MSE to Bivariate MSE. sim—from the simulation (averages over
four coefficients of variation). th—from the ratio of the appropriate elements of the inverses of the
information matrices.



Parameter
Sample γ β

size reg1/mle reg2/mle reg1/mle reg2/mle

15 1.006 0.995 0.991 0.890

30 1.018 1.031 1.233 1.228

60 1.028 1.052 1.432 1.506

120 1.034 1.062 1.568 1.689

240 1.039 1.063 1.667 1.793

480 1.046 1.065 1.720 1.827

Table 14. Ratio of regression MSE to mle MSE (average over four coefficients of variation). reg1—
see Equation (9). reg2—see Equation (10).

Sample Whose β
size simulation 1.0 3.0 5.0 10.0

20 Theirs 1.16 1.31 1.27 1.24
Ours 1.078 1.077 1.065 1.058

30 Theirs 1.21 1.27 1.08 1.18
Ours 0.996 1.015 1.006 1.000

40 Theirs 1.01 1.03 1.09 1.11
Ours 0.975 0.969 0.980 0.979

50 Theirs 1.09 1.08 0.966 1.20
Ours 0.966 0.964 0.956 0.953

100 Theirs 0.989 1.08 0.901 0.994
Ours 0.934 0.930 0.921 0.931

Table 15. Ratio of regression 1 MSE to regression 2 MSE for the shape parameter. reg1—see
Equation (9). reg2—see Equation (10). However, for the simulation reported in this table, in both
Equations (9) and (10), (i− .3)/(n+ .4) was replaced by (i− .5)/n to be in accord with Lawrence
and Shier’s (1981) simulation. “Theirs” refers to table III in Lawrence and Shier. “Ours” refers to
a simulation that we conducted using 10,000 trials per condition.
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