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Abstract
In this paper we raise three technical concerns about Evans’s 
1999 Appita Journal “variance approach” to estimating 
microfibril angle. The first concern is associated with the 
approximation of the variance of an X-ray intensity half-
profile by a function of the microfibril angle and the natural 
variability of the microfibril angle, S2 ≈ µ2/2 + σ2. The sec-
ond concern is associated with the approximation of the nat-
ural variability of the microfibril angle by a function of the 
microfibril angle, σ2 ≈ f(µ). The third concern is associated 
with the fact that the variance approach was not designed to 
handle tilt in the fiber orientation. All three concerns are as-
sociated with potential biases in microfibril angle estimates. 
We raise these three concerns so that other researchers in-
terested in understanding, implementing, or extending the 
variance approach or in comparing the approach to other 
methods of estimating MFA will be aware of them.
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1 Introduction

Microfibril angle (MFA) is the angle between the direction of crystalline cellulose fibrils in the cell
wall and the longitudinal direction of the cell. There is a strong belief that the MFA of the S2 layer
of the woody cell wall is a critical factor in the mechanical behavior of wood (Megraw 1986). The S2
MFA appears to have a significant influence on the tensile strength, stiffness, and shrinkage of wood
(Harris and Meylan 1965, Cave and Walker 1994, Evans and Ilic 2001). Thus, rapid estimation
of MFA from the scanning of cores has been developed as a method for comparing and improving
silvicultural practices, and as a technique for identifying superior trees.

Evans (1999) provides the theoretical justification for a “variance approach” to estimating
MFA from X-ray diffraction patterns. In this paper we raise concerns about three aspects of that
approach:

1. We believe that the justification for the base approximation

S2 ≈ µ2/2 + σ2

is not strong. (Here, µ denotes the MFA, σ denotes the natural variability of the MFA, and
S2 is defined in Section 2.)

2. An implementor of the approach must choose a function of µ with which to model σ. In the
1999 paper, Evans proposed the general model

σ2 = (k × µ)2 + σ2add

and suggested that 1/3 and 6 might be reasonable choices for k and σadd. We demonstrate
that biases in the MFA estimate can be sensitive to the choice of the model for σ2.

3. The 1999 variance approach was not designed to handle fiber tilt. We show that the method
can perform poorly in the presence of tilt. (We note that some implementors of the variance
approach have apparently developed extensions to the method that are intended to handle
tilt. However, these methods have not yet been detailed in the open literature.)

We raise these three concerns so that other researchers interested in understanding, imple-
menting, or extending the variance approach or in comparing the approach to other methods of
estimating MFA will be aware of them.
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2 The Variance Approach

Evans (1999) proposed the variance approach to estimating MFA and gave a detailed description
of the method. Here we give a quick synopsis.

The procedure is based on X-ray diffraction techniques. The radial wall of a machined core is
irradiated by a 0.2-mm-diameter X-ray beam, which produces a diffraction pattern on a back plane.
In general, due to reflections from the 002 crystallographic planes in the cellulose microfibrils, two
back plane bright spots are produced per wood cell face. Thus, cells with rectangular cross sections
yield 8 back plane bright spots while those with hexagonal cross sections produce 12 bright spots.
These bright spot patterns are broadened by (among other factors) MFA variability and variabilities
in cell rotation and tilt. These broadened intensity patterns can be evaluated along the 2θ circle on
the back plane (where θ is the Bragg angle). In Figure 1 we provide an example of such an intensity
profile. These profiles contain left and right halves that are more or less symmetric, depending on
wood cell rotation and tilt.

Evans (1999) argued that
S2 ≈ µ2/2 + σ2 (1)

where S2 is the variability of either of the profile halves, µ is MFA, and σ is the variability of the
MFA angle in the path of the beam. Evans proposed the additional approximation

σ2 ≈ f(µ) (2)

for some function f .
Taken together, approximations (1) and (2) yield

S2 ≈ µ2/2 + f(µ) (3)

which, in principle, can be solved for µ. To implement this procedure in practice requires a detailed
assumption about f(µ).

Evans (1999) suggested that σ2 could be replaced by

f(µ) = σ2mult + σ2add = (k × µ)2 + σ2add

Evans went on to suggest that reasonable values for k might be 1/4 or 1/5 or Cave’s (1966) 1/3,
and a reasonable value for σadd might “lie in the range 6 – 10” degrees. He further stated that (as
of 1999) he used k = 1/3 and σadd = 6. In a personal communication (Evans 2008), he stated that
he continued to use

σ2 ≈ f(µ) = (µ/3)2 + 62 (4)

Combining approximations (1) and (4), we obtain (Evans’ (1999) equation [34])√
18/11

√
S2 − 62 ≈ µ (5)

This is the MFA estimate that we evaluated in our simulations. Other variance approach estimates
would be obtained if other values for f(µ) were used.

We have developed analytical and simulation tools that permit us to evaluate the quality of
variance approach estimates. In the next section we describe our simulation tools, and report the
results of simulation experiments that were performed with these tools. These experiments help us
identify conditions under which the 1999 algorithm does not perform well.

In Section 4 we look at the theoretical basis for approximation (1), and identify two weak-
nesses in its derivation. In Section 5, we evaluate the biases that can occur when wood cells are
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tilted. In Section 6 we identify good experimental practices that new implementors of the approach
can employ to guard against poor performance. We also identify naturally occurring sources of
variability that can cause problems for the unmodified 1999 algorithm, and that cannot be easily
circumvented. In Section 7 we consider approximation (2) and biases that can occur when the
approximation is inadequate.

3 Our Simulation Tools and Results

In the course of developing MFA X-ray diffraction techniques (Verrill et al. 2001, 2006, 2011),
we have developed computational tools that permit us to calculate the backplane locations of
the unbroadened bright spots for rectangular and hexagonal wood cell cross sections and many
MFA/rotation/tilt combinations. Our methods are based on extensions of an equation first derived
by Cave (1966). For rectangular cross sections, the techniques are described in appendix A of
Verrill et al. (2006). For hexagonal cross sections, the techniques are described in Appendix A
of the current paper. We have made use of these methods to evaluate the performance of the
variance approach algorithm. Under the assumption of Gaussian MFA variability, and given the
standard deviation of the Gaussian distribution (we use approximation (4) to obtain the value for
the MFA variance), we perform Monte Carlo draws from the MFA distribution, and then calculate
the corresponding azimuthal coordinates of the bright spots on the back plane.

Given 10,000 Monte Carlo draws, we obtain back-plane X-ray intensity profiles. (In, for example,
the rectangular case, each draw of an MFA yields the angular locations of eight bright spots on
the backplane of the X-ray apparatus. See appendix A of Verrill et al. (2006) for details. These
angles are accumulated in a frequency diagram (histogram) over the 10,000 draws, and this diagram
constitutes the simulated X-ray intensity profile.) We can use these profiles to calculate variance
approach estimates of the MFAs and then compare them to the true generating MFAs. This
permits us to estimate the biases associated with the variance approach. In addition, we can break
the variability of the profile into between peak (in the rectangular case there are eight intensity
peaks associated with the mean locations of the eight bright spots) and within peak portions and
thus analyze the quality of the approximations that lead to Evans’s (1999) equation [29].

We can also calculate the standard deviations associated with the peaks and compare these to
the values obtained from Evans’s equation [14].

The FORTRAN code that forms the basis for these simulations can be found at
http://www1.fpl.fs.fed.us/varapp sim.html.

The results from these simulations are reported in Tables 1 – 50. These tables are so extensive
that they are not included in this report. Instead, they can be viewed and/or downloaded at
http://www1.fpl.fs.fed.us/varapp tables.html. We do give detailed descriptions of the tables
in Appendix B. The biases in the variance approach estimates are reported in Tables 21 – 25
(rectangular cross-sections) and Tables 46 – 50 (hexagonal cross-sections). The biases are plotted
in Figures 2 – 29.

For larger cell tilts and larger MFAs, these biases are significant. For example, for a rectangular
cross-section, a 15 degree rotation, 20 degree tilt, and 40 degree MFA, the full-profile bias (using
both sets of peaks)1 is 5.9 degrees, a 15% upward bias. The left half-profile bias (using only the
left set of peaks) is 10.1 degrees, a 25% bias. For a hexagonal cross-section, a 0 degree rotation,
20 degree tilt, and 40 degree MFA, the bias (both full-profile and half-profile) is 7.1 degrees, an
18% bias. In general, biases increase as tilt and MFA increase.

1S2 in (1) is replaced by (S2
L + S2

R)/2 where S2
L is the left half-profile variance and S2

R is the right half-profile
variance.
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As part of a more general simulation study, Sarén and Serimaa (2006) approximated the bias
in the variance approach estimate of MFA for µ = 10, and tilt = 2, 5, 10, 20, and 45 degrees. Their
estimated bias values are larger than ours.

We note that our simulations are not complete. Our methods permit a tilt of the original z
axis of a cell toward the x axis followed by a rotation around the original z axis (see Figure 30).
This permits the longitudinal axis of the cell to point in any direction, but it does not permit free
rotation of the cell around that axis. We were led to this model by physical considerations associated
with our X-ray apparatus (Verrill et al., 2006). However, our model does not cover all possible
configurations. Further, in reality, cell cross sections are mixtures of quadrilateral, pentagonal,
hexagonal, elliptical, and other forms. (And we have modeled only regular hexagons.) In addition,
in some circumstances, tangential and radial cell walls can differ significantly in thickness. In such
circumstances, bright spots associated with thicker walls should be accentuated. In the current
simulation, we have assumed that cell walls are equal in thickness. Still, for the purposes of this
paper, our simulations are sufficient to highlight possible problems with the 1999 algorithm.

4 Problems with Several of the Variance Approach Approxima-
tions

The biases in the variance approach estimates result from approximations that were made in the
course of the method’s development, and from the fact that the variance approach algorithm was
not designed to handle tilt. In this section we focus on approximation (1). In the next section we
focus on tilt. In Section 7 we focus on approximation (2).

In this section we revisit a portion of the theoretical development in Evans (1999). We will
focus on equations [14] – [29] of that paper.

Evans assumes that a wood cell has J faces at angles 90 + α0 + 2πj/J , j = 0, . . . , J − 1, to
the incoming X-ray beam (so α0 is the rotation of the front face away from perpendicular to the
incoming beam). He further assumes (his equation [12]) that the contribution of the jth face to
the (left or right half of the) back plane intensity profile is

Ij =
1√
2π

1

δj
exp

(
(φ− φj)2/(2δ2j )

)
(6)

where φ denotes azimuthal angle, φj is the bright spot associated with the jth face for the half-
profile (left or right) under consideration, and δj is the standard deviation of the broadened peak
associated with the jth bright spot.

This normality assumption is presumably only approximately appropriate. Peura et al. (2005,
2008a,b) and Sarén et al. (2001) found that MFA distributions both within single cells and across
cells in a growth ring are right skewed. (They restricted their attention to earlywood.) We have
found (see, for example, Figure 31) that even if the generating MFA distribution for a face is
normal, in general the resulting back plane intensity distribution associated with that face is not.
However, as we will see below, the normality assumption is not needed for the development of a
variance approach to MFA estimation.

Given Equation (6), Evans notes that the mean bright spot location associated with the left or
right back plane half-profile under consideration is (his equation [17])

φ̄ ≡
J−1∑
j=0

∫ ∞
−∞

φIj/Jdφ (7)
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The variance of the half-profile is (his equation [16])

S2 ≡
J−1∑
j=0

∫ ∞
−∞

(φ− φ̄)2Ijdφ/J (8)

Evans makes an argument in his equations [18] through [25] that yields

S2 =
J−1∑
j=0

(φj − π/2)2/J +
J−1∑
j=0

δ2j /J (9)

Here we present a standard statistical argument that yields a similar conclusion:
Suppose that, for a given half-profile (left or right), yi1, . . . , yiJ are the bright spot locations

associated with a draw of an MFA from the assumed MFA distribution (Evans assumes a distribu-
tion with mean µ and variance σ2). Note that in cases of large MFA/tilt, a yij might be missing.
That is, there might be no reflections from a face.

Assume that there are n draws from the MFA distribution and that there are nj yij ’s for
j = 1, . . . , J . For many tilt, rotation, MFA combinations, we will have n1 = . . . = nJ = n. But in
some cases, because of the lack of reflections from a face in some draws, we will have nj < n for
some j.

Define

ȳ·j ≡
nj∑
i=1

yij/nj

This is the mean bright spot location for the jth peak in the half-profile.
The mean bright spot location for the half-profile will be

ȳ·· ≡
J∑
j=1

nj ȳ·j/ntot

where ntot = n1 + . . .+ nJ .
The variance of the bright spot locations around this mean will be

S2 ≡
J∑
j=1

nj∑
i=1

(yij − ȳ··)2 /ntot

=

J∑
j=1

nj∑
i=1

(yij − ȳ·j + ȳ·j − ȳ··)2 /ntot

=
J∑
j=1

nj∑
i=1

(
(yij − ȳ·j)2 + 2× (yij − ȳ·j)(ȳ·j − ȳ··) + (ȳ·j − ȳ··)2

)
/ntot

=
J∑
j=1

( nj∑
i=1

(yij − ȳ·j)2 + 2× (ȳ·j − ȳ··)
nj∑
i=1

(yij − ȳ·j) +

nj∑
i=1

(ȳ·j − ȳ··)2
)
/ntot

=

J∑
j=1

( nj∑
i=1

(yij − ȳ·j)2 + 2× (ȳ·j − ȳ··)× 0 +

nj∑
i=1

(ȳ·j − ȳ··)2
)
/ntot

=
J∑
j=1

( nj∑
i=1

(yij − ȳ·j)2 + nj (ȳ·j − ȳ··)2
)
/ntot

5



=

J∑
j=1

(nj − 1)s2j/ntot +

J∑
j=1

nj (ȳ·j − ȳ··)2 /ntot (10)

where

s2j ≡
nj∑
i=1

(yij − ȳ·j)2 /(nj − 1)

is the sample standard deviation of the jth peak.
This corresponds to Evans’s equation [25]. (Our first term, the mean within peak sum of squares,

corresponds to his second. Our second term, the mean between peak sum of squares, corresponds
to his first.) However, we do not assume that the expectation of the jth distribution is the jth
bright spot location; we do not conclude that the average of the expectations of the distributions
for the j faces is a constant (π/2 for the right half-profile in his coordinate system); and we handle
the case of non-reflection.

Evans argues that the first term on the right hand side (RHS) of Equation (10) can be approxi-
mated by σ2/ cos(µ), where µ is the MFA and σ2 is the variability of the MFA. He also argues that
the second term on the RHS of Equation (10) can be approximated by µ2/2. These approximations
are flawed and can lead to biased MFA estimates.

Consider the first term on the RHS of Equation (10). To approximate it, Evans makes use
of his equation [14]2. His equation [14] can yield seriously inflated estimates of δj . This can be
established heuristically, by simulation, and analytically.

To understand the heuristic explanation, consider Figure 32. It provides the locations of the
eight bright spots on the back plane for a cell with rectangular cross section in the no rotation, no
tilt case. It is clear from this figure that as MFA varies, the locations of the bright spots associated
with the front and back faces of the wood cell vary much more than do the locations of the bright
spots associated with the right and left faces. However, as Evans notes, his equation [14] predicts
that the bright spots associated with the right and left faces will be broadened more than the bright
spots associated with the front and back faces.

Our simulation estimates of the variabilities of each of the broadened bright spots are reported
in Tables 6 – 10 and 31 – 35, and support our heuristic understanding. Estimates of the δj ’s based
on Evans’s equation [14] frequently significantly exceed the simulation estimates.

Finally, it is possible to obtain analytic estimates of the δj ’s. This approach is described in
Appendix C of this paper. It is based on a Taylor series approximation and will be most accurate
for smaller MFAs. These analytic estimates of the δj ’s are also reported in Tables 6 – 10 and
31 – 35, and they agree with our simulation estimates for smaller MFAs.

The resulting upward bias in σ2/ cos(µ) as an estimate of
∑J

j=1(nj − 1)s2j/ntot is reported in
Tables 11 – 15 and 36 – 40. This bias can be quite large. For example, for a rectangular cell cross
section, 0 degree rotation, and 0 degree tilt, the percent bias ranges from 89% to 123% as MFA
ranges from 2 degrees to 55 degrees. For a hexagonal cell cross section, 0 degree rotation, and
0 degree tilt, the percent bias ranges from 95% to 39% as MFA ranges from 2 degrees to 55 degrees.

Now consider the second term on the RHS of Equation (10). Evans argues that it is approxi-
mately equal to µ2/2. (It might be argued that the term Evans is approximating,

∑J
j=1(φj− φ̄)2/J ,

differs from our
∑J

j=1 nj(ȳ·j − ȳ··)2/ntot. However, in our simulations we show that µ2/2 is also a

2His equation [14] is δj = σ sec(µ sin(αj − θ)) where θ is the Bragg angle, δj is the standard deviation of the jth
intensity peak in the half-profile, µ is the mean of the MFA distribution, σ is the standard deviation of the MFA
distribution, and for the jth face of the cell, j = 0, 1, . . . J − 1, αj = α0 + 2πj/J where α0 is the rotation of the
front face of the cell away from perpendicular to the incoming X-ray beam. (Thus, α0 = 0 for a front face that is
perpendicular to the incoming X-ray beam.)
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poor approximation to
∑J

j=1(φj − φ̄)2/J .) In fact, µ2/2 almost always underestimates the second
term on the RHS of Equation (10), sometimes severely. Again, it is possible to obtain an intuitive
feel for this underestimation. It is well known (see, for example, Cave 1966, or Verrill et al. 2006)
that for cells with rectangular cross section in the no rotation, no tilt case, the azimuthal angles
(in our coordinate system3) of the bright spot locations for the front and back faces in the left
half-profile are −µ and µ, and the azimuthal angle of the center of the bright spots is 0. Thus we
would expect that

J∑
j=1

nj(ȳ·j − ȳ··)2/ntot

is at least equal to

((−µ− 0)2 + (µ− 0)2)/4 = µ2/2

However, as we can see from Figure 32, the bright spots associated with the right and left faces are
symmetric around 0 and not equal to 0. Thus,

J∑
j=1

nj(ȳ·j − ȳ··)2/ntot

is inflated above µ2/2 by approximately the amount φ2RL/2 where the bright spots associated with
the right and left faces are located at ±φRL (for the left half-profile). In Tables 16 – 20 and 41 – 45
we supplement this heuristic argument with simulation results that indicate that µ2/2 can seriously
underestimate the second term on the RHS of (10). For example, for a rectangular cross section,
45 degree rotation, and 0 degree tilt, the percent biases range from −5% to −35% as MFA ranges
from 2 degrees to 55 degrees. For a hexagonal cross section, 0 degree rotation, and 0 degree tilt,
the percent biases range from −7% to −30% as MFA ranges from 2 degrees to 55 degrees.

We note that there are two additional indications that the theory that leads to Equation (1) is
not fully satisfactory. First, the theory draws no distinction between the left half-profile (LHP) and
the right half-profile (RHP). That is, according to the theory, it should not matter whether the S2

used in Equation (1) is the variance of the LHP, the variance of the RHP, or their average. However,
it does matter. For example, for a rectangular cross section, 0 degree tilt, 15 degree rotation (Table
21), there is a 4.1 degree difference between the LHP and RHP biases for a 40 degree MFA, and a
10.5 degree difference for a 50 degree MFA. Second, in the final approximation for S2, cell rotation
is not included as a predictor. That is, according to the theory, the rotation of the cell should
not matter. However, it does matter. For example (see Table 21), for a rectangular cross section,
0 degree tilt, and an MFA of 40 degrees, as the rotation increases from 0 degrees to 45 degrees,
the MFA bias increases from −.1 degrees to 4 degrees. For an MFA of 50 degrees, as the rotation
increases from 0 degrees to 45 degrees, the MFA bias increases from 1.7 degrees to 9.2 degrees.

The net result of the variance approach’s overestimate (in general) of the first term on the RHS
of (10) and its underestimate (in general) of the second term on the RHS of (10) is that as MFA
increases, the bias in the variance approach estimate of MFA increases. See Tables 21 – 25 and
46 – 50 and Figures 2 through 29. For rectangular cross sections, in the no cell rotation, no tilt case,
the bias is always reasonable. (In our simulation the bias increased from −2 degrees to 1.8 degrees

3In our 2006 paper we define φ = 0 to correspond to the eastern direction on the back plane (as does Cave, 1966).
Evans takes the northern direction as φ = 0. In our coordinate system the center of the left intensity half-profile
(corresponding to the right side of the back plane) will tend to be located near our φ = 0 and the center of the right
intensity half-profile (corresponding to the left side of the back plane) will tend to be located near our φ = π. In
Evans’s coordinate system these centers will be at approximately −π/2 and +π/2.
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as MFA increased from 2 to 55 degrees.) However, in other cases, it is not. For example, for a
rectangular cross section, a 15 degree rotation, 20 degree tilt, and 40 degree MFA, the full-profile
bias is 5.9 degrees, a 15% upward bias. The left half-profile bias (using only the left set of peaks)
is 10.1 degrees, a 25% bias. For a hexagonal cross section, a 0 degree rotation, 20 degree tilt, and
40 degree MFA, the bias (both full-profile and half-profile) is 7.1 degrees, an 18% bias.

However, the variance approach was not designed to handle tilt. Thus, to be fair to it, in this
section we should focus only on the biases in those cases in which tilt was set to 0 degrees. As can
be seen in Table 21 and Figures 2 – 8, in the 0 tilt case, for rectangular cross sections and true
MFAs between 2 and 55 degrees, the full-profile biases increase as MFA increases, do not exceed
11.7 degrees in absolute value, and are largest for a rotation of 45 degrees. Further, it could be
argued that the only “significant” biases are associated with MFAs that are 40 degrees or larger.

5 Effect of Tilt

As noted above, the variance approach was not designed to handle tilt. Evans (1999) writes:

If the fibre axis is not perpendicular to the X-ray beam, the azimuthal diffraction profile
is distorted and MFA is overestimated. Simple methods for the determination of the
direction of the fibre axis from the diffraction pattern, and for the correction of the
MFA will be presented in a future paper.

Buksnowitz et al. (2008) states that “X-ray diffractometry has long been used to estimate grain
angle” and it references Evans et al. (1996, 1999, 2000). Evans et al. (2000) states that “we
measure the distortion [in the diffraction pattern] to correct the MFA results for the effects of fibre
tilt in the beam direction . . . A description of the method will be presented in a future report.” It
also states that the “relative orientations of the fibres within the samples were measured using X-
ray diffractometry (R. Evans, manuscript in preparation).” Thus, Evans and others claim to have
developed extensions to the variance approach algorithm that permit tilt to be properly handled.
However, no paper has yet appeared in the literature that details these methods.

In the absence of publicly available algorithms for correcting the variance approach method for
tilt, it is worthwhile to investigate the effect of tilt on the bias in the estimates. In Tables 21 – 25
and 46 – 50, and Figures 2 – 8 and 16 – 22, we see that the bias in full-profile variance approach
estimates increases as tilt increases and that it can be quite large. We present a subset of these
biases in Tables 51 and 52. These biases are among the worst that appear in the full set of tables.

We note that other diffractometric methods of estimating MFA are also likely to perform poorly
in the presence of larger tilt if they are not corrected for tilt.
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tilt rotation MFA bias

20.0 30.0 2.0 -2.0

20.0 30.0 10.0 -0.9

20.0 30.0 20.0 0.8

20.0 30.0 30.0 2.8

20.0 30.0 40.0 6.6

20.0 30.0 50.0 11.9

20.0 30.0 55.0 15.1

30.0 15.0 2.0 -2.0

30.0 15.0 10.0 0.4

30.0 15.0 20.0 2.5

30.0 15.0 30.0 6.2

30.0 15.0 40.0 12.0

30.0 15.0 50.0 19.2

30.0 15.0 55.0 23.2

40.0 15.0 2.0 -2.0

40.0 15.0 10.0 2.6

40.0 15.0 20.0 6.4

40.0 15.0 30.0 13.0

40.0 15.0 40.0 21.4

40.0 15.0 50.0 28.7

40.0 15.0 55.0 31.7

Table 51: Selected full-profile biases in the variance approach estimates for a rectangular cross
section. These are examples of some of the worst biases. Lower tilts will yield lower biases. See
Tables 21 – 25 for a complete set of tables.

9



tilt rotation MFA bias

20.0 0.0 2.0 -2.0

20.0 0.0 10.0 -0.7

20.0 0.0 20.0 0.8

20.0 0.0 30.0 3.2

20.0 0.0 40.0 7.1

20.0 0.0 50.0 12.8

20.0 0.0 55.0 16.1

30.0 0.0 2.0 -2.0

30.0 0.0 10.0 0.8

30.0 0.0 20.0 3.2

30.0 0.0 30.0 7.2

30.0 0.0 40.0 13.0

30.0 0.0 50.0 19.6

30.0 0.0 55.0 22.7

40.0 0.0 2.0 -0.5

40.0 0.0 10.0 3.0

40.0 0.0 20.0 7.7

40.0 0.0 30.0 15.0

40.0 0.0 40.0 22.6

40.0 0.0 50.0 29.3

40.0 0.0 55.0 31.2

Table 52: Selected full-profile biases in the variance approach estimates for a hexagonal cross
section. These are examples of some of the worst biases. Lower tilts will yield lower biases. See
Tables 46 – 50 for a complete set of tables.

6 Sources of Rotation and Tilt

There are two sources of non-nominal tilts and rotations. One stems from faulty specimen prepa-
ration and this source can be minimized by proper quality control. The second source is associated
with natural variability and is much more difficult to control.

In Figure 33 we illustrate sample preparation problems that can be controlled. First (Figure
33a), cores that are not perfectly radial (assuming a perfectly cylindrical tree) lead effectively to
wood cell rotations. Second (Figure 33b), cores that are not perfectly horizontal lead effectively
to α wood cell tilts (see Figure 34b for a definition of α). Third (Figure 33c), cores that are not
correctly finished can lead to β wood cell tilts (see Figure 34b for a definition of β). Fourth (Figure
33d,e,f), finished cores that are not properly aligned in the X-ray apparatus can yield rotations
and tilts. (We note that in the absence of accompanying wood cell rotations, α tilts simply rotate
the back plane pattern and might not yield significantly biased estimates of MFA. See Figures 8
and 15.) In order for their measurements to be valid, developers of systems that make use of an
unmodified variance approach algorithm need to develop quality control procedures that minimize
tilt.

In Figure 34, we illustrate natural variability problems that are more difficult to control. In
Figure 34a, we illustrate the fact that non-cylindrical growth can yield cell rotations even when
cores are perfectly radial. Figure 34b illustrates potential, naturally occurring wood cell tilts.
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Sarén et al. (2006) found that in Norway spruce the α tilt in Figure 34b tended to gradually
increase from small negative angles (−6 to 0 degrees) near the pith towards small positive angles
(0 to 6 degrees) near the bark, and that the β tilt (spiral grain) can be cyclical with absolute
values ranging from 0 to 30 degrees. Buksnowitz et al. (2008) have found that in Norway spruce
the β tilt can vary from −11 to +12 degrees. For Eucalyptus nitens (H. Deane & Maiden) Maiden
trees, Evans et al. (2000) report a “standard deviation of fibre axial orientation” that ranges from
approximately 13 to 16.5 degrees. Given that their fiber axial orientation included both “roll” (α)
and “pitch” (β), it is unclear how “standard deviation of fibre axial orientation” was calculated.
However, it appears that the β range could have been quite large. (They remark that “Fibre pitch
variation was consistently greater than roll variation.”) Gindl and Teischinger (2002) studied blocks
from 12 larch trees and found spiral grain angles that ranged from 0 to 40 degrees. Angles between
0 and 5 degrees were most common, but angles above 20 degrees were not uncommon. See their
Figure 2. (However, the authors note that the “material was selected specifically to represent an
optimum variability of grain angle.”) Northcott (1957) found spiral grain angles that varied from
−16 to +19 degrees in Douglas-fir. Houkal (1982) found that the absolute value of spiral grain
ranged from 0 to 16 degrees in Pinus oocarpa Schiede ex Schltdl. Martley (1920) studied 19 Indian
hardwoods and found spiral grain angles that varied from −33 to +35 degrees. Noskowiak (1963)
observed spiral grain angles as high as 40 degrees in mature foxtail pine (Pinus balfouriana Grev.
and Balf.).

We have performed exploratory studies (described in detail in Appendix H) that indicate that
in samples from Pinus lambertiana Dougl. and Pinus monticola Dougl. ex D. Don., the natural
variability in cell rotation has mean roughly equal to 0 degrees and standard deviation roughly
equal to 5 degrees. In a sample of 220 cells from Pinus lambertiana, the range of rotations was
from −17 degrees to +15 degrees. In a sample of 243 cells from Pinus monticola, the range of
rotations was from −25 degrees to +14 degrees. We observed no trend in mean rotation as we
progressed from pith to bark.

In this study we also found that cells were primarily quadrilateral (40.2%), hexagonal (34.1%),
elliptical (16.8%), and pentagonal (8.6%) in cross section. (Earlywood percentages differ from
latewood percentages. See Appendix H.)

Also note that for hexagonal cells viewed from the tangential face, the default rotation is 0,
while for hexagonal cells viewed from the radial face, the default rotation is 30 degrees.

7 Estimating σ2 as a function of MFA

As noted in Section 2, the variance approach is based on two approximations. First,

S2 ≈ µ2/2 + σ2 (11)

where µ denotes the MFA and σ2 denotes the natural variability of the MFA. Second,

σ2 ≈ f(µ) (12)

for some function f . Combining the two approximations, we obtain

S2 ≈ µ2/2 + f(µ)

and we can, at least in principle, solve for µ.
In Sections 4 and 5, we established in our simulations that approximation (11) can lead to

significantly biased estimates of µ even if we know exactly the best f in approximation (12). (In
our simulations we knew that the generating variance of the MFAs was σ2 = (µ/3)2 + 62.)
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In this section, we discuss possible choices for f(µ) and demonstrate that, as one would expect,
additional biases can occur if the f that one chooses for a variance approach analysis does not
match the generating f(µ).

As noted in Section 2, Evans (1999, 2008) suggested that σ2 could be replaced by

σ2 ≈ f(µ) = (µ/3)2 + 62 (13)

What is the source of approximation (13)?
Cave (1966) found that he could obtain a good match between X-ray and iodine stain estimates

of microfibril angle if he took
σ2 = (µ/3)2

Evans (1999) noted that the MFA variance was non-zero even when the MFA was approximately
equal to zero. This led him to propose the addition of a constant to (µ/3)2. He argued that
experience suggests that 62 is a reasonable value for this constant. Thus, approximation (13) is
empirical rather than theoretical in nature.

Is there evidence for other forms of f(µ)?
In a personal communication, Evans (2009) wrote: “It should be noted that there are cases

in which residual variance decreases with increasing microfibril angle (when compression wood
forms, the microfibril angle is high but its variability tends to be lower than in normal wood —
unpublished.)”

Cave and Robinson (1998) report results for seven specimens in which their estimates of MFA
ranged from 1 degree to 29 degrees while their estimates of σ ranged from 10 to 14 degrees (11 de-
grees for the 1 degree MFA, 12 degrees for the 29 degree MFA). This suggests that σ does not
depend upon µ.

Donaldson (1998) finds that ring number (1, 5, 10, 15) has no effect on microfibril angle range
in tracheid samples of size 25 in radiata pine. Because microfibril angle tends to decline as ring
number increases, and population standard deviation is proportional to sample range (for samples
of constant size), this suggests that σ does not decrease as µ decreases.

Alden and Kretschmann (reported in Verrill et al. 2011) used iodine crystallization techniques
to obtain optical estimates of microfibril angle from 833 prepared slides. Each slide contained cells
obtained from the earlywood or the latewood of a single ring. The first eight rings from two bolts
from each of two trees at each of 26 loblolly pine plantations were evaluated in the study. Alden
and Kretschmann measured 10 microfibril angles on each slide. In Figure 35 we plot the standard
deviations of the 10 replicates versus the means of the 10 replicates for all 833 slides. We also plot
the σ =

√
(µ/3)2 + 62 line in the figure, and the regression line through Alden and Kretschmann’s

data. There is a clear discrepancy. Of course, the variability encountered by X-ray devices can be
associated with many hundreds of cells so it would be reasonable for it to be inflated above that
measured on the surface of a specimen. Note, however, the lack of a significant increase in σ as a
function of µ in Alden and Kretschmann’s data. The slope coefficient in the regression is only 0.04
(with a standard error of 0.009).

Peura et al. (2008a) used synchrotron X-ray microdiffraction to investigate the distribution of
microfibril angle in single cells. In Figure 36 we plot the standard deviations (calculated as 0.425
times their full width at half maximum (FWHM) values) versus the mode values for the 17 samples
in their table 3. We also plot the σ =

√
(µ/3)2 + 62 line in the figure, and the regression line

through the Peura et al. data. In this case, it appears that approximation (13) underestimates σ,
especially given that the standard deviations plotted in Figure 36 are from single cells. On the other
hand, there is some support for the idea that σ increases as MFA increases. The slope coefficient
for the regression line in the figure is 0.19 (with a standard error of 0.08).
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What kinds of bias can occur if Equation (11) holds but Equation (13) does not? For purposes of
illustration, we consider three alternative models. We do not claim that we have strong evidence for
any of these models. However, Alden and Kretschmann’s results are in accord with Model 1, Cave
and Robinson (1998) is in accord with Model 2, and Peura et al. (2008a) is in accord with Model 3.
Our main point is that given the dependence of the bias in the variance approach estimate on the
true form for σ2, it would be reasonable for implementors of the approach to carefully investigate
this relationship. If implementors have already done so, and have developed alternative methods
for approximating σ2 by a function of MFA, we encourage them to publish their new algorithms.
This would be useful to other potential implementors.

It is possible that there is no single f that satisfies approximation (12) for all data sets. In
this case, in order to apply the variance approach, one would first have to calibrate each new data
source with, for example, an optical method. That is, one would have to use optical methods to
determine an f that satisfied (12) for the data source.

Model 1: σ = 5

In this case we have

µ̂ =
√

18/11
√
S2 − 62 =

√
18/11

√
µ2/2 + 52 − 62

The biases and percent biases in this case are reported in Table 53.

true mfa (µ) estimated mfa (µ̂) bias (µ̂− µ) percent bias

5 1.57 -3.43 -68.67

10 7.99 -2.01 -20.11

15 12.89 -2.11 -14.08

20 17.59 -2.41 -12.07

25 22.21 -2.79 -11.15

30 26.80 -3.20 -10.66

35 31.37 -3.63 -10.36

40 35.93 -4.07 -10.17

45 40.48 -4.52 -10.04

50 45.03 -4.97 -9.95

55 49.57 -5.43 -9.88

60 54.11 -5.89 -9.82

Table 53: Biases when S2 = µ2/2 + σ2, σ2 = 52, and we incorrectly assume σ2 = (µ/3)2 + 62

Model 2: σ = 12

In this case we have

µ̂ =
√

18/11
√
S2 − 62 =

√
18/11

√
µ2/2 + 122 − 62

The biases and percent biases in this case are reported in Table 54.
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true mfa (µ) estimated mfa (µ̂) bias (µ̂− µ) percent bias

5 14.04 9.04 180.84

10 16.08 6.08 60.79

15 19.00 4.00 26.63

20 22.45 2.45 12.25

25 26.23 1.23 4.93

30 30.22 0.22 0.72

35 34.34 -0.66 -1.90

40 38.55 -1.45 -3.63

45 42.82 -2.18 -4.84

50 47.14 -2.86 -5.72

55 51.49 -3.51 -6.37

60 55.88 -4.12 -6.87

Table 54: Biases when S2 = µ2/2 + σ2, σ2 = 122, and we incorrectly assume σ2 = (µ/3)2 + 62

Model 3: σ = 8 + µ/5
In this case we have

µ̂ =
√

18/11
√
S2 − 62 =

√
18/11

√
µ2/2 + (8 + µ/5)2 − 62

The biases and percent biases in this case are reported in Table 55.

true mfa (µ) estimated mfa (µ̂) bias (µ̂− µ) percent bias

5 9.70 4.70 94.00

10 13.66 3.66 36.58

15 17.98 2.98 19.85

20 22.45 2.45 12.25

25 27.00 2.00 8.00

30 31.59 1.59 5.31

35 36.22 1.22 3.47

40 40.85 0.85 2.14

45 45.51 0.51 1.12

50 50.17 0.17 0.33

55 54.83 -0.17 -0.30

60 59.51 -0.49 -0.82

Table 55: Biases when S2 = µ2/2 + σ2, σ = 8 + µ/5, and we incorrectly assume σ2 = (µ/3)2 + 62

8 Summary

We have raised concerns about three aspects of the variance approach to estimating microfibril
angle.

First, the approach is based on the approximations S2
1 ≈ µ2/2 and S2

2 ≈ σ2/ cos(µ) where S2
1

is the mean between peak sum of squares and S2
2 is the mean within peak sum of squares. As we

saw in Section 4, the biases in these approximations can be quite large, but to some extent they
cancel. Thus, for 0 degree tilts, the maximum full-profile bias that we found for MFAs between 2
and 55 degrees was 11.7 degrees.
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Second, in Section 5 we noted that the variance approach was not designed to handle tilt, and,
consequently, in the presence of tilt, the method can yield estimates that are highly biased. (We
also noted that there may be algorithmic fixes for this, but that they have not yet appeared in the
literature.)

Third, as we saw in Section 7, there is some doubt about a proper model for σ2. One model
proposed by Evans in the 1999 paper was σ2 = (µ/3)2 + 62. In Section 7, we considered three
other models that have some data support and found that there can be large (percent) biases if
one of these models is true but σ2 = (µ/3)2 + 62 is assumed. This suggests that in order to apply
the variance approach in a new situation, it might be necessary to use optical methods to first
determine an appropriate f in the approximation σ2 ≈ f(µ).

On the other hand, it is important to keep these concerns in perspective. In our simulations we
found that if approximation (4) holds and is used, and if tilts are restricted to 10 degrees or less,
and MFAs are restricted to 40 degrees or less, the biases in MFA estimates increase with MFA and
do not exceed 4.6 degrees in absolute value.

We raise the three concerns so that other researchers interested in understanding, implementing,
or extending the variance approach or in comparing the approach to other methods of estimating
MFA will be aware of them.
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11 Appendix A — An Extension to Cave’s Equation

Cave (1966) derived an equation for the locations of the spots of high X-ray intensity on the back
plane of the X-ray apparatus. This equation applies to cells with rectangular cross sections. It does
not account for cell tilt. See the appendix to Verrill et al. (2001) for a detailed derivation of Cave’s
equation. In appendix A of Verrill et al. (2006) we extended Cave’s analysis to the case in which
the cell can be tilted. Here we extend it to include a tilted, rotated cell of hexagonal cross section.

11.1 Microfibril Directions

To derive the six equations (one for each of the cell’s six sides) we first need the microfibril angle
directions. Let θ denote the Bragg angle (11.35 degrees for light of wavelength 1.54 angstroms),
µ denote the microfibril angle, η denote the tilt of the vertical axis in the wood cell down toward
the positive x axis, α equal 90 degrees plus the counterclockwise rotation of the cell around the
original z axis (after the tilt), and φ equal the angle (measured counterclockwise from the east) of
the bright spot on the “2θ circle” on the back plane. See Figures 30, 37, and 38.

11.1.1 Front Face

See Figure 39 for our definition of the front, right 1, right 2, back, left 1, and left 2 faces of a cell
with a hexagonal cross section.

Before tilt and rotation, the direction of a microfibril on the front face is 0
sin(µ)
cos(µ)
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After a tilt of the top of the cell down toward the positive x axis, the direction becomes cos(µ) sin(η)
sin(µ)

cos(µ) cos(η)


Now, the mathematical tranformation that corresponds to a physical rotation through angle

rot of the cell about the original z axis is the matrix cos(−rot) sin(−rot) 0
− sin(−rot) cos(−rot) 0

0 0 1


which equals  sin(α) cos(α) 0

− cos(α) sin(α) 0
0 0 1


where α = π/2 + rot.

Thus the direction of the microfibril angle after tilt and rotation is

b =

 sin(α) cos(α) 0
− cos(α) sin(α) 0

0 0 1

 cos(µ) sin(η)
sin(µ)

cos(µ) cos(η)

 =

 sin(α) cos(µ) sin(η) + cos(α) sin(µ)
− cos(α) cos(µ) sin(η) + sin(α) sin(µ)

cos(µ) cos(η)


(14)

11.1.2 Right 1 Face

Before tilt, the direction of a microfibril on the right 1 face is cos(−60) sin(−60) 0
− sin(−60) cos(−60) 0

0 0 1

 0
sin(µ)
cos(µ)

 =

 −
√
3

2 sin(µ)
1
2 sin(µ)
cos(µ)


After a tilt of the top of the cell down toward the positive x axis through an angle η, the direction
becomes cos(η) 0 sin(η)

0 1 0
− sin(η) 0 cos(η)

 −
√
3

2 sin(µ)
1
2 sin(µ)
cos(µ)

 =

 −
√
3

2 sin(µ) cos(η) + cos(µ) sin(η)
1
2 sin(µ)√

3
2 sin(µ) sin(η) + cos(µ) cos(η)


The direction of the microfibril angle after tilt and rotation is thus

b =

 sin(α) cos(α) 0
− cos(α) sin(α) 0

0 0 1


 −

√
3

2 sin(µ) cos(η) + cos(µ) sin(η)
1
2 sin(µ)√

3
2 sin(µ) sin(η) + cos(µ) cos(η)

 (15)

=

 −
√
3

2 sin(α) sin(µ) cos(η) + sin(α) cos(µ) sin(η) + 1
2 cos(α) sin(µ)√

3
2 cos(α) sin(µ) cos(η)− cos(α) cos(µ) sin(η) + 1

2 sin(α) sin(µ)√
3
2 sin(µ) sin(η) + cos(µ) cos(η)
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11.1.3 Right 2 Face

Before tilt, the direction of a microfibril on the right 2 face is cos(−120) sin(−120) 0
− sin(−120) cos(−120) 0

0 0 1

 0
sin(µ)
cos(µ)

 =

 −
√
3

2 sin(µ)
−1

2 sin(µ)
cos(µ)


After a tilt of the top of the cell down toward the positive x axis through an angle η, the direction
becomes cos(η) 0 sin(η)

0 1 0
− sin(η) 0 cos(η)

 −
√
3

2 sin(µ)
−1

2 sin(µ)
cos(µ)

 =

 −
√
3

2 sin(µ) cos(η) + cos(µ) sin(η)
−1

2 sin(µ)√
3
2 sin(µ) sin(η) + cos(µ) cos(η)


The direction of the microfibril angle after tilt and rotation is thus

b =

 sin(α) cos(α) 0
− cos(α) sin(α) 0

0 0 1


 −

√
3

2 sin(µ) cos(η) + cos(µ) sin(η)
−1

2 sin(µ)√
3
2 sin(µ) sin(η) + cos(µ) cos(η)

 (16)

=

 −
√
3

2 sin(α) sin(µ) cos(η) + sin(α) cos(µ) sin(η)− 1
2 cos(α) sin(µ)√

3
2 cos(α) sin(µ) cos(η)− cos(α) cos(µ) sin(η)− 1

2 sin(α) sin(µ)√
3
2 sin(µ) sin(η) + cos(µ) cos(η)


11.1.4 Back Face

Before tilt and rotation, the direction of a microfibril on the back face is 0
− sin(µ)
cos(µ)


After a tilt of the top of the cell down toward the positive x axis, the direction becomes cos(µ) sin(η)

− sin(µ)
cos(µ) cos(η)


The direction of the microfibril angle after tilt and rotation is thus

b =

 sin(α) cos(µ) sin(η)− cos(α) sin(µ)
− cos(α) cos(µ) sin(η)− sin(α) sin(µ)

cos(µ) cos(η)

 (17)

11.1.5 Left 1 Face

Before tilt, the direction of a microfibril on the left 1 face is cos(−240) sin(−240) 0
− sin(−240) cos(−240) 0

0 0 1

 0
sin(µ)
cos(µ)

 =


√
3
2 sin(µ)
−1

2 sin(µ)
cos(µ)


19



After a tilt of the top of the cell down toward the positive x axis through an angle η, the direction
becomes cos(η) 0 sin(η)

0 1 0
− sin(η) 0 cos(η)


√
3
2 sin(µ)
−1

2 sin(µ)
cos(µ)

 =


√
3
2 sin(µ) cos(η) + cos(µ) sin(η)

−1
2 sin(µ)

−
√
3
2 sin(µ) sin(η) + cos(µ) cos(η)


The direction of the microfibril angle after tilt and rotation is thus

b =

 sin(α) cos(α) 0
− cos(α) sin(α) 0

0 0 1




√
3
2 sin(µ) cos(η) + cos(µ) sin(η)

−1
2 sin(µ)

−
√
3
2 sin(µ) sin(η) + cos(µ) cos(η)

 (18)

=


√
3
2 sin(α) sin(µ) cos(η) + sin(α) cos(µ) sin(η)− 1

2 cos(α) sin(µ)

−
√
3
2 cos(α) sin(µ) cos(η)− cos(α) cos(µ) sin(η)− 1

2 sin(α) sin(µ)

−
√
3
2 sin(µ) sin(η) + cos(µ) cos(η)


11.1.6 Left 2 Face

Before tilt, the direction of a microfibril on the left 2 face is cos(−300) sin(−300) 0
− sin(−300) cos(−300) 0

0 0 1

 0
sin(µ)
cos(µ)

 =


√
3
2 sin(µ)
1
2 sin(µ)
cos(µ)


After a tilt of the top of the cell down toward the positive x axis through an angle η, the direction
becomes cos(η) 0 sin(η)

0 1 0
− sin(η) 0 cos(η)


√
3
2 sin(µ)
1
2 sin(µ)
cos(µ)

 =


√
3
2 sin(µ) cos(η) + cos(µ) sin(η)

1
2 sin(µ)

−
√
3
2 sin(µ) sin(η) + cos(µ) cos(η)


The direction of the microfibril angle after tilt and rotation is thus

b =

 sin(α) cos(α) 0
− cos(α) sin(α) 0

0 0 1




√
3
2 sin(µ) cos(η) + cos(µ) sin(η)

1
2 sin(µ)

−
√
3
2 sin(µ) sin(η) + cos(µ) cos(η)

 (19)

=


√
3
2 sin(α) sin(µ) cos(η) + sin(α) cos(µ) sin(η) + 1

2 cos(α) sin(µ)

−
√
3
2 cos(α) sin(µ) cos(η)− cos(α) cos(µ) sin(η) + 1

2 sin(α) sin(µ)

−
√
3
2 sin(µ) sin(η) + cos(µ) cos(η)


11.2 The Six Equations

There are two conditions that a 002 reflecting plane must meet to reflect a beam coming in along
the x axis. First, b is in the 002 crystallographic planes of the cellulose crystals associated with
the microfibrils so the normal, p, to the 002 plane that succeeds in reflecting the beam must be
perpendicular to b. Second (the Bragg condition), the normal to the 002 reflecting plane must
make a 90− θ angle to the x axis, where θ is the Bragg angle for the X-ray wavelength being used.
Given these two conditions, we want to be able to determine the location at which the reflected
beam intersects the back plane of the X-ray apparatus.
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The second condition gives us

p1 =

 1
0
0

 · p = cos(90− θ) = sin(θ) (20)

We also have
p21 + p22 + p23 = 1 (21)

Making use of Equations (20) and (21), we obtain

p22 + p23 = cos2(θ) (22)

The first condition and Equation (20) give us sin(θ)
p2
p3

 · b = 0 (23)

Thus the solutions for (p2, p3) will be the 0, 1, or 2 points represented by the intersection
of line (23) with circle (22). Circle (22) has radius cos(θ) and a point on circle (22) has form
(cos(φ) cos(θ), sin(φ) cos(θ)) for some angle φ. That is,

p2 = cos(φ) cos(θ) (24)

p3 = sin(φ) cos(θ)

From Equations (23) and (24) and Equations (14) – (19), after dividing by cos(θ), we obtain
six versions of the equation

d1 + d2 × cos(φ) + d3 × sin(φ) = 0 (25)

(In the next section we relate the φ in Equations (24) and (25) to the angle (counterclockwise from
the east) of the bright spot on the back plane.)

For the front face, we have

d1 = (sin(α) cos(µ) sin(η) + cos(α) sin(µ)) tan(θ)

d2 = − cos(α) cos(µ) sin(η) + sin(α) sin(µ) (26)

d3 = cos(µ) cos(η)

For the right 1 face, we have

d1 =

(
−
√

3

2
sin(α) sin(µ) cos(η) + sin(α) cos(µ) sin(η) +

1

2
cos(α) sin(µ)

)
tan(θ)

d2 =

√
3

2
cos(α) sin(µ) cos(η)− cos(α) cos(µ) sin(η) +

1

2
sin(α) sin(µ) (27)

d3 =

√
3

2
sin(µ) sin(η) + cos(µ) cos(η)

For the right 2 face, we have

d1 =

(
−
√

3

2
sin(α) sin(µ) cos(η) + sin(α) cos(µ) sin(η)− 1

2
cos(α) sin(µ)

)
tan(θ)

d2 =

√
3

2
cos(α) sin(µ) cos(η)− cos(α) cos(µ) sin(η)− 1

2
sin(α) sin(µ) (28)

d3 =

√
3

2
sin(µ) sin(η) + cos(µ) cos(η)
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For the back face, we have

d1 = (sin(α) cos(µ) sin(η)− cos(α) sin(µ)) tan(θ)

d2 = − cos(α) cos(µ) sin(η)− sin(α) sin(µ) (29)

d3 = cos(µ) cos(η)

For the left 1 face, we have

d1 =

(√
3

2
sin(α) sin(µ) cos(η) + sin(α) cos(µ) sin(η)− 1

2
cos(α) sin(µ)

)
tan(θ)

d2 = −
√

3

2
cos(α) sin(µ) cos(η)− cos(α) cos(µ) sin(η)− 1

2
sin(α) sin(µ) (30)

d3 = −
√

3

2
sin(µ) sin(η) + cos(µ) cos(η)

For the left 2 face, we have

d1 =

(√
3

2
sin(α) sin(µ) cos(η) + sin(α) cos(µ) sin(η) +

1

2
cos(α) sin(µ)

)
tan(θ)

d2 = −
√

3

2
cos(α) sin(µ) cos(η)− cos(α) cos(µ) sin(η) +

1

2
sin(α) sin(µ) (31)

d3 = −
√

3

2
sin(µ) sin(η) + cos(µ) cos(η)

Now in each of the six cases we can use Equation (25) to solve for φ. For φ ∈ [0, π], (25) yields

d1 + d2x = −d3
√

1− x2 (32)

for x = cos(φ). Squaring both sides and collecting terms, we obtain the quadratic equation

d21 − d23 + 2d1d2x+ (d22 + d23)x
2 = 0

We then find the φ ∈ [0, π] for which cos(φ) = xsol where xsol is a solution to the quadratic
equation. Of course, for this to yield a φ there must be a solution to the quadratic equation and
this solution must lie in [−1, 1].

For φ ∈ [−π, 0], (25) yields

d1 + d2x = d3
√

1− x2 (33)

and the resulting quadratic equation is unchanged. In our computer program we check the (at
most) two solutions for the φ ∈ [0, π] case against Equation (32) and the (at most) two solutions
for the φ ∈ [−π, 0] case against Equation (33). If the total number of solutions is greater than two,
then the program terminates with an error messsage. Note, however, that it is possible for there
to be zero solutions. For example, if the MFA is 50 degrees, rotation is 0 degrees, and the tilt is
30 degrees, there will be no solutions for the left face (no plane containing the microfibril will be
at a 11.35 degree angle to the incoming X-ray beam).
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11.3 Relation between φ and the Angle (Counterclockwise from the East) of
the Bright Spot on the Back Plane

Let us now consider the issue of where the reflected beam intersects the back plane. We know that
the beam comes in along the x axis and reflects off a plane whose normal is given by Equations
(20) and (24). Consider now a canonical situation in which a beam reflects off a plane with normal
(0,0,1) (the z axis). In this case the direction vector of the reflected beam is the same as the
direction vector of the incident beam except that the sign of the z coordinate is reversed.

To make use of this result, we first find the transform that takes the p vector to the z vector.
This requires a rotation of 90 − φ degrees of the z axis towards the y axis (to bring the z axis in
line with the projection of p onto the y, z plane), followed by a rotation of θ degrees of the z axis
towards the x axis (to bring the z axis into line with p). These two rotations can be represented
by the transform

T ≡

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 1 0 0
0 sin(φ) − cos(φ)
0 cos(φ) sin(φ)


One can check that

T (p) = T ·

 sin(θ)
cos(φ) cos(θ)
sin(φ) cos(θ)

 =

 0
0
1


Now in the original coordinate system, the X-ray incident direction is −1

0
0


In the coordinate system in which the p vector has been transformed to the z vector, this incident
direction becomes

T ·

 −1
0
0

 =

 − cos(θ)
0

− sin(θ)


so the beam reflects off in the  − cos(θ)

0
sin(θ)


direction. Transformed back into the original coordinate system, this direction vector is 1 0 0

0 sin(φ) − cos(φ)
0 cos(φ) sin(φ)

−1 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

−1 − cos(θ)
0

sin(θ)



=

 − cos(2θ)
cos(φ) sin(2θ)
sin(φ) sin(2θ)


We extend a beam in this direction to its intersection with a back plane that is perpendicular

to the x axis and x0 units behind the specimen by multiplying by a factor of x0/ cos(2θ). Thus the
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beam intersects the back plane at the point −x0
cos(φ) sin(2θ)x0/(cos(2θ))
sin(φ) sin(2θ)x0/(cos(2θ))

 =

 −x0
cos(φ) tan(2θ)x0
sin(φ) tan(2θ)x0


Looking face on at the back plane, this is the point that is on the circle of radius tan(2θ)x0 (the
“2θ circle”) and φ degrees in a counterclockwise direction from the y axis. So a φ that is a solution
to Equation (25) is also the angle (counterclockwise from the east) of a point of maximum X-ray
intensity.

12 Appendix B — The Simulation Tables

We describe Tables 1 through 50 in this appendix. The tables can be viewed and/or downloaded
at http://www1.fpl.fs.fed.us/varapp tables.html.

Tables 1 – 25 are associated with cells of rectangular cross section. Tables 26 – 50 are the
corresponding tables for cells of hexagonal cross section.

For cells of rectangular cross section, Tables 1 through 5 list the 8 bright spot locations for
tilts of 0, 10, 20, 30, and 40 degrees, rotations of 0, 15, 30, 45, 60, 75, and 90 degrees, and MFAs
of 2, 10, 20, 30, 40, 50, and 55 degrees. Tables 26 through 30 list the corresponding information
for the 12 bright spot locations generated by a hexagonal cross section. (In Appendices D – G we
establish symmetries that permit us reasonably to restrict our simulation to the tilts and rotations
considered.) These tables also list the corresponding mean bright spot locations, φ̄, for each of the
two half-profiles. (If there is no tilt, these means are 0 degrees and 180 degrees.)

In the rectangular case, plots of bright spot locations for 0 and 15 degree tilts, 0, 10, 20, 22.5,
30, 40, 45, 50, 60, 67.5, 70, 80, and 90 degree rotations, and 10, 20, 30, 40, 50, and 60 degree MFAs
are displayed in Figures 6 through 18 and 20 through 32 of Verrill et al. (2006).

In the hexagonal case, plots of bright spots for 0 and 20 degree tilts, 0, 15, 30, 45, 60, 75, and
90 degree rotations, and 10, 20, 30, 40, 50, and 55 degree MFAs appear as Figures 40 through 53
of the current paper.

Tables 6 – 25 and 31 – 50 are associated with the relation

S2 =
J∑
j=1

(nj − 1)s2j/ntot +
J∑
j=1

nj (ȳ·j − ȳ··)2 /ntot (34)

that we developed in Section 5. Here

s2j ≡
nj∑
i=1

(yij − ȳ·j)2 /(nj − 1)

is the standard deviation of the jth peak.
Recall that in our simulation we draw MFAs from a Gaussian distribution centered at µ with

standard deviation given by σ =
√

(µ/3)2 + 62. The ith draw leads to bright spot locations
yij , j = 1, . . . , J corresponding to φj , j = 1, . . . , J .

Tables 6 – 10 and 31 – 35 provide three estimates of the δj ’s — our simulation estimates
(the s2j ’s), our “analytic” estimates (see Appendix C), and the estimates based on Evans’s (1999)
equation [14]. The tables provide these estimates for both the left and the right half-profiles. In
both the rectangular and hexagonal cases, the tables demonstrate that Evans’s equation [14] yields
poor estimates of the δj ’s (even in the no-tilt, no-rotation case).
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Tables 11 – 15 and 36 – 40 compare our
∑J

j=1(nj − 1)s2j/ntot value with Evans’s σ2/ cos(µ),

which is his approximation to his
∑J

j=1 δ
2
j /J . Given the differences between our s2j ’s and the δ2j ’s

from Evans’s equation [14], we would expect significant differences between the
∑J

j=1(nj−1)s2j/ntot
and σ2/ cos(µ) values. A glance at the tables makes clear that the differences are indeed significant.
It should also be noted that the Evans value,

∑J
j=1 δ

2
j /J , does not depend on the half-profile, while,

in fact, as can be seen from the tables, for non-zero rotations the mean within peak variability can
differ significantly between the left and right half-profiles.

Tables 16 – 20 and 41 – 45 compare our
∑J

j=1 nj (ȳ·j − ȳ··)2 /ntot (the SS1 column in the table)

with Evans’s µ2/2. We also compare
∑J

j=1(φj− φ̄)2/J (the SS2 column),
∑J

j=1(φj−0)2/J (the SS3

column, left half-profile rows), and
∑J

j=1(φj −π)2/J (the SS3 column, right half-profile rows) with

µ2/2. The Evans result consistently underestimates the other measures of between peak variability.
Again, the Evans value does not depend on the half-profile, while, in fact, for non-zero rotations,
the between peak variability can differ significantly between the left and right half-profiles.

Tables 21 – 25 and 46 – 50 list the biases in the variance approach estimate of MFA as a function
of tilt, rotation, MFA, half-profile, and cell cross section. Plots of a subset of these results appear
as Figures 2 through 29. It is important to note that the figures plot the biases in the case in which
both half-profiles are used to estimate the MFA. If only a single half-profile is used, the biases
can be significantly inflated (or deflated) depending upon the tilt, rotation, MFA, cross section,
and half-profile. For example, from Table 21 we can see that for 0 tilt, 15 degree rotation, and a
rectangular cross section, when the variabilities of the two half-profiles are averaged, the theoretical
biases for MFAs 40, 50, and 55 are 1.2, 4.9, and 8.1. However, when only the variance of the left
half-profile is used in the estimate, the corresponding biases are 3.2, 9.9, and 15.2.

One feature of these tables needs to be explained. The tables contain two super-columns
labeled “theoretical” and “practical”. The “practical” columns were calculated by assuming that
the intensity between −90 degrees and 90 degrees on the back plane corresponds to the left half-
profile and the intensity between 90 degrees and 270 degrees on the back plane corresponds to the
right half-profile. (Here the 0 degree direction on the back plane is East and the positive azimuthal
direction is counterclockwise.) The “theoretical” columns were obtained by determining the four
(or six) φj ’s that corresponded to each of the two half-profiles, and then allocating the two bright
points from a face in a draw to the appropriate peaks and thus the appropriate half-profiles. For
small tilts and MFAs, the two approaches will yield the same results. However, for larger tilts and
MFAs, broadened bright spots from an MFA draw can appear in the “wrong” half of the back plane.
See, for example, Figure 53. For a tilt of 20 degrees and an MFA of 50, it is clear that the broadened
peak of the bright spot that is at an angle of −70.7 degrees would be expected to be broadened in
such a manner that part of its peak would lie below −90 degrees. For the “practical” estimate of S2

the half-profile is truncated at −90 degrees (and at +90 degrees). For the “theoretical” estimate,
the half-profile is not truncated.

We note a problem with the current implementation of our simulation. For very large MFAs
(50 or 55 degrees in our simulation), it is possible for misallocations to be made. Our algorithm
compares

ss1 = (y1 − φL)2 + (y2 − φR)2

and

ss2 = (y1 − φR)2 + (y2 − φL)2

where φL and φR are the unbroadened left and right half-profile bright spots for a particular face,
and y1, y2 are the bright spots associated with that face for a particular draw of a broadened MFA.
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If ss1 < ss2, our algorithm allocates y1 to the φL peak and y2 to the φR peak. If ss1 > ss2, it
allocates y1 to the φR peak and y2 to the φL peak. This algorithm yields simulation s2j ’s that match
analytic estimates of peak variabilities for smaller (and many larger) MFAs. It yields theoretical
bias estimates that match practical bias estimates for smaller MFAs. However, for the highest MFA
values, it yields larger bias estimates than does the practical approach. We expect that the practical
approach will underestimate the true S2 for larger MFAs as it truncates at −90 and 90 degrees (or,
for the right half-profile, 90 and 270 degrees). Thus it is reasonable that the theoretical estimates
of MFA will be larger than the practical for larger MFAs. However, it is also possible that, for
larger MFAs, some of the positive bias of the theoretical MFA estimates is due to misallocations.

13 Appendix C — The Partial Derivative Approach to Estimating
the Bright Spot Broadening Standard Deviations

As established in Appendix A, the defining equation for azimuthal angles is

d1 + d2 cos(φ) + d3 sin(φ) = 0 (35)

where φ is the azimuthal angle of a bright spot on the back plane (read counterclockwise from the
east), and d1, d2, d3 are known values that depend on the Bragg angle, MFA, cell face, rotation,
and tilt.

Taking partial derivatives of both sides of this equation with respect to MFA we obtain

∂d1
∂µ

+
∂d2
∂µ

cos(φ) + d2(− sin(φ))
∂φ

∂µ
+
∂d3
∂µ

sin(φ) + d3 cos(φ)
∂φ

∂µ
= 0

or, solving for ∂φ
∂µ ,

∂φ

∂µ
=

(
∂d1
∂µ

+
∂d2
∂µ

cos(φ) +
∂d3
∂µ

sin(φ)

)
/ (d2 sin(φ)− d3 cos(φ)) (36)

Next, we have the Taylor series approximation

φ(µ) ≈ φ(µ0) +
∂φ(µ0)

∂µ
× (µ− µ0)

Assuming that µ is a random variable with mean µ0 and standard deviation σ, this implies that

Var(φ(µ)) ≈
(
∂φ(µ0)

∂µ

)2

× σ2 (37)

Results (36) and (37) permit us to obtain an analytic estimate of the standard deviation asso-
ciated with a bright spot.

To complete this approach, we need expressions for the partial derivatives of the four or six
faces of the wood cell:

13.1 Rectangular Cross Section

13.1.1 Front Face

From result (26) we have

∂d1
∂µ

= (− sin(α) sin(µ) sin(η) + cos(α) cos(µ)) tan(θ)
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∂d2
∂µ

= cos(α) sin(µ) sin(η) + sin(α) cos(µ) (38)

∂d3
∂µ

= − sin(µ) cos(η)

13.1.2 Right Face

In Verrill et al. (2006) we established that for the right face,

d1 = − sin(α) sin(µ− η) tan(θ)

d2 = cos(α) sin(µ− η) (39)

d3 = cos(µ− η)

Thus,

∂d1
∂µ

= − sin(α) cos(µ− η) tan(θ)

∂d2
∂µ

= cos(α) cos(µ− η) (40)

∂d3
∂µ

= − sin(µ− η)

13.1.3 Back Face

From result (29) we have

∂d1
∂µ

= (− sin(α) sin(µ) sin(η)− cos(α) cos(µ)) tan(θ)

∂d2
∂µ

= cos(α) sin(µ) sin(η)− sin(α) cos(µ) (41)

∂d3
∂µ

= − sin(µ) cos(η)

13.1.4 Left Face

In Verrill et al. (2006) we established that for the left face,

d1 = sin(α) sin(µ+ η) tan(θ)

d2 = − cos(α) sin(µ+ η) (42)

d3 = cos(µ+ η)

Thus,

∂d1
∂µ

= sin(α) cos(µ+ η) tan(θ)

∂d2
∂µ

= − cos(α) cos(µ+ η) (43)

∂d3
∂µ

= − sin(µ+ η)
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13.2 Hexagonal Cross Section

13.2.1 Front Face

See result (38) above.

13.2.2 Right 1 Face

From result (27) we have

∂d1
∂µ

=

(
−
√

3

2
sin(α) cos(µ) cos(η)− sin(α) sin(µ) sin(η) +

1

2
cos(α) cos(µ)

)
tan(θ)

∂d2
∂µ

=

√
3

2
cos(α) cos(µ) cos(η) + cos(α) sin(µ) sin(η) +

1

2
sin(α) cos(µ) (44)

∂d3
∂µ

=

√
3

2
cos(µ) sin(η)− sin(µ) cos(η)

13.2.3 Right 2 Face

From result (28) we have

∂d1
∂µ

=

(
−
√

3

2
sin(α) cos(µ) cos(η)− sin(α) sin(µ) sin(η)− 1

2
cos(α) cos(µ)

)
tan(θ)

∂d2
∂µ

=

√
3

2
cos(α) cos(µ) cos(η) + cos(α) sin(µ) sin(η)− 1

2
sin(α) cos(µ) (45)

∂d3
∂µ

=

√
3

2
cos(µ) sin(η)− sin(µ) cos(η)

13.2.4 Back Face

See result (41) above.

13.2.5 Left 1 Face

From result (30) we have

∂d1
∂µ

=

(√
3

2
sin(α) cos(µ) cos(η)− sin(α) sin(µ) sin(η)− 1

2
cos(α) cos(µ)

)
tan(θ)

∂d2
∂µ

= −
√

3

2
cos(α) cos(µ) cos(η) + cos(α) sin(µ) sin(η)− 1

2
sin(α) cos(µ) (46)

∂d3
∂µ

= −
√

3

2
cos(µ) sin(η)− sin(µ) cos(η)

13.2.6 Left 2 Face

From result (31) we have

∂d1
∂µ

=

(√
3

2
sin(α) cos(µ) cos(η)− sin(α) sin(µ) sin(η) +

1

2
cos(α) cos(µ)

)
tan(θ)
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∂d2
∂µ

= −
√

3

2
cos(α) cos(µ) cos(η) + cos(α) sin(µ) sin(η) +

1

2
sin(α) cos(µ) (47)

∂d3
∂µ

= −
√

3

2
cos(µ) sin(η)− sin(µ) cos(η)

14 Appendix D — The Effects of a Change in Tilt Sign or in
Rotation Sign on the Pattern of Eight Bright Spots Associated
with a Rectangular Cross Section

In appendix B of Verrill et al. (2006), we established the following eight claims.

14.1 A Change in Tilt Sign

Given a change in tilt sign, bright spot locations are reflected across the horizontal west to east
line (see Figure 38). Also front, back IDs are exchanged, and right, left IDs are exchanged.

This effect is embodied in the following four claims.

Claim 1

If φ is a solution for a front bright spot under tilt η, then −φ is a solution for a back bright
spot under tilt −η.

Claim 2

If φ is a solution for a back bright spot under tilt η, then −φ is a solution for a front bright
spot under tilt −η.

Claim 3

If φ is a solution for a right bright spot under tilt η, then −φ is a solution for a left bright spot
under tilt −η.

Claim 4

If φ is a solution for a left bright spot under tilt η, then −φ is a solution for a right bright spot
under tilt −η.

14.2 A Change in Rotation Sign

Given a change in rotation sign, bright spot locations are reflected across the vertical south to north
line (see Figure 38). Also front, back IDs are exchanged. Right, left IDs remain unchanged.

This effect is embodied in the following four claims.

Claim 5

If π/2− β is a solution for a front bright spot under rotation rot, then π/2 + β is a solution for
a back bright spot under rotation −rot.

Claim 6

If π/2− β is a solution for a back bright spot under rotation rot, then π/2 + β is a solution for
a front bright spot under rotation −rot.

Claim 7

If π/2− β is a solution for a right bright spot under rotation rot, then π/2 + β is a solution for
a right bright spot under rotation −rot.

Claim 8

If π/2− β is a solution for a left bright spot under rotation rot, then π/2 + β is a solution for
a left bright spot under rotation −rot.
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15 Appendix E — The Effects of a Change in Tilt Sign or in
Rotation Sign on the Pattern of 12 Bright Spots Associated
with a Hexagonal Cross Section

15.1 A Change in Tilt Sign

Given a change in tilt sign, bright spot locations are reflected across the horizontal west to east
line (see Figure 38). Also front and back IDs are exchanged, right 1 and left 1 IDs are exchanged,
and right 2 and left 2 IDs are exchanged.

This effect is embodied in the following six claims.

Claim 9

If φ is a solution for a front bright spot under tilt η, then −φ is a solution for a back bright
spot under tilt −η.

Claim 10

If φ is a solution for a back bright spot under tilt η, then −φ is a solution for a front bright
spot under tilt −η.

Claim 11

If φ is a solution for a right 1 bright spot under tilt η, then −φ is a solution for a left 1 bright
spot under tilt −η.

Claim 12

If φ is a solution for a left 1 bright spot under tilt η, then −φ is a solution for a right 1 bright
spot under tilt −η.

Claim 13

If φ is a solution for a right 2 bright spot under tilt η, then −φ is a solution for a left 2 bright
spot under tilt −η.

Claim 14

If φ is a solution for a left 2 bright spot under tilt η, then −φ is a solution for a right 2 bright
spot under tilt −η.

Equations (26) – (31) can be used in a straightforward manner to establish these claims. Here,
for the purposes of illustration, we establish Claim 11.

From Equations (25) and (27) we have(
−
√

3

2
sin(α) sin(µ) cos(η) + sin(α) cos(µ) sin(η) +

1

2
cos(α) sin(µ)

)
tan(θ) +(√

3

2
cos(α) sin(µ) cos(η)− cos(α) cos(µ) sin(η) +

1

2
sin(α) sin(µ)

)
cos(φ) +(√

3

2
sin(µ) sin(η) + cos(µ) cos(η)

)
sin(φ) = 0

Multiplying this equation by −1 we obtain(√
3

2
sin(α) sin(µ) cos(η)− sin(α) cos(µ) sin(η)− 1

2
cos(α) sin(µ)

)
tan(θ) +(

−
√

3

2
cos(α) sin(µ) cos(η) + cos(α) cos(µ) sin(η)− 1

2
sin(α) sin(µ)

)
cos(φ) +
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(
−
√

3

2
sin(µ) sin(η)− cos(µ) cos(η)

)
sin(φ) = 0

or

(√
3

2
sin(α) sin(µ) cos(−η) + sin(α) cos(µ) sin(−η)− 1

2
cos(α) sin(µ)

)
tan(θ) +(

−
√

3

2
cos(α) sin(µ) cos(−η)− cos(α) cos(µ) sin(−η)− 1

2
sin(α) sin(µ)

)
cos(−φ) +(

−
√

3

2
sin(µ) sin(−η) + cos(µ) cos(−η)

)
sin(−φ) = 0

which is what we needed to establish (see Equations (25) and (30)).

15.2 A Change in Rotation Sign

Given a change in rotation sign, bright spot locations are reflected across the vertical south to north
line (see Figure 38). Also front back IDs are exchanged, right 1 and right 2 IDs are exchanged, and
left 1 and left 2 IDs are exchanged.

This effect is embodied in the following six claims.

Claim 15

If π/2− β is a solution for a front bright spot under rotation rot, then π/2 + β is a solution for
a back bright spot under rotation −rot.

Claim 16

If π/2− β is a solution for a back bright spot under rotation rot, then π/2 + β is a solution for
a front bright spot under rotation −rot.

Claim 17

If π/2− β is a solution for a right 1 bright spot under rotation rot, then π/2 + β is a solution
for a right 2 bright spot under rotation −rot.

Claim 18

If π/2− β is a solution for a right 2 bright spot under rotation rot, then π/2 + β is a solution
for a right 1 bright spot under rotation −rot.

Claim 19

If π/2− β is a solution for a left 1 bright spot under rotation rot, then π/2 + β is a solution for
a left 2 bright spot under rotation −rot.

Claim 20

If π/2− β is a solution for a left 2 bright spot under rotation rot, then π/2 + β is a solution for
a left 1 bright spot under rotation −rot.

Equations (26) – (31) can be used in a straightforward manner to establish these claims. Here,
for the purposes of illustration, we establish Claim 17.

From Equations (25) and (27) we have (recall that α = π/2 + rot so cos(α) = − sin(rot) and
sin(α) = cos(rot))(

−
√

3

2
cos(rot) sin(µ) cos(η) + cos(rot) cos(µ) sin(η)− 1

2
sin(rot) sin(µ)

)
tan(θ) +
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(
−
√

3

2
sin(rot) sin(µ) cos(η) + sin(rot) cos(µ) sin(η) +

1

2
cos(rot) sin(µ)

)
sin(β) + (48)(√

3

2
sin(µ) sin(η) + cos(µ) cos(η)

)
cos(β) = 0

or

(
−
√

3

2
cos(−rot) sin(µ) cos(η) + cos(−rot) cos(µ) sin(η) +

1

2
sin(−rot) sin(µ)

)
tan(θ) +(

−
√

3

2
sin(−rot) sin(µ) cos(η) + sin(−rot) cos(µ) sin(η)− 1

2
cos(−rot) sin(µ)

)
sin(−β) +(√

3

2
sin(µ) sin(η) + cos(µ) cos(η)

)
cos(β) = 0

which is what we needed to establish (see Equations (25) and (28)).

16 Appendix F — The Effect of a Rotation Greater Than π/2 on
the Pattern of Eight Bright Spots Associated with a Rectan-
gular Cross Section

We note that we use some potentially confusing notation here. In Appendix E, π/2−β and π/2+β
were examples of φ (azimuthal) values. In this appendix, we use them to reference rotation values.

The bright spot locations for an η tilt and a π/2 + β rotation are the same as the bright spot
locations for a −η tilt and a −(π/2 − β) rotation. Labels, however, do change — front and back
bright spots exchange labels, and right and left bright spots exchange labels.

This effect is embodied in the following four claims.

Claim 21

If φ is a solution for a front bright spot under rotation π/2 + β and tilt η, then φ is a solution
for a back bright spot under rotation −(π/2− β) and tilt −η.

Claim 22

If φ is a solution for a back bright spot under rotation π/2 + β and tilt η, then φ is a solution
for a front bright spot under rotation −(π/2− β) and tilt −η.

Claim 23

If φ is a solution for a right bright spot under rotation π/2 + β and tilt η, then φ is a solution
for a left bright spot under rotation −(π/2− β) and tilt −η.

Claim 24

If φ is a solution for a left bright spot under rotation π/2 + β and tilt η, then φ is a solution
for a right bright spot under rotation −(π/2− β) and tilt −η.

Equations (15) through (19) in Verrill et al. (2006) can be used in a straightforward manner to
establish these claims. Here, for the purposes of illustration, we establish Claim 21.

From equations (15) and (16) in Verrill et al. (2006) (the α in equation (16) equals π/2+rotation)
and the facts that cos(π/2 + β) = − sin(β) and sin(π/2 + β) = cos(β), we have

(− sin(β) cos(µ) sin(η)− cos(β) sin(µ)) tan(θ) +
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(cos(β) cos(µ) sin(η)− sin(β) sin(µ)) cos(φ) +

cos(µ) cos(η) sin(φ) = 0

or

(sin(β) cos(µ) sin(−η)− cos(β) sin(µ)) tan(θ) +

(− cos(β) cos(µ) sin(−η)− sin(β) sin(µ)) cos(φ) +

cos(µ) cos(−η) sin(φ) = 0

or

(cos(−(π/2− β)) cos(µ) sin(−η) + sin(−(π/2− β)) sin(µ)) tan(θ) +

(sin(−(π/2− β)) cos(µ) sin(−η)− cos(−(π/2− β)) sin(µ)) cos(φ) +

cos(µ) cos(−η) sin(φ) = 0

which is what we needed to establish.

17 Appendix G — The Effect of a Rotation Greater Than π/2 on
the Pattern of 12 Bright Spots Associated with a Hexagonal
Cross Section

We note that we use some potentially confusing notation here. In Appendix E, π/2−β and π/2+β
were examples of φ (azimuthal) values. In this appendix, we use them to reference rotation values.

The bright spot locations for an η tilt and a π/2 + β rotation are the same as the bright spot
locations for a −η tilt and a −(π/2 − β) rotation. Labels, however, do change — front and back
bright spots exchange labels, right 1 and left 1 bright spots exchange labels, and right 2 and left 2
bright spots exchange labels.

This effect is embodied in the following six claims.
Claim 25
If φ is a solution for a front bright spot under rotation π/2 + β and tilt η, then φ is a solution

for a back bright spot under rotation −(π/2− β) and tilt −η.
Claim 26
If φ is a solution for a back bright spot under rotation π/2 + β and tilt η, then φ is a solution

for a front bright spot under rotation −(π/2− β) and tilt −η.
Claim 27
If φ is a solution for a right 1 bright spot under rotation π/2 +β and tilt η, then φ is a solution

for a left 1 bright spot under rotation −(π/2− β) and tilt −η.
Claim 28
If φ is a solution for a left 1 bright spot under rotation π/2 + β and tilt η, then φ is a solution

for a right 1 bright spot under rotation −(π/2− β) and tilt −η.
Claim 29
If φ is a solution for a right 2 bright spot under rotation π/2 +β and tilt η, then φ is a solution

for a left 2 bright spot under rotation −(π/2− β) and tilt −η.
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Claim 30
If φ is a solution for a left 2 bright spot under rotation π/2 + β and tilt η, then φ is a solution

for a right 2 bright spot under rotation −(π/2− β) and tilt −η.
Equations (25) – (31) can be used in a straightforward manner to establish these claims. Here,

for the purposes of illustration, we establish Claim 27.
From Equations (25) and (48) and the facts that cos(π/2 + β) = − sin(β) and sin(π/2 + β) =

cos(β), we have(
−
√

3

2
(− sin(β)) sin(µ) cos(η) + (− sin(β)) cos(µ) sin(η)− 1

2
cos(β) sin(µ)

)
tan(θ) +(

−
√

3

2
cos(β) sin(µ) cos(η) + cos(β) cos(µ) sin(η) +

1

2
(− sin(β)) sin(µ)

)
cos(φ) +(√

3

2
sin(µ) sin(η) + cos(µ) cos(η)

)
sin(φ) = 0

or

(√
3

2
sin(β) sin(µ) cos(−η) + sin(β) cos(µ) sin(−η)− 1

2
cos(β) sin(µ)

)
tan(θ) +(√

3

2
(− cos(β)) sin(µ) cos(−η) + (− cos(β)) cos(µ) sin(−η)− 1

2
sin(β) sin(µ)

)
cos(φ) +(

−
√

3

2
sin(µ) sin(−η) + cos(µ) cos(−η)

)
sin(φ) = 0

or

(√
3

2
cos(−(π/2− β)) sin(µ) cos(−η) + cos(−(π/2− β)) cos(µ) sin(−η)

+
1

2
sin(−(π/2− β)) sin(µ)

)
tan(θ) +(√

3

2
sin(−(π/2− β)) sin(µ) cos(−η) + sin(−(π/2− β)) cos(µ) sin(−η)

−1

2
cos(−(π/2− β)) sin(µ)

)
cos(φ) +(

−
√

3

2
sin(µ) sin(−η) + cos(µ) cos(−η)

)
sin(φ) = 0

which is what we needed to establish.

18 Appendix H — Natural Variability in Cell Rotation

Because cell rotation affects the bias in variance approach MFA estimates, we wanted to perform a
quick first look at the natural cell rotations that might be present in a sample. (We distinguish these
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rotations from rotations that might be introduced in the course of the collection and preparation
of a sample. See Figure 33.) We do not claim that our results are definitive.

The cross sections of two professionally prepared slides of gymnosperms were used to obtain
micrographs. One of these was prepared from the wood of Pinus lambertiana Dougl., the other from
the wood of Pinus monticola Dougl. ex D. Don. Serial micrographs were taken across the entire
cross sections in the radial direction; the micrographs were printed, then taped together to produce
a magnified image of a continuous radial strip. A micrograph was also taken of a stage micrometer
to be used to determine final magnification. The micrographs were taken on an Olympus BX40
microscope with a Spot 2 Insight Firewire camera, using 10× oculars and objectives, and the images
were stored in a computer file prior to printing.

The Pinus lambertiana slide was 6.7 mm wide (radial direction) and contained nine latewood
rings, two of which appeared to be false rings. The Pinus monticola slide was 7.6 mm wide
(radial direction) and contained six latewood rings. Although the slides were taken from mature
portions of the stems, there was enough ring curvature to determine pith and bark sides of the
slides. Comparing the wood micrographs with the stage micrometer micrograph gave a final printed
magnification of 2300×.

Each micrograph was saved as a .tif file, resulting in 9 files for Pinus lambertiana and 10 files
for Pinus monticola. Each micrograph had a slight overlap from the previous one to maintain a
continuous line. The .tif files were then opened with SigmaScan Pro R© software
(http://systat.us/sc/index.html). A 20 by 20 grid was electronically overlayed on each image
and used as a reference to locate individual cells and to measure cell rotation angles. The SigmaScan
Pro software also opens a blank spreadsheet when measurements begin.

For each of the 19 images, 25 grid locations on the 20 by 20 grid were randomly chosen. The
cells at the 25 locations were measured. The angle reported is the angle between the pith-side
tangential face of the cell and a ray in the image. The angle measurements were made by clicking
on the pith-side tangential face, dragging the mouse to the ray in a direction parallel to the face,
clicking on the ray, and then moving toward the pith on the ray and clicking a third time. The
angle measurement was then automatically generated and recorded in the spreadsheet.

The majority of the measurements were made by clicking on the closest ray to the right of the
cell (assuming that one is looking radially from the pith to the bark), but when the location of
the ray did not allow this, the measurement was made to the left. In this case, the final angle was
obtained by subtracting the physical measurement from 180 degrees.

Earlywood and latewood were noted, as well as the shape of the cell being measured. Spread-
sheets and images with overlaid angles were saved for each .tif file.

Because the sampling was uniform with respect to area, earlywood cells were sampled much
more frequently than latewood cells. We analyzed the earlywood and latewood cells separately.

SAS R© (http://www.sas.com) was used to analyze the data. There was no trend across the
micrograph from pith to bark. The sample sizes, pooled means and standard deviations, and
minimum and maximum rotation values for the two species and the two types of cells are provided
in Tables 56 and 57. For both species, the earlywood angle data was nonnormal. For lambertiana,
the latewood angle data was nonnormal.

Species sample size mean standard deviation minimum maximum

lambertiana 197 87.7 5.60 72.9 104.9

monticola 220 88.5 4.06 65.2 103.8

Table 56: Angles between the tangential faces of cells and rays, earlywood
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Species sample size mean standard deviation minimum maximum

lambertiana 23 89.4 2.49 81.2 94.7

monticola 23 86.8 7.39 71.0 101.2

Table 57: Angles between the tangential faces of cells and rays, latewood

We also recorded the cross-sectional shapes of the cells. These are reported in Tables 58 and
59. Note the high incidence of hexagonal and quadrilateral cross sections in the earlywood cells,
and the high incidence of ellipses (ovals) in the latewood cells.

Species quadrilateral pentagon hexagon ellipse other

lambertiana 84 30 71 12 0

monticola 96 10 86 27 1

Table 58: Earlywood cross-sectional shapes

Species quadrilateral pentagon hexagon ellipse other

lambertiana 2 0 0 21 0

monticola 4 0 1 18 0

Table 59: Latewood cross-sectional shapes
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