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Abstract

In this paper, we take a preliminary look at techniques for
comparing sorts that yield grades of lumber. We propose
methodology that takes into account differences in grade
prices and the costs associated with misgrading. We focus
on two- and three-category sorts, but our results could be
readily extended. We provide web links to sample FOR-
TRAN implementations of this methodology for the case in
which the strength predictor and strength have a bivariate
normal distribution and the load distribution is also nor-
mally distributed. We indicate how these approaches would
have to be modified for other predictor, strength, and load
distributions.
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Sorting Procedures
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Richard A. Johnson, Emeritus Professor of Statistics
University of Wisconsin, Madison, Wisconsin

James W. Evans, Mathematical Statistician

USDA Forest Products Laboratory, Madison, Wisconsin

1 Introduction

People working with wood and wood products are often confronted with sorting problems: To what
end use category should a log be directed? What grade should be assigned to a piece of lumber?
In what repair category should we place a component of an existing wood structure? Good sorting
procedures obviously require performance predictors (for example, modulus of elasticity (MOE))
that are well correlated with performance (for example, modulus of rupture). However, an optimal
sorting procedure will also take into account the costs associated with obtaining better predictors
and the costs associated with misclassifications.

To make the most efficient use of our nation’s timber supplies, we need sorting methods that are
optimized. Thus we certainly need methods for comparing the quality of various sorting procedures.
These methods must take into account the costs of the procedures and the economic consequences
of the resulting sorts.

In this paper we take a preliminary look at techniques for comparing sorts that yield grades of
structural products. We propose methodology that takes into account differences in grade prices
and the costs associated with misgrading. The methodology has a decision theoretic flavor. (See,
for example, Berger (1993).) We provide web links to sample FORTRAN implementations of this
methodology for the case in which the strength predictor and strength have a bivariate normal dis-
tribution, and the load distribution is also normally distributed. We indicate how these approaches
would have to be modified for other predictor, strength, and load distributions.

This methodology is raw, but we should be able to refine it to handle any special case. However,
that refinement will need to depend on data — data that gives us better information about strength
and load distributions, about prices associated with different binning schemes, about costs of the
schemes, and about costs of failures.

Here we consider only two- and three-category grading schemes, but our methods are easily
extended to schemes that involve more than three categories.

In the material below, in accord with statistical usage, we use the term “bin” rather than the
term “category.”

2 Maximizing Expected Value

In this paper, we focus on a situation in which competing sorts can involve different numbers of bins
and different bin cutoffs. For a given sort, the expected value associated with the sort is calculated



as (here, we are neglecting the cost of the sorting procedure)

Prob(lumber placed in bin 1) x (bin 1 price) + ... + Prob(lumber placed in bin k) x (bin & price)
+Prob(lumber placed in bin 1 and fails) x (cost of bin 1 failure) + ...
+Prob(lumber placed in bin k£ and fails) x (cost of bin & failure)

The mathematical and numerical difficulties lie in evaluating the probabilities. The practical diffi-
culties lie in evaluating the prices and costs. In this paper we focus on the (simpler) mathematical
problem.

In Section 3 we consider the two-bin case and calculate the probability of failure given that a
piece of lumber is placed in the first bin and the probability of failure given that a piece is placed
in the second bin. To calculate these probabilities, we first find the fifth percentile of the strengths
of the pieces of lumber placed in a bin. We divide this value by the factor 2.1 (see Section 3) and
take this as the “allowable property” (see Section 3) associated with the bin. This then leads to
an associated distribution of acceptable loads. Combining information about the distribution of
strengths associated with a bin together with the distribution of loads permitted for that bin, we
obtain a probability of failure for that bin. Given probability of failure values, and assumed prices
and costs, we can then calculate the expected value associated with a sorting procedure.

In Section 4 we consider the three-bin case.

In both Sections 3 and 4 we assume that the joint distribution of the strength predictor and
the strength is bivariate normal. However, as we note in Section 5, our results are easily extended
to the case in which the strength distribution is lognormal.

3 Bivariate Normal, Two-Bin Case

Let Y denote the strength, and let X denote the strength predictor used to sort wood specimens
into bins. We assume that X and Y have a joint bivariate normal distribution. X could be explicit
(for example, an MOE measurement), or it could be implicit in the judgment of a human grader.

Let z}, denote the breakpoint. Thus lumber pieces for which X < zp, will be placed in the lower
bin. Lumber pieces for which X > x}, will be placed into the upper bin. z, is the gth quantile of
the predictor distribution for some ¢. That is,

Prob(X <zp) =g¢

where X is a normally distributed random variable with mean u, and standard deviation o,. Thus

X _ _
Prob( Py < Th Nm) —q
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where ® denotes the standard normal cumulative distribution function (cdf).

Probability Density Function (pdf) of the Lower Bin Strengths

The cdf of the lower bin items is given by

y [
Prob(Y <y|X <zp) = / / bivariate normal pdf dsdt/q
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so the pdf of the lower bin strengths is

fily) = \/%_ﬁgiy exp (—0.5 X (y — uy)2/a§)

x® ([@1@) —p (%)] /ﬂ) /4

where ¢ is the probability that a piece of lumber is placed in the lower bin, u, and o, are the mean
and standard deviation of the strength distribution, and p is the correlation between the strength
predictor and strength.

The fifth percentile, v .95, of the lower bin of strengths can be found by solving the equation

05 = /y.05,1 fl (y) dy

—00

This only requires a normal cdf inverse routine,! a normal cdf routine,? a 1-d numerical in-
tegration routine (we use the SLATEC? routine dqags), and a zero-finding routine (we use the
MINPACK* routine hybrd1).

Note that there can be numerical difficulties here. The numerical integration routine yields
a result that is accurate only up to a tolerance set by the user. Thus, the result will not be a
perfectly smooth function of the fifth percentile. Theoretically, the zero-finding routine assumes
smoothness of the function for which a zero is being determined. However, the disconnect between
the properties of the result produced by the numerical integration and the properties needed by the
zero-finder can be bridged by requiring a tolerance for the numerical integration that is smaller than
the tolerance required of the zero finder. In our (double precision) programs, we used a 0.0000001
tolerance for the numerical integration program and a 0.0001 tolerance for the zero-finder.

The mean of the lower bin strengths is given by

mean; = / yfi(y) dy
—0o0

This requires a normal cdf inverse routine, a normal cdf routine, and a 1-d numerical integration
routine.

Probability of a Lower Bin Failure

Here we must make a series of assumptions. Our computer program permits these to be altered.
First we need to input a factor (for example, 2.1°) by which the fifth percentile of the strength
distribution is divided to obtain an allowable property. Then we assume that this allowable property
is equal to a specified quantile (for example, the 0.99 quantile) of the load distribution. (In practice

!See, for example, norminv.f at http://wwwl.fpl.fs.fed.us/sortsim.html

2See, for example, norcdf2.f at http://wuwl.fpl.fs.fed.us/sortsim.html

3See, for example, http://www.netlib.org/slatec/

*See, for example, http://www.netlib.org/minpack/

5This factor appears, for example, in the ASTM standards D 1990 and D 2915 (ASTM International 2007a,b).



this means that if the allowable property calculated for a bin is less than the chosen quantile of a
known load distribution, then specimens from that bin are not certified for use in situations that see
that load distribution.) This gives us one constraint on the load distribution. For two-parameter
load distributions, we need one other constraint to specify the distribution completely. For example,
if the load distribution is normal, and we are given the associated coefficient of variation (cv), then
we can calculate the mean, ur, 1, and variance, oy, 1, of the load distribution:
Setting
Y.05,1/2.1 = pr1 + @71(0.99) X pr1 x cv

we have
it =051/ (21 (14 871(0.99) x ov))

Also, by the definition of coefficient of variation,

OL,1 = ML,1 X CV

Now, assuming a normally distributed load distribution and statistical independence between the
load and strength distributions, given that a piece of lumber is sorted into the lower bin, the
probability of failure, pp 1, is

1 1
PRI = / fily / ————e€xp (—0.5 X (z — ML71)2/0'%’1) dz dy (1)
y

27rUL1

_ / fily) (1= ((y = pr1)/on,)) dy

To perform this calculation we need a normal cdf inverse routine, a normal cdf routine, and a 1-d
numerical integration routine.

Upper Bin Strengths and Probability of Failure
We argue as we did in the lower bin case to obtain the pdf of the upper bin strengths:

faly) = V%_ﬂaiyexp(—ow(y—uy)?/a@%)

o e I

The fifth percentile, y52, of the upper bin of strengths can be found by solving the equation

Y.05,2
05 = / fo(y) dy
— 00
This requires a normal cdf inverse routine, a normal cdf routine, a 1-d numerical integration routine,
and a zero-finding routine.
The mean of the upper bin strengths is given by

meany = [ yfaly) dy

This requires a normal cdf inverse routine, a normal cdf routine, and a 1-d numerical integration
routine.
Making the same assumptions as in the lower bin case, we have



po = Y052/ (21 (1+871(0.99)cv))

and
OL,2 = ML,2 X CV

and, given that a piece of lumber is sorted into the upper bin, the probability of failure, pr 2, is

Pr2 = / fa(y / \/%UL ; exp (—0.5 x (z — ML,2)2/U%,2) dz dy
= [ )-8y - o) o)y

To perform this calculation we need a normal cdf inverse routine, a normal cdf routine, and a 1-d
numerical integration routine.

Value

Let P; denote the price of a lower bin lumber piece and P, denote the price of an upper bin lumber
piece. Let C} denote the cost of a lower bin failure and C5 the cost of an upper bin failure. Then
the expected value, V', per piece of lumber from this sort is given by (here, we are neglecting the
cost of the sorting procedure)

V:(qXP1)+((1—q)XPQ)—(qXpElXCl)—((l—q)XpEQXCQ)

The computer program must permit a user to specify P, Py, C, and Cs. Ideally the user should
be able to specify them as functions of q. Currently we have implemented a necessarily (in the
absence of data and/or the assistance of an economist) unrealistic approach. We take as the unit
of value the price that one would receive per piece of lumber for a lot of lumber that had mean
strength equal to the population mean. Then P is taken to be the ratio of lower bin mean strength
to population mean strength. P5 is taken to be the ratio of upper bin mean strength to population
mean strength. C7 and Cy were taken to be, for example, 1000 and 10000, reflecting the fact that
upper bin failures would have more serious consequences than lower bin failures, and that failures
could have repercussions that were much more serious than the cost of a simple replacement of a
piece of lumber.

Note that when we take price per piece of lumber to be proportional to bin mean strength, then
the qP, + (1 — q) P> portion of V' does not depend on ¢. That is,

o0

q/oo yfi(y)dy/py + (1 —q) /EO yfa(y) dy/py =/

1 2
(ky + O'yy)ﬁ exp(—y~/2)dy/py =1
regardless of the value of ¢q. Thus, in this case, value is dependent on ¢ only through —gpr1C; —
(1 = q)pr2Cs.
4 Bivariate Normal, Three-Bin Case

This is a simple extension of the two bin case. Let z},1 < z},2 be the strength predictor breakpoints
and ¢q; < g2 be the corresponding quantiles, so that

Prob(X < xp;) = ¢;



and
(T — pa) )0z = D7 (q;)

where ® denotes the standard normal cumulative distribution function. The probability density
function (pdf) of the bin 1 (X < 1) strengths is

fily) = \/i?_miyexp(—os % (4 — py)2/2)

o -2 )

The pdf of the bin 2 (z,; < X < z1,2) strengths is

foly) = \/%Uiy exp(—0.5 X (y — py)?/07)

Jo(fr-o(z=
y

The pdf of the bin 3 (2,2 < X) strengths is

W) = o053 x (- 1))

e e

The fifth percentiles, y.05.1,¥.05,2, and y.05 3, of the three strength populations can be found by

solving the equation y
.05,i
05 = / fily) dy
—0o0

fori=1,2,3.

This requires a normal cdf inverse routine, a normal cdf routine, a 1-d numerical integration
routine, and a zero-finding routine.

The means of the three bin strength populations are given by

[ee]
mean; = / yfi(y) dy
—0o0

for 1 = 1,2,3. This requires a normal cdf inverse routine, a normal cdf routine, and a 1-d numerical
integration routine.

The probabilities of failure (here we are assuming normally distributed loads) associated with
the three populations are given by

pei= [ F)1 =@y~ i) /o)y

for i = 1,2,3, where the pur,;’s and o1,;’s are calculated as in the two-bin case (by setting the
(for example) 0.99 quantile of the load distribution equal to the fifth percentile of the strength
distribution divided by (for example) 2.1 and by assuming a particular value for the load distribution
coefficient of variation). To perform these calculations we need a normal cdf inverse routine, a
normal cdf routine, and a 1-d numerical integration routine.

7)) )



The value in the three bin case has expectation (here, we are neglecting the cost of the sorting
procedure)

V=qgPi+(@—-—q)P,+ (1 —q@)P;—qpriCi — (2 — q1)pr,2C2 — (1 — q2)pr3Cs

where the P;’s are the prices associated with the three bins, the pr ;’s are the probabilities of failure,
and the C;’s are the costs of failure.

Note that, as in the two bin case, if we take price per piece of lumber to be proportional to bin
mean strength then the ¢; Py 4+ (g2 — q1) P> + (1 — g2) P3 portion of V' does not depend on ¢; and ¢s.

5 Lognormal/Normal Case

Here we consider the case in which In(Y) (the log of the strength) and X (the untransformed
predictor) have a bivariate normal distribution. The point to be made is that, numerically, this is
no more difficult a case than the pure bivariate normal case. For example, in this case the bin 1
pdf is simply

D) = <= exp(-05 x () ~ /o) x . x @ ([27 ) - p (M=) 1) 1g

where y > 0, and 1., 02 are the expectation and variance of In(Y). Given this pdf, the estimates
of fifth percentile, mean, and probability of failure can be obtained by using the same numerical
analysis routines used in the pure bivariate normal case.

6 Non-Normal Load Distributions

Because we are assuming that the load and strength distributions are independent, the load distri-
bution simply enters as a multiplier (as in Equation 1) so there is no new numerical difficulty (we
still need only 1-d numerical integration routines) regardless of the nature of the load distribution.
Of course the method of specifying the load distribution might need to change. We would still set
the 0.99 (for example) quantile of the load distribution equal to a fifth percentile of the strength
distribution divided by 2.1 (for example) and then impose a second constraint (for a two-parameter
load distribution) but the constraint might not be the coefficient of variation constraint used in the
normal case.

7 Pre-Specified Load Distributions

In the approach described above we make use of a “maximum permissible load distribution” that
is completely specified by the fifth percentile of the strength distribution and one other assumption
(for a two-parameter load distribution) about a parameter of the load distribution. However, one
could take an alternative (and presumably more realistic) approach. One could specify a load
distribution that is based on real world wind/snow/... loadings. This load distribution would not
in general have its 0.99 (for example) quantile matched with the allowable property value obtained
from a bin strength distribution.

If we did take such an approach, however, it would not complicate the numerics at all. The
load distribution would still just yield a multiplier in the integrand of the 1-d numerical integration
that yields a probability of failure (see, for example, Equation 1).



8 Estimating the Correlation, p, between a Predictor and Strength

To perform the calculations specified in the preceding sections, we need an estimate of the corre-
lation, p, between the strength predictor and the strength. In the case in which the predictor X
is explicit, the calculation of this estimate is trivial.®° When X is implicit” one can use maximum
likelihood techniques (Cox, 1974).

In the two-bin, implicit Normal/Normal case we can take X to be N(0,1). There are four
parameters to be estimated — pu, 02, g, and p where the implicit breakpoint is at z, = ® 1(qg),
i.e., specimens are placed in bin 1 if z < z}, and in bin 2 if x > zp,. For the expected value work,
we need estimates of fi,, a;, q, and p. The data is of the form

T < Ty Y = Yly-- s T beay:ynlax > ThyY = Yni41s--r & > ThyY = Ynj+ny

The corresponding likelihood is

> Y(q) — ply; — My)/0y>

H \/%ay exp(—(yi — 1y)*/(207))® ( =y

ni+ns oxn(— (1 — 2 o2 ( _ ((I)l(q)—p(yi—'uy)/ay>>
el O G

This can be maximized to yield estimates of the four parameters. To do so we need a normal
cdf inverse routine, a normal cdf routine, and an unconstrained nonlinear optimization routine
(we use UNCMIN, see http://wwwl.fpl.fs.fs.us/optimization.html). We have checked this
in both the two- and three-bin cases (in the three-bin case, the likelihood has a third factor that
corresponds to the middle bin) with simulation programs. The approach yields reasonable estimates
of the parameters in the cases that we considered. (We used a sample size of 100. For small sample
sizes, the approach might not work as well.) The FORTRAN programs, two.f and three.f, used to
perform the simulations can be viewed at http://wwwl.fpl.fs.fed.us/sortsim.html.

9 Estimating the Correlation between Two Predictors — Aside

This section is really in the nature of an aside. If we choose to compare sorting schemes on
the basis of expected value, then we do not need to calculate the correlations between different
strength predictors. However, to estimate value it is necessary to determine load distributions,
the costs of running different sorting schemes, prices as functions of sorting schemes, and costs
due to failures. Given the difficulty of these tasks, one might choose to measure the similarity of
two sorting schemes by the correlation between the strength predictors used in those schemes. If
both strength predictors were explicit (for example, two different measures of stiffness), then this
correlation calculation would be trivial. If one or both of the strength predictors were implicit,
then we would have to be more careful. However, in principle, one should be able to generalize
the maximum likelihood calculation described in the preceding section. In this case we assume
that strength and the two predictors have a trivariate normal distribution. As an example, for two
implict predictors and sorting schemes that have two bins, the data would be of the form

1 < Th1, T2 < Th2sY = Y1y---5 01 < Th,1, 22 < Th2, Y = Yny

SThat is, p= Y1 (i — %) (v = )/ /2oy (@ — 2)2 Y (i — )

"For example, X might represent the eyeball judgment of a human grader, and no predictor X value would be
explicitly measured or calculated.




T1 S Th,1,T2 > T2, Y = Yny+1,-- -1 < Th 1, T2 > Tb2,Y = Yny+n,
T1 > Th 1,72 < Tb2,Y = Yny+no+ly -3 L1 > Th1,L2 < Th2,Y = Yni+natns

T1 > Th,1,T2 > Tb2, Y = Yni+na+na+1s--+3 L1 > Th1,T2 > Th,2, Y = Ynj+ny+na+ng

The corresponding likelihood is

Ty fTb2
H / / f(yiazlaz2)d22 dzy
i=17700 J=00

ni+na

Th,1 o0
x 1] / /Ib2 f(Yi, 21, 22)dz2 d2

i=ni+17 X

ni+na+ns 00 b2
< I / / [ (i, 21, 22)dzo dz1
— 00

i=ni1+na+17 L1

n1+n24n3+ns 00 oo
X H f (s, 21, 22)dzo dzy
i=ni+ns+nz+1 7 Tb,1 7 Th2
where f(r,s,t) is the pdf of a trivariate normal distribution with us = pu3 = 0 and o9 = 03 = 1.
Thus

1
fr,s,t) = 3 exp(—arg)
99 /2
(2m) oy\/l — Py — pls — P33 + 2p12P013P23
where T
(r —py)/oy (r = py)/oy
arg = s A s /2

t t

1- ,0%3 P13P23 — P12 P12P23 — P13
A: _ 1_2 _ /(1_2_2_2+2 )
P13P23 — P12 P13 P12P13 — P23 P12 = P13 — P23 T 2P12P13023
P12023 — P13 P12P13 — P23 1—p?y

p1; is the correlation between the strength and predictor j, j = 1,2, and pa3 is the correlation be-
tween the two predictors. We would need to estimate py, oy, Tp 1, Tp 2, P12, P13, and pe3. This would
require an unconstrained nonlinear optimization routine and a 2-d numerical integration routine
(see, for example, GAMS class H2blal at http://gams.nist.gov/serve.cgi/Class/H2blal/).

10 Uncertainty in the Value of a Sort

The calculated value of a sort depends on 4, 0y, the ¢’s, p, the parameters of the load distribution,
lumber prices, and the costs of failures. (Note that the cost of running the sorting scheme also
needs to be substracted from the value of the sort. We have not done so in our sample programs.)
There will be estimation uncertainties in y,, oy, the ¢’s, and p. In our current approach the load
distribution that a piece of lumber could see is specified exactly given the fifth percentile of the
strength distribution and an assumption about a parameter of the load distribution. However,
as noted in the remarks on a “pre-specified load distribtion,” one could use a load distribution
estimated from data. There would then be estimation uncertainties in the parameters of the load
distribution.



The estimated uncertainties in the parameters propagate through to uncertainties in the value of
the sort. Since our maximum likelihood estimation procedures would yield a covariance matrix for
our estimates of y1,, 0y, ¢, and p, and we would also have a covariance matrix for the load distribution
parameter estimates, we could use the “delta method” to obtain an approximate variance for the
value estimate. We would obtain our estimates of the partial derivatives of value with respect to
the parameters via simple numerical difference estimates.

11 Example Computer Programs

We provide example programs to estimate value at http://wwwl.fpl.fs.fed.us/sortsim.html.
The programs are called loss2.gr.f and loss3.gr.f. The loss2.gr.f program handles the two bin
case. The loss3.gr.f program handles the three-bin case. Both programs assume that prices are
proportional to bin means. (This is done solely for the purpose of explication. In a more realistic
case prices as functions of breakpoints would be determined by market data and an economist’s
analysis.) Thus in both cases the optimal breakpoints are dependent solely on the the failure costs
and load distributions.

In Figure 1 we plot value versus ¢ for predictor/strength correlations 0.4, 0.6, and 0.8 in the
two-bin case. In these plots, the vertical lines mark the ¢ that leads to a maximum value. It is
clear that when there is a high correlation between predictor and strength (so we are unlikely to
put a poor piece into the top bin and thus to incur the serious costs associated with a bin 2 failure)
then it is worthwhile to lower ¢ and put a higher percentage of the population into the upper bin.
When p is low so we have a higher probability of mistakenly placing a poor piece into the upper
bin, it is better to increase the ¢ and to assign a smaller percentage of the pieces into the “high
quality” bin. Here we are assuming that p, = 4000, the strength coefficient of variation equals 0.2
so oy = 800, the divisor of the strength fifth percentile is 2.1, the load distribution is normal, the
coefficient of variation of the load distribution is 0.15, the cost of a bin 1 failure is 1000 times the
standard price of a piece of lumber, and the cost of a bin 2 failure is 10000 times the standard
price. Also note that, as we would expect, as the correlation between the strength predictor and the
actual strength increases, the maximum value of the sorted material increases. (As the correlation
between predicted and actual strength increases, there are fewer misclassifications of poorer pieces
into the upper bin so the costs associated with failures decrease.) Figure 2 corresponds to the same
situation except that the costs associated with failure are now 500 and 50000 times the standard
price of a piece of lumber (lower bin failures have less severe consequences than in the first case,
upper bin failures have more serious consequences than in the first case). It is clear from Figure 2
that the increase in the ratio of the severities of the two kinds of failure now leads one into being
more conservative. (For p = 0.6 or 0.8, the optimal ¢ is higher in Figure 2 than in Figure 1. Note
that the p = 0.6 plot is the middle plot in Figure 1 and the upper plot in Figure 2.)

In Figures 3 - 5 we plot contours of value versus ¢;, g» for predictor, strength correlations 0.6,
0.7, and 0.8 in the three bin case. It is again clear that when p is higher the optimal breakpoints put
a higher percentage of the pieces in the top bin, and when p is lower the optimal breakpoints put a
higher percentage of the pieces in the lowest bin. Here we are again assuming that p, = 4000, the
strength coefficient of variation equals 0.2 so oy, = 800, the divisor of the strength fifth percentile is
2.1, the load distribution is normal, and the coefficient of variation of the load distribution is 0.15.
We also assume that the cost of a bin 1 failure is 100 times the standard board price of a piece of
lumber, the cost of a bin 2 failure is 1000 times the price, and the cost of a bin 3 failure is 10000
times the price.
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12 An Alternative Model

Because most lumber failures in light-frame structures will not lead to the catastrophic failure of
the structure, it can be argued that there will generally be no cost to a manufacturer for the failure
of a piece of lumber. Also, it can be argued that there is little flexibility in bin boundaries. Instead,
for example, machine stress rated 1800f 1.6E lumber corresponds to a relatively fixed quantile of the
strength/MOE distribution, and a producer cannot easily alter this boundary. Instead a producer’s
product must regularly pass screening trials. For example, periodically, the producer must sample
n pieces of lumber and proof-load them at a stress level L. If more than k of the pieces fail, then
the producer’s product must undergo a second round of testing. If the product fails this second
round of tests, the costs to the producer can be considerable (“production stops, a bigger sample
is required to reestablish boundaries, and more quality control samples might be taken for a while
after production restarts”®). Under this scenario, the costs to a producer associated with a given set
of predictor boundaries are the costs associated with qualification testing and the costs associated
with setting a predictor qualification value high so that fewer lumber pieces qualify as high price
pieces. If a producer raises the bar, the producer will receive a lower price for some of its lumber,
but if the producer sets the bar too low, the producer will be forced to bear certification costs too
frequently and, potentially, to deal with irritated customers (not, perhaps, because of failures but
because of discards).

The optimal approach to take under this model will depend on the prices that can be charged
for the different lumber quality categories and the costs, in customer satisfaction and/or additional
testing, that are incurred because of poor lumber properties or qualification test failures.

The methods in the current paper can be extended to this new situation. However, the prob-
abilities of failure will no longer depend on in-service load distributions. Instead they will depend
on probabilities associated with qualification tests. For example, the probability that an individual
bin 2 piece of lumber will fail in a qualification run will be

o
PR = / f2(y)dy
I
and the associated probability that a manufacturer will fail a qualification test is

1 — Prob(k or fewer failures)

k
:1—Z<?>(1—pF)nixpfﬁ

We will pursue this approach in detail in a subsequent paper.

13 Summary

To compare lumber grading schemes, we have developed raw methodology that we should be able
to refine to handle any special case. However, that refinement will need to depend on data — data
that gives us better information about predictor, strength, and load distributions, about lumber
prices associated with different binning schemes, about costs of running different schemes, and
about costs of failures.

8Conversation with Dr. David W. Green, Emeritus Supervisory Research General Engineer, USDA Forest Products
Laboratory
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Figure 1: Plots of the sort value versus the probability (q) associated with the breakpoint for
correlations 0.4, 0.6, and 0.8, and misclassification multipliers 1000 and 10000
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Figure 2: Plots of the sort value versus the probability (q) associated with the breakpoint for
correlations 0.6, 0.7, and 0.8, and misclassification multipliers 500 and 50000
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Figure 3: Contour plot of value versus lower breakpoint probability (¢;) and upper breakpoint
probability (g2) for predictor/strength correlation 0.6, and misclassification multipliers 100, 1000,
and 10000. The maximum value in this case is attained when ¢; = 0.43 and ¢o = 0.90; that is,
when the lower breakpoint is set at the 43rd percentile of the predictor distribution and the upper
breakpoint is set at the 90th percentile of the predictor distribution.
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Figure 4: Contour plot of value versus lower breakpoint probability (¢;) and upper breakpoint
probability (g2) for predictor/strength correlation 0.7, and misclassification multipliers 100, 1000,
and 10000. The maximum value in this case is attained when ¢; = 0.20 and ¢o = 0.68; that is,
when the lower breakpoint is set at the 20th percentile of the predictor distribution and the upper
breakpoint is set at the 68th percentile of the predictor distribution.
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Figure 5: Contour plot of value versus lower breakpoint probability (¢;) and upper breakpoint
probability (g2) for predictor/strength correlation 0.8, and misclassification multipliers 100, 1000,
and 10000. The maximum value in this case is attained when ¢; = 0.05 and ¢o = 0.33; that is,
when the lower breakpoint is set at the 5th percentile of the predictor distribution and the upper
breakpoint is set at the 33rd percentile of the predictor distribution.
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