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| ntroduction

The design of colums with side |oads and eccentric end loads is an old problem
that his gecei ved attention from many authors. General textbooks such as those
by Church2 or Maurer and Wtheyt and the more specialized work of Salnon on
colums are anong the many publications that have dealt with the subject. The
treatment of short colums, considered as prisms and with stresses due to de-
flection neglected, is relatively sinple, but Iong colums wth deflection
stresses are nore conplex.

Critical loads on centrally |oaded |ong colums that fail, by bending can be

cal culated satisfactorily with the Euler fornula. Additional fornulas of sat-
i sfactory accuracy have been devel oped for [ong colums with eccentric end [oad
or with certain specific conbinations of side load with eccentric end load .2
These latter formulas, however, require rather cunbersome trial calculations
involving the secant of an angle that can be determned only indirectly; they
have the further disadvantage that a separate fornula nust be devel oped for
each condition of side |oading.

Recogni zing the difficulty in applying the secant fornulas to problenms of safe
| oads, on long colums with side |oads and eccentricity, Newin = sought a sim

i This is an anplification and explanation of an article of the same title by J.
A Newin, formerly Chief, Division of Tinber Mechanics, Forest Products
Laboratory, published in Building Standards Monthly, Decenber 1940. The
formulas are also given in “National Design Specification for Stress-grade
Lunber and Its Fastenings," published by the National Lunber Mnufacturers
Association.  Acknow edgment is made to C. B. Norris of the Forest Products
Laboratory staff for review and confirmation of Newlin's analysis. First

- report of this number published in 1950.

2 Maintained at Madison, Ws., in cooperation with the University of Wsconsin.

% Church, Irving P., Mechanics of Engineering, New York, 1914,
L . .
= Maurer, Edward R and Wthey, Mrton O, Strength of Mterials, New York, 1940.

‘5-Sa| mon, E. H, Colums, London England, 1921.
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lified nethod of design. He succeeded in developing a general formula in which
eocentrioity is sinply represented and in which any condition of side |oading
can be expressed in terms of the bending stress induced by it. H's fornula,
whil e sonmewhat more approxi mate than the secant formulas, has as nuch accuracy
as exists in the present state of know edge of the properties of wood or of the
condi tions under which wood colums are loaded. The fornula is not difficult

to apply and is believed to be highly useful in the design of wood colums

Newl in's original report and published article were rather brief, and a nunber
of steps in his derivation of the |ong-colum formula were onmtted. The deri-
vation of a simlar fornula for short colums was also onmtted. The present
report has been prepared to fill in the omtted material and to illustrate the
application of the formulas by nmeans of suitable exanples.

Notation
(All units except ratios are in pounds, inches, or conbinations thereof)
A= area of the cross section of a col um.
C=wunit failing stress in conpression parallel to grain.
E = Young's modulus of elasticity of the colum material
F=unit failing stress flexure
| = noment of inertia of the cross section of a colum around the neutra
axis. As used here, the neutral axis is perpendicular to the
direction of eccentricity or side load. 1In a rectangular colum,
[ . b
To1e e
K = value of the slenderness ratio & dividinginternediate fromlong
col urms. d
L = length of a colum or, nore specifically, unsupported |ength
L . . .
ri sl enderness ratio of a colum. As used here, d is measured in the
direction of eccentricity or side |oads.
M = generally, the bending nmonent on a colum from eccentricity or side

| oad, but is used here also in the nore restricted sense of bend-
ing nmoment caused by the portion of side load that is independent
of axial |oad

g = generally, the flexural stress induced in the outer fiber of a col-
um from eccentricity or side |oad, but used here also in the
nore restricted sense of stress in the outer fiber induced by the
portion of side load that is independent of axial |oad

P =axial load (end load) on a colum, whether centrally or eccentri-
tally applied

P . . . .

2 = direct conpressive stress induced by axial load (end Load) on a
col um.

S = section modulus of the cross section of a colum related to flexure

in the direction of eccentLLcEty or side loads. Section nodul us

of a rectangular colum is 9%— .
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2
critical Euler load on a pin-ended colum. w =¥ gI
L

=
11

width of a rectangular col um.

al lowabl e unit working stress in conpression parallel to grain for a
colum of the length under consideration with centrally applied
axial load and no side load; this may be a short-colum, interme-
diate-colum, or long-colum stress

d = depth of a rectangular colum) neasured in the direction of eccen-

tricity or side |oad.

d = additional deflection at nidlength of a long colum due to axia

| oad.

e = eccentricity, the distance fromthe center of gravity of the colum
section to the center of gravity of the applied load. Eccentri-
city in this analysis is considered as being parallel to one of
the sides of a rectangular col um.

1, €2, €3 = increnents of deflection at midlength of a colum in
Sal non’ s apal ysi s, _ _ _ _

f = allowable unit working stress in flexure, as in a sinple beamwth

transverse |oading only.

f = flexural stress corresponding to the total deflection at mdlength

of a long colum when all eccentric and side |oads are on.

£y, o) f3 = increnments of flexural stress corresponding to increnents of

[pRe

deflectionelf 62, andé}.

£f = fictitious flexural stress due to eccentricity of axial |oad assuned
to replace the original deflection of the colum in Salnon’s
anal ysi s.

m, n = exponents in the general form of the equation for strength under
conbi ned | oadi ng. .

w= critical Euler unit stress on a pin-ended colum. W =%.

Yo, = total deflection at mdlength of a colum in Salmon’s analysis when
all loads are on.

z =ratio of flexural to direct conpressive stress; that is, MS
divided by P/A nore specifically, a ratio of flexural stress to
direct conpressive stress when both result from the sane |oading
so that the ratio remains constant while the |oad varies.

Anal ysis of Conbined Stresses

Text books on strength of materials ¥ show how the conbined stress on a prism or
short colum due to axial and flexural loads is represented by the sum MS
P/A. In this expression, Mis bending monent, which may be induced by direct-
acting side loads, by eccentricity of the axial load, or by both. For purposes
of design in some structural materials, the sum MS + P/A is not permtted to
exceed a safe stress value, assumed to be the same in bending as in conpression.

Where strength in bending is unequal to that in conpression, as is the case
with wood, there is a problemof deternining what is the ultimte strength
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value for various conbinations of load. It is recognized that the strength
val ue under conbined stress lies generally somewhere between the two val ues
for separated stresses and is influenced by the relative proportions of each.
The relationship which describes the condition for failure under conbined
stress may be of the interaction type

n
I (1)

where MS and P/A are stresses applied in flexure and conpression and E and

C are the corresponding ultimate strength val ues under separate |oading. Since
E and C are known values, either MS or P/A can be calculated by assumng a
value for the other. Then the sum MS + P/A becomes the strength under the
assumed combi nation of | oad.

New in and Trayer 6 made tests of clear Sitka spruce under combined | oading
which showed the relation of the strength to the relative proportions of bend-
ing and axial stress. The curve of maxinum stress fromfigure 6 of their re-

poH,.é as obtained fromthese test results, is shown as a solid line in fig-
ure 1.

The most sinple equation of type (1) is with exponents mand n each equal to
unity; this relation gives conbined strength values in clear Sitka spruce indi-
cated by the lower broken-line curve in figure 1. A nuch closer agreenment

with the test results is obtained if m= 2 giving the upper broken-line curve
of figure 1.

From consideration of figure 1, it is apparent that strength under conbined
stress is estimated very closely from the relationship

2
/5", BA (2

c

This relationship, however, is sonewhat conplex to handle as a fornula, espe-
cially when MS is broken up into two or three conponents representing side
| oads and eccentricity of axial load. Newin's fornulas: for short colums
indicate that he used the form

M/S P/A
I

which is sinpler of application. This relationship (3) has also had extensive
use by other designers dealing with the problem of conbined |oads. Figure 1
shows that it gives rather conservative estimates of strength, but not far in
error, with the lower ratios of bending to total stress such as are nost likely
to occur in short colums.

§New in, J. A and Trayer, G W, Stresses In Wod Menbers Subjected to Com

bined Colume and Beam Action, Forest Products Laboratory Report No. 1311,
1941,
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In the case of long colums, Newin sinplified his safe-loading fornula by
assuming that the ultimate strength under combined load is equal to the bending
strength. This is explained as follows. Long colums are those in the range
in which the Euler fornula applies. The Euler fornmula is based on elasticity

rather than strength and can be applied only if P/Aisless than the propor-
tional-limt stress in conpression. This stress is usually assumed to be two-

thirds of the conpressive strength of mood,l or 203 by the notation of this re-
port. The shortest colum in the Euler class will reach its maxinum |oad at
this stress. The unit flexural strength, being a property of the material, is
unaffected by the length of the colum. Wen stress due to an axial load on a
long colum equals 2C/3, and if it is assumed that the maxi num stress devel oped
under conbined load is equal to the flexural strength, the available bending
stress is F - 2C 3, and the ratio of bending stress to total stress beconmes

F -2C/3

F

This is a mininumvalue for that ratio in long colums. In the case of clear
Sitka spruce (fig. 1), the mninmumratio is

7;900 - 2} 867 -
500 = 0.64

It follows that the long-colum formula leads to ratios within the range of 0.64
to 1.00, as indicated by the heavy horizontal line at the top of figure 1. Cor-
responding ratios based on safe rather than ultimte stresses and applicable to
other species range from about 0.55 to 1.00 as indicated on figure 1. It can
be seen that, in the range from 0.55 to 1.00, the maxinum stress actually de-

vel oped in test is not much short of the flexural strength.

If the relation expressed in equation (2) were used to estimate maxi num stress
inalong colum, a formula of considerable conplexity would result. Equation
(3) would give a-usable formula, but would result in overly conservative esti-
mates of load. The assunption that strength under conbined |oading of |ong
colums equals flexural strength has therefore been chosen

Short Col uims

Wod colums with slenderness ratios (ratio of unsupported Iength to |ease
dimension of cross section) of 11 or less receive both conpression and flexura
stresses under eccentric axial load, but it is not necessary to assume any
additional stress due to deflection. The conmbined stress, derived as for prisms

by wel|-known principles of nmechanics s expressed by the quantity P/A + MS.

In this expression M is bending moment, which may be induced by eccentricity of
an axial load, by direct-acting side |oads or by both. For maximm safe |oad,
the relationship of equation (3) is used with safe stresses instead of ultimate
strength val ues.

L New in, J. A and Gahagan, J. M, Tests of Large Tinber Colums and Presenta-
tion of the Forest Products Laboratory Colum Fornula. U S. Dept. of Agr.
Tech. Bull. No. 167, 1930.
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Equation (4) is directly applicable where there are side loads and concentric
axial load. If the end load is proportional to the side load (as in upper
chord nembers of roof trusses, with bending stress induced by roof |oads acting
through purlins, and with axial |oads proportional to the same roof loads), MS
can be replaced by z P/A and equation (4) becones

z (ng) + P({A -1 (5)

The bending stress M S may be induced by eccentricity of the axial |oad instead
of by side load. |In that case, the external noment Mis expressed by the quan-
tity, Pe . The section nodulus S may be replaced by _%_( d measured in the

a/2

direction of eccentricity). Then

Ped _ P Aed
M = F1=3xG7 (6)
. . _ ba? .
But in a rectangular colum, A =bd and | = 3z  Substitution of these values

in (6) gives

M/s = é/A (—6-%) %

Substitution of expression (7) in equation (4) gives

6 e/da . P/A
P/A(fej+/=l (8)

Cc

for the condition of eccentric axial |oad and no side | oad.

Wiere both side |oad and eccentric axial load are present the term MS in (4)
represents the total of bending stress from both. Furthernore, the side |oad
may be considered as conposed of two portions, one independent of axial |oad
(MS) and the other proportional to axial load (z P/A). The total bending
stress is thus expressed by

P/A (5—3) + M/S + z P/A

and equation (4) becones

B/p (6 efs) +Mf5+ 2 B/o  BA_, (9

where M'S has the nore restricted neaning of bending stress due to that portion
of side load which is independent of axial |oad.
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Equation (9) is a general equation fromwhich any of the others is readily de-

rived by dropping certain terns. For exanple, if all side load is proportional
to axial load, and axial load is eccentrically applied, the term MS is dropped.
If all side load is proportional to axial load, and axial load is centrally

applied, both MS and P/A (ég) are dropped, and equation (5) results. |If there
is eccentricity but no side load, MS and z P/A are dropped, and equation (8)
results. Qther loading conditions can be sinilarly represented by suitable se-

lection of terms. Where there is neither side |oad nor eccentricity, all three
terms in the numerator of the first fraction of (9) disappear, |eaving only

?.L“i‘.zlorf/_é=c.
C

It is to be noted that the term PLA (ég) in equation (9) is devel oped from con-

sideration of a rectangular cross section. Equation (9) is therefore applicable
in this formonly to colums of square-rectangular cross section

Any of the foregoing equations can be solved, either for P/A or for MS,_ if de-
sired to facilitate any particular design problem Solution for PP/Aor MS
will be easier if any redundant terms are first dropped. New in published
these equations in a formin which they are solved for PIA .1

Long Col ums

In long colums of the Euler class, the problem of eccentric and side loads is
made nore conplex by the addition of stress induced by the curvature of the

colum itself. The secant formulas 2 are applicable but rather difficult to use
in problems of deternmination of safe load. Furthernore, it is desirable to ex-
press all conditions of side loading in ternms of their resulting nonments or

stresses, thus making one general fornula applicable to all loading conditions.

Newl i n succeeded in doing this.

In developing a general fornula for the condition of side and eccentric axial

| oads, use is made of a relationship devel oped by Sal non~ for colums bent to
sinusoidal curvature. Wiile it is recognized that the nost common side | oad-
ings do not produce sinusoidal curvature, Salmon showed that with small amounts
of curvature, the deflection is practically the same whether the elastic curve
is circular, parabolic, or sinusoidal. The error introduced by assumng sinu-
soidal curvature is probably of [esser magnitude than approximtions in the
present state of know edge on the strength propetiies of wood or on the con-
ditions under which wood colums are |oaded

Sal non considered a colum originally bent to a sinusoidal curvature with a de-
flection €, at mdlength (fig. 2). Under the action of an axial load P, the de-
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fleotion increases to a valueyb. The original curvature of the colum is rep-

resented by the equation
x
y=€l COS'I':X (10)

For this condition, Salmon arrived at the relationship

€
1

Yo = =57 (11)

where P is the axial load on the oolum and Wis the critical Euler load (nota-
tion not the same as that used by Salnon), By al gebraic transformation, equa-
tion (11) becomes

€
N (12)
v, W

One property of a sinusoidal elastic curve is that deflection is proportional
to the stress causing it. Taking, for exanple, the equation for sinusoida
curve (10), there follows by differentiation

- 2 2

4 ¢ T s Ex=- Z. y (13)
5=-€135°"L 12 .

dx

Since this is an elastic curve, the general equation of external and interna
monents in bending may be applied:

Ly
M= - EI
I (14)
dx
. . 2 .
Substituting d_y .from equation (13)
dx2
: 2
M= EI &5y (15)
L

From the general expression for bending stress equal to MS

ET 2 (16)

stress g—-é'y

Equation (15) shows the proportionality of noment, and equation (16) shows the
proportionality of stress to deflection.
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Newl in used Salnmon's originally bent colum (fig. 2) to represent an eccentri-
tally loaded long colum with axial load P and an eccentricity corresponding
to the deflection € e |f side loads are applied to such a colum, additional

defl ections €, and ¢ my result. |f curvature remains sinusoidal, the summa-

tion of deflections €, +¢€ +e3will hold the sane relationship to y as ¢
) 1

2
holds in equation (12). Then -
€1 + €2 + €3

Yo

It has already been shown in equation (16) that, wth sinusoidal curvature, de-
flection is proportional to stress. Since each of the curves in figure 2 is
assumed to be sinusoidal, all of the deflections €5 €, and eé, and y have

rE=1 (17)

W

(o]
have the same factor of proportionality to the bending stresses that cause them
the deflection ratio

€1+€2'+€3
Yo

is thus equal to a stress ratio

The load ratio P/Wcan also be replaced by the corresponding stress ratio EWA
where w is the critical Euler stress. Equation (17) then becomes

f. + £, + f
1 2 3 P/A=l (18)

fo w

Now | et £, be replaced by a fictitious stress £ which, if it had been present

in Salmon's colum, would have caused the deflection € - The fictitious stress
fq whi ch coul d have caused deflection 61 can be evaluated in terms of the crit-
ical Euler Ioad by substituting £, and €_ in equation (16) for a sinusoidal

|

elastic curve
51 19
L (19)

It is now necessary to determine what eccentricity e on a straight colum cor-

responds to the deflection € in Salmon’s originally bent colum. The two
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conditions are conpared in figure 3. Consider Salnon's colum (fig. 3A) with

an original deflection €l and bent under a small load P to an additional de-

flection dwith sinusoidal curvature. From equation (12)

€

1 P
By al gebraic tranefornation
_ P/W
5 =€y | T- P/ (21)

whi ch, when PIWis small, becones approximtely

& = (p/W) (22)

€1

If the colum were originally straight with the same load P applied with an
eccentricity e such that the same deflection dresulted (fig. 3B), there is
obtained from the secant formula for eccentric |oad2

2
b = e(sec Ly/2 = 30
5 \[ar - 1) =elsec \[5 5T -1) (23)
Since in the Euler formula
2 2 2
%< ®I L 7
W=wA = I, and T V] (24)

Substituting (24) in (23) gives

2
& = e(sec Em{; - 1) (25)

Tables of integrals 8 express the secant of an angle in terms of the series
2 b 6
SGCX=1+-§T+E};—+%—?—+ _____ (26)

Wth PIWsmall, terns beyond the first two of (26) are negligible, and (25) be-
coms very nearly
1[2]? 1I2P
8 = (l+gr-1) =e (g7) (27)

g-:Pierce, B. O, A Short Table of Integrals, third edition revised, New York,

1929,
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Equating (27) with (22) gives

€_P
15 =e¢ (%‘ﬁ?) (28)
. 2 .
Since ﬁ?’ is very nearlyg, el = g e (29)
Newl in estimated the relationship of e to %_fron1a different basis, & but ar-

rived at the same values as in (29), pointing out that € 1 could be replaced by
QE with results that would check quite closely with the secant fornula

Substitution of (29) in (19) gives
2
£ _DEI™ e

Substitution of expression (24) for the critical Euler load on a pin-ended
colum in (30) gives

£o = vh (£5) (31)

2
In a rectangular colum, A =bhbd and S = 9%— ( d measured in the direction of

eccentricity of the load), fromwhich

15e ,
f=v (59 (32)
Now let fp in equation (18) be replaced by MS , a stress induced by a side |oad
that is Tj;dependent of the axial load. Let fs be replaced by z PIA, a stress

induced by a side load that is proportionaI'TB the axial load. Note that either
MS or z PPA may be entirely mssing in actual |oading conditions

Substituting the equivalents for f, = £, f,, and 3 in equation (18) gives
15e :
W (—%E) +M/S + z P/A p/A
T e o=t (33)

Equation (33) expresses the condition for breaking |load, since wis the Euler
critical or breaking stress. The same relation holds for safe or design |oad
by substituting ¢ , the Euler safe working stress, for w. Equation (33) then
becones

15e
c(2d)+M/S+zP/A+_I_,&

fo c

=1 (34)
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The available value for the bending stress fo5  when all loads are on is now |im

ited by the safe bending stress value f. In the extrene fiber on the concave
side of the colum) f, and PLA are additive, and their sum cannot be pernitted

to exceed f (as prET/i ously noted under "Analysis of Conbined Stresses)”
analysis leading to equation (11) fo was not applied, so for Salnon's relation-

-1
ship to hold, fg or its equivalent ¢ (—g%) shoul d be deducted fromthe sum

f, +PA Then, for the condition of safe loading, the sum £, + P/A -o ("i

cannot exceed f . To solve for the maxi num safe |oad using the assunption de-
vel oped under "Analysis of Conbined Stresses,”

fo+P/A-c(-:%-Z-)=f

. 1 .
By transposition, fo=f -PA+c —2—3— and equation (34) then becomes

¢ (-lg—Z—) + M/S + 2z P/A P/A
' —+ 7 =1 (35)

f - P/A+ c(%—z) :

Al gebraic transformation of equation (35) by clearing fractions and collecting.
terns gives a nore sinple form
P/A( )+M/o+zP/A

P/A
f - P/A c

-1 (30

the general equation for the maxi num safe value of any conbination of side |oads
and eccentricity on long col ums.

Equation (36) is in a general formfromwhich equations for a nunber of special
cases can be readily derived by dropping the inapplicable terns. For exanple,
if all side load is proportional to axial load, and axial load is eccentrically
applied, the term MS is dropped. |If all side load is proporfional to axial
load, and axial load is centrally applied, both MS and PIA" (3g3) are dropped.

Were there is eccentricity but no side load, both MS and z (P/A) are dropped.
Ot her loading conditions can be simlarly represented by suitable sel ection

of terms. \Where there is neither side load nor eccentricity, all three terns
in the numerator of the first fraction of (36) disappear, |eaving only

P/A =1 or PA=c . These are the same processes as in equation (9) for short

coI ums; it is to be remembered, however, that ¢ in equation (36? is the safe
| ong-col umm stress, while ¢ in equation (9) is the safe short-colum stress.

Because of the nethod of its derivation equation (36), like equation (9), is
applicable only to colums of square or rectangular cross section.
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Equation (36) or any of the specialized equations derived fromit can be solved
for PPAor for MSc , if desired to facilitate ny particular design problem It
Is to be noted that solution for P/A results in nost cases in a quadratic equa-
tion for which there are two roots of the form

2
-lb-tVb -4 ac

ca

The root using the mnus sign before the radical is used, since the root using
the plus sign would give an inpossible result. Newin published these equations

inaformin which they are solved for P/A l

Equation (36) is devel oped fromthe assunption that maxi mum moment and maxi num
deflection occur at midlength of the colum. This is true for eccentric axial
| oad and for side |oad applied symetrically along the length, but is not true
with large side |oads unsynmetrically placed along the length of the col um.
Recognizing this point, Newin made the follow ng recomrendations in regard to
unsynmmetrically applied side |oad.

1. For a single concentrated side load, the stress under the [oad can be used
regardl ess of the position of the side load with reference to the length of the
colum. Flexural stress fromside load is maxinum at this point.

2. The stress to use with a system of side loads is the maxinum stress due to
the system \here the systemof side |oads is such that maxi mum nonment from
side load is present near the end of the colum, some slight error on the side
of overload wll occur.

Col ums of Internedi ate Length

New in chose a lower limting value of 20 for the slenderness ratio (%) in his

| ong-colum formula (36). This limt was chosen as being approximtely the
lower |imt for values of K (slenderness ratio separating intermediate- and
| ong-col um groups) in the nost common species and grades for structural use
In many species and grades, the K value exceeds 20, and formula (36) my be
used for internediate col ums com ng under the Forest Products Laboratory

fourth-power parabolic fornulg‘instead of the Euler formula. Were this is
the case, the value of ¢ in equation (36) is determned from the parabolic in-
stead of the Euler fornula, but use of equation (36) is otherw se the sane.
For colums wth slenderness (%) rati os between 11 and 20, the safe |oadings
under side |oad and eccentricity may be determ ned by straight-line interpola-
tion between equation (9) for % = 11 and equation (36) for % + = 20. Loadi ngs
thus determned may be somewhat in error on the conservative side
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Exanpl es

Assume a species and grade of wood having the follow ng properties:

1,600,000 pounds per square inch

1,600 pounds per square inch
1,200 pounds per square inch (for short col um)

o—m
TR

Values of ¢ for internediate or long colums are obtained with the Wod Hand-
book formulas. 2

Assume a 6- by 8-inch (nom nal dinensions) colum in various |engths and under
various conditions of loading. The side |oads and eccentricity are assuned as
acting to bend the colum in the 8-inch direction. The actual cross-sectional
dimensions are 5-1/2 by 7-1/2 inches.

The design of the colum in these exanples provides only for flexure in the 8-
inch direction. The colum is assuned to be stable or supported so that there
is no deflection in the 6-inch direction; if sinultaneous deflection in both
directions is possible, the analysis becones nore conplex. For the purpose of
determning limts of application of the formulas in the exanples, the slender-
ness ratio is based on 7-1/2 rather than 5-1/2 inches.

Long Colum with Side Load and Concentric Axial Load

L .
Let the colum be 20 feet long, so that g =32. Asume a side load of 75

pounds per foot of length, uniformy distributed. Determne the safe axia
| oad centrally applied.

Equation (36) is utilized by dropping the terns representing eccentricity and
side | oad proportional to end |oad, so that it becomes

M/S P/A
F-pA*T ¢ =1
Since MS is known, the equation is solved for P/A giving

| 2
P/A = (f; C) - \/ (z'_;"_g') - C(f - M/S) (37)
_T5x20x20x12x6xhx2 _
M/s = T x 1l x 15 x 15 = 875 p.s.i.

2 Forest Products Laboratory Wod Handbook. U S. Dept. of Agr., revised 1955)
p. 216.
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0.274 x 1,600,
CcC = 7 5; x,gzo OOO = ,4‘28 posoio

f+c 1,6000 + 428

. 2
P/A = 1,014 - \/ (1,014) - 428 (1,690 - 873) = 167 p.s.i.

The safe load is 5.5 x 7.5 x 167 = 6,900 pounds.

Eccentric Axial Load on Long Col um

Let the colum be 20 feet long, and the eccentricity be 2-1/2 inches, with no
si de | oad.

Equation (36) takes the form

P/A (2 p/a

F-pAt e -1

whi ch, solved for P/A gives

2
P/A-—f+C(l+ 2d - [f+0(l+ Ed)] - of (38)

f = 1,600 p.s.i. and ¢ = 428 p.s.i. as before

(L+328) =1+10.X5%x2 35
5d 2x15 x 2

by +23.50 = 1,549

i

2 .
P/A = 1,549 - \/ (1,549) - (428) (1,600) = 240 p.s.i.

The safe load is 5.5 x 7.5 x 240 = 9,900 pounds

If the length of the colum is 12-1/2 feet, so that L. 20, the solution is the

same except for the value of ¢ . Since K = 23.4, which is greater than 20, the
fourth-power parabolic formula is used, and ¢ = 986 pounds per square inch
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Substitution of this value in equation (38) gives P/A = 335 pounds per square
inch. The safe load is 5.5 x 7.5 x 335 = 13,800 pounds.

Eccentric Axial Load on Short Col um

Let the colum be 7 feet long, so that L. 11.  The eccentricity is 2-1/2 inches
and there is no side |oad. Determ ne thg‘safe | oad.

6e
Equation (8) is B/A i,d + P({A = 1.

When solved for P/A, this becones

p/A = ——p (39)
f+c (E‘)

- e .S
CcC = 1,200 PnS.i., f = 1,600 PlSoic’ Ia- = 15 x 2 =

t
il

1,200 x 1,600 '
P/A = 1,600 + 2,500 = 480 pounds per square inch

The safe load is 5.5 x 7.5 x 480 = 19,800 pounds.

Eccentric Axial Load on Internediate Col um

If the colum is 10 feet long, so that % =16, the safe load is obtained by
straight-line interpolation between the val ues for % = 11 and %1" = 2.

19,800 - 5/9 (19,800 - 13,800), = 16,500 pounds.

Axi al Load Known

VWere P/A has a known value and it is desired to determne the permssible side
| oad, equations (9) or (36) or any nodifications thereof can be solved for MS .
Since M S appears only in the first power in either equation, solution for it
offers no special problems. Having determined MS , the pernissible side |oad
for the assumed conditions can be found.
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Eccentricity and Two Side Loads

A 4- by 16-inch (nominal) nenber is used with width vertical in the upper chord
of a roof truss. It supports a nunber if uniformy distributed purlin |oads
with purlin assumed to give full lateral support so that the menmber qualifies
as a short colum. The roof systemis designed so that the flexural stress
in the menber fromthe roof [oads through the purlins in one-half the axial
stress in the menber fromthe truss reactions. There is a additon a concen-
trated | oad suspended near the center of length of the nenber, causing a flex-
ural stress of 200 pounds per square inch. The design at the panel points of the
truss is such that the axial load is centered at a point 1.55 inches above the
center of width of menmber. Physical properties of the material are the
sane as in preceding exanples. Deternmine the safe axial |oad, assum ng
actual dinensions of 3-5/8 by 15-1/2 inches.

In this case, equation (9) in its complete formis used. Wen solved for P/A,
this becomes

c (£ - M/S)
P/A “r+c (88 +z) (40)
a
e L5 _ L 1
d ~ 15.5 " 10 -2
1,200 (1,600 - 200) 1,200 x 1,400 _
P/A = = g 1.~ 1,600+ 1,300 - 020 Pesel.
1,600 + 1,200 (75 3)
2
Z PIA = 222 = 262 pounds per square inch flexural stress frompurlin |oads

2

Safe axial load is 525 x 3-5/8 x 15-1/2 = 29,500 pounds

Col um Formul a Summari zed

The general formulas devel oped by Newin are

be
P/A () M/S P/A
/n (=3) + g + z P/ . PfA 1 9

for colums with slenderness ratios of 11 or |ess, and

p/a (222) + M/s + 2 P/A

+ B

f - P/A o (36)
for colums with slenderness ratios of 20 or nore, where
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Pl A
MS

direct conpressive stress induced by axial |oad.
flexural stress induced by side |oads that are independent of end

| oad.
c = allowable unit working stress in conpression parallel to grain for
a colum of the slenderness ratio under consideration with cen-
trally applied axial load and no side |oad.
al lowabl e unit working stress in flexure that is permtted where
flexural stress only exists.

—n
|

e = eccentricity.

d = depth of colum, measured in the direction of side |oads or
eccentricity.

z =ratio of flexural to direct conpressive stress when both result

fromthe same loading, so that the ratio remains constant while
the | oad varies.

Stresses for colums with slenderness ratios between 11 and 20 are determ ned
by straight-line interpolation between fornula (9) for a slenderness ratio of
11 and fornmula (36) for a slenderness ratio of 20.

These fornulas may be sinplified for some conditions of |oading by dropping
out certain terms; for exanple, if there are side loads and a concentrically
applied end |oad, e becones zero, and the first termin the numerator of equa-
tions (9) and (36) disappears. The fornulas can be solved for P/A or for MS
where this will facilitate their use.

These fornulae are applicable only to colums of square or rectangular cross
section.

Where side loads are such that maxi num deflection axial maximum flexural stress
do not occur at midlength of the colum, it is generally satisfactory to con-
sider MS as the maximum flexural stress due to the load or |oads, regardless
of its position in the length of the colum. Wen the point of this naxinum
stress is near the end of the colum, a slight error on the side of overload
will occur.
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stress, as deternmined by test and cal cualted by two nethods.



Figure 2.--Load on colum with sinusoidal curvature.
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originally bent colum, A, Salmon's originally bent colum; B,
straight colum with eccentric |oading.



SIDE LOADS AND ECCENTRICITIES ACTING IN TWO DI RECTI ONS ON_COLUWNS

Suppl enent to

FORMULAS FOR COLUMNS WTH SIDE LOADS AND ECCENTRICI TY

By

C. B. NORRI'S, Engineer
and
LYMAN W WOOD, Engi neer

Cct ober 1951

This supplement presents fornulas for colums with stresses and deflections re-
sulting from side |oads or eccentricities in nore than one direction. The con-
cept is thus broadened fromthat of the main body of this report, which deals
with side loads and eccentricities in the same plane and assunmes that deflection

of the colum takes place only in that plane

A solution of this problem for short colums is not difficult, since it is
necessary only to sumup the stresses wthout taking into account the deflec-
tions. Consider equation (9), using the same notation for stresses and ecoen-
tricities in one direction and an equivalent notation with prime superscripts
for the counterparts in a direction at right angles. Equation (9) then becones

P 6o , Ge' M, 6 M' P .
i (d + 5 ) + stgrty (z + 2')

o>l

f + = 1 (91)
Note in the above that P is the full conpressive |oad, causing bending stresses
from eccentricity in both directions in addition to the direct conpression.
Equation (9) defines the condition for maximum all owabl e stress in the extrene
fiber, which in this case is on a corner rather than along one side of the

col um.

The problemin long colums is sonmewhat more conplex, since the deflections
nust be considered, but an analysis along lines simlar to that for short col-
urms seens possi bl e.
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Equation (17) has for its counterpart

6 4 t P
€1 + 2 + &3 . L
T = !
Yo W (17)

representing deflections at right angles to those of equation (17). Note here
that W the critical Euler load, differs from Wexcept for colums of square
cross section, where the two are the sane.

Substitution of stresses for deflections gives a counterpart to equation (18)

] 1 ]
f1 +fo + ¢ P .
S - MV S | (18)
£ Aw

o

Substitution of equivalent stresses gives a counterpart to equation (33)

156’ M!
WEE) +ETr ety g
! + T 1 (333

fo ) Aw

1
Equations (33) and (33) are solved for  and £, fo » respectively, the stresses

corresponding to the total deflections when all eccentric and side |oads are on.
This gives

L loe M, P
£ =24 i A (33)
T Aw
and
15e' M! P.
v w! ‘2"?‘1T"+§T+ z! Y (33Y)
fo P

Let ft be a total stress corresponding to the total of all deflections in both

directions. For safe loadings, use ¢ and ¢’ instead of wand w (in square
colums, ¢ = ¢' ). Then
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15¢ M P 15e' M!' P
: C §%~ +g+zyg o! Bqr + g7+ z! Y
f,o=f +f = +
& E_ P (37)
l'Ac 1 - 7t

By a reasoning anal ogous to that |eading to equation (35), the safe stress f
must be equal to

P 1oe 1e!
fy+ R -¢3qg - ¢' o

or by transposition

P lzg ‘ 15¢"

fg=f-F+caqg +c aq (38)
Elimnation of ft bet ween equations (37) and (38) gives
15¢ M P, 15 M' P
c +o4+4 27T o +or+a' T . .
2d_" 8 A, 24" 8! A B, L, o156 (39)
1-E 1.2 A 2d d
c AcT -

a counterpart of equation (35).

Al gebraic transformation of equation (39) by clearing fractions and col | ecting
terns gives the form

My My Pgyqph o MM . 156, 1500 By (2 4+ 2l 4 100 oy 1ol
S §TA(-Z Sc' S'c¢ 24 2ar ()(E'T.c 2dc 2d')

= (f - %), (1 - ;1;'5)_ (1- ;\%T) (40)

Equation (40) defines the condition for safe loading. It is somewhat conplex,
but in its general form any conbination of side |oads and eccentricities can
be represented by it. It may be sinplified for some conditions; for exanple
z and z' may be equal or one or both may be zero; or in square col unus,
c=candd-=d".

Equation (40) is a cubic equation in P/A so that, with other,quantities known,
three possible values for P/A are indicated. O the three, the |east val ue that
that is not imaginary should be used in design. Solution for

M orM' is nore sinple and yields only one val ue
s ST
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