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Introduction

The design of columns with side loads and eccentric end loads is an old problem
that his received attention from many authors. General textbooks such as those

 by Church    or Maurer and Withey,   and the more specialized work of Salmon  on
columns are among the many publications that have dealt with the subject. The
treatment of short columns, considered as prisms and with stresses due to de-
flection neglected, is relatively simple, but long columns with deflection
stresses are more complex.

Critical loads on centrally loaded long columns that fail,by bending can be
calculated satisfactorily with the Euler formula. Additional formulas of sat-
isfactory accuracy have been developed for long columns with eccentric end load
or with certain specific combinations of side load with eccentric end load   
These latter formulas, however, require rather cumbersome trial calculations
involving the secant of an angle that can be determined only indirectly; they
have the further disadvantage that a separate formula must be developed for
each condition of side loading.

Recognizing the difficulty in applying the secant formulas to problems of safe
loads, on long columns with side loads and eccentricity, Newlin   sought a sim-

  This is an amplification and explanation of an article of the same title by J.
 A. Newlin, formerly Chief, Division of Timber Mechanics, Forest Products
Laboratory, published in Building Standards Monthly, December 1940. The
formulas are also given in “National Design Specification for Stress-grade
Lumber and Its Fastenings," published by the National Lumber Manufacturers
Association. Acknowledgment is made to C. B. Norris of the Forest Products
Laboratory staff for review and confirmation of Newlin’s analysis. First
report of this number published in 1950.

  Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
  Church, Irving P., Mechanics of Engineering, New York, 1914.

  Maurer, Edward R. and Withey, Morton O., Strength of Materials, New York, 1940.

 Salmon, E. H., Columns, London England, 1921.
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lified method of design. He succeeded in developing a general formula in which
eocentrioity is simply represented and in which any condition of side loading
can be expressed in terms of the bending stress induced by it.  His formula,
while somewhat more approximate than the secant formulas, has as much accuracy
as exists in the present state of knowledge of the properties of wood or of the
conditions under which wood columns are loaded. The formula is not difficult
to apply and is believed to be highly useful in the design of wood columns.

Newlin's original report and published article were rather brief, and a number
of steps in his derivation of the long-column formula were omitted. The deri-
vation of a similar formula for short columns was also omitted. The present
report has been prepared to fill in the omitted material and to illustrate the
application of the formulas by means of suitable examples.

Notation

(All units except ratios are in pounds, inches, or combinations thereof)

A =
C =
E =
F =
I =

Report No.

area of the cross section of a column.
unit failing stress in compression parallel to grain.
Young's modulus of elasticity of the column material.
unit failing stress flexure.
moment of inertia of the cross section of a column around the neutral

axis. As used here, the neutral axis is perpendicular to
direction of eccentricity or side load.

value of the slenderness ratio     dividing
columns.

length of a column or, more specifically,

In a rectangular

intermediate from

unsupported length.

the
column,

long

slenderness ratio of a column. As used here, d is measured in the
direction of eccentricity or side loads.

generally, the bending moment on a column from eccentricity or side
load, but is used here also in the more restricted sense of bend-
ing moment caused by the portion of side load that is independent
of axial load.

generally, the flexural stress induced in the outer fiber of a col-
umn from eccentricity or side load, but used here also in the
more restricted sense of stress in the outer fiber induced by the
portion of side load that is independent

axial load (end load) on a column, whether
tally applied.

direct compressive
column.

section modulus of
in the direction

of a rectangular

1782

stress induced by axial

of axial load.
centrally or eccentri-

load (end Load) on a

the cross section of a column related to flexure
of eccentricity or side loads. Section modulus

column is

-2-



W = critical Euler load on a pin-ended column.

b = width of a rectangular column.
c = allowable unit working stress in compression parallel to grain for a

column of the length under consideration with centrally applied
axial load and no side load; this may be a short-column, interme-
diate-column, or long-column stress.

d = depth of a rectangular column) measured in the direction of eccen-
tricity or side load.

d = additional deflection at midlength of a long column due to axial
load.

e = eccentricity, the distance from the center of gravity of the column
section to the center of gravity of the applied load. Eccentri-
city in this analysis is considered as being parallel to one of
the sides of a rectangular column.

= increments of deflection at midlength of a column in
Salmon’s analysis.

f = allowable unit working stress in flexure, as in a simple beam with
transverse loading only.

= flexural stress corresponding to the total deflection at midlength
of a long column when all eccentric and side loads are on.

= increments of flexural stress corresponding to increments of

deflection

 = fictitious flexural stress due to eccentricity of axial load assumed
to replace the original deflection of the column in Salmon’s
analysis.

m , n = exponents in the general form of the equation for strength under
combined loading.

w = critical Euler unit stress on a pin-ended column.

= total deflection at midlength of a column in Salmon’s analysis when
all loads are on.

z = ratio of flexural to direct compressive stress; that is, M/S
divided by P/A more specifically, a ratio of flexural stress to
direct compressive stress when both result from the same loading,
so that the ratio remains constant while

Analysis of Combined Stresses

the load varies.

Textbooks on strength of materials  show how the combined stress on a prism or
short column due to axial and flexural loads is represented by the sum M/S
P/A. In this expression, M is bending moment, which may be induced by direct-
acting side loads, by eccentricity of the axial load, or by both. For purposes
of design in some structural materials, the sum M/S + P/A is not permitted to
exceed a safe stress value, assumed to be the same in bending as in compression.

Where strength in bending is unequal to that
with wood, there is a problem of determining
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value for various combinations of load. It is recognized that the strength
value under combined stress lies generally somewhere between the two values
for separated stresses and is influenced by the relative proportions of each.
The relationship which describes the condition for failure under combined
stress may be of the interaction type.

(1)

where M/S and P/A are stresses applied in flexure and compression and F and
C are the corresponding ultimate strength values under separate loading. Since
F and C are known values, either M/S or P/A can be calculated by assuming a
value for the other. Then the sum M/S + P/A becomes the strength under the
assumed combination of load.

Newlin and Trayer    made tests of clear Sitka spruce under combined loading
which showed the relation of the strength to the relative proportions of bend-
ing and axial stress. The curve of maximum stress from figure 6 of their re-
port,  as obtained from these test results, is shown as a solid line in fig-
ure 1.

The most simple equation of type (1) is with exponents m and n each equal to
unity; this relation gives combined strength values in clear Sitka spruce indi-
cated by the lower broken-line curve in figure 1. A much closer agreement
with the test results is obtained if m = 2, giving the upper
of figure 1.

broken-line curve

From consideration of figure 1, it is apparent that strength
stress is estimated very closely from the relationship

under combined

(2)

This relationship, however, is somewhat complex to handle as a formula, espe-
cially when M/S is broken up into two or three components representing side
loads and eccentricity of axial load. Newlin’s formulas: for short columns
indicate that he used the form

(3)

which is simpler of application. This relationship (3) has also had extensive
use by other designers dealing with the problem of combined loads. Figure 1
shows that it gives rather conservative estimates of strength, but not far in
error, with the lower ratios of bending to total stress such as are most likely
to occur in short columns.

6
-Newlin, J. A. and Trayer, G. W., Stresses In Wood Members Subjected to Com-

bined Colume and Beam Action, Forest Products Laboratory Report No. 1311,
1941.
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In the case of long columns, Newlin simplified his safe-loading formula by
assuming that the ultimate strength under combined load is equal to the bending
strength. This is explained as follows. Long columns are those in the range
in which the Euler formula applies. The Euler formula is based on elasticity
rather than strength and can be applied only if P/A iS less than the propor-
tional-limit stress in compression. This stress is usually assumed to be two-

thirds of the compressive strength of wood, or 2C/3 by the notation of this re-
port. The shortest column in the Euler class will reach its maximum load at
this stress. The unit flexural strength, being a property of the material, is
unaffected by the length of the column. When stress due to an axial load on a
long column equals 2C/3, and if it is assumed that the maximum stress developed
under combined load is equal to the flexural strength, the available bending
stress is F - 2C/3, and the ratio of bending stress to total stress becomes

This is a minimum value for that ratio in long
Sitka spruce (fig. 1), the minimum ratio is

columns. In the case of clear

It follows that the long-column formula leads to ratios within the range of 0.64
to 1.00, as indicated by the heavy horizontal line at the top of figure 1. Cor-
responding ratios based on safe rather than ultimate stresses and applicable to
other species range from about 0.55 to 1.OO, as indicated on figure 1. It can
be seen that, in the range from 0.55 to 1.00, the maximum stress actually de-
veloped in test is not much short of the flexural strength.

If the relation expressed in equation (2) were used to estimate maximum stress
in a long column, a formula of considerable complexity would result. Equation
(3) would give
mates of load.
columns equals

a-usable formula, but would result in overly conservative esti-
The assumption that strength under combined loading of long

flexural strength has therefore been chosen.

Short Columns

Wood columns with slenderness ratios (ratio of unsupported length to lease
dimension of cross section) of 11 or less receive both compression and flexural
stresses under eccentric axial load, but it is not necessary to assume any
additional stress due to deflection. The combined stress, derived as for prisms

by well-known principles of mechanics    is expressed by the quantity P/A + M/S.
In this expression M is bending moment, which may be induced by eccentricity of
an axial load, by direct-acting side loadsj or by both. For maximum safe load,
the relationship of equation (3) is used with safe stresses instead of ultimate
strength values.

   Newlin, J. A. and Gahagan, J. M., Tests of Large Timber Columns and Presenta-
tion of the Forest Products Laboratory Column Formula. U. S. Dept. of Agr.
Tech. Bull. No. 167, 1930.
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(4)

Equation (4) is directly applicable where there are side loads and concentric
axial load. If the end load is proportional to the side load (as in upper
chord members of roof trusses, with bending stress induced by roof loads acting
through purlins, and with axial loads proportional to the same roof loads), M/S
can be replaced by z P/A, and equation (4) becomes

(5)

The bending stress M/S may be induced by eccentricity of the axial load instead
of by side load. In that case, the external moment M is expressed by the quan-
tity, Pe  . The section modulus S may be replaced by     ( d measured in the

direction of eccentricity). Then

(6)

But in a rectangular column, A = bd and I =         Substitution of these values
in (6) gives

Substitution of expression (7) in equation (4) gives

for the condition of

Where both side load
represents the total
may be considered as

(7)

(8)

eccentric axial load and no side load.

and eccentric axial load are present the term M/S in (4)
of bending stress from both. Furthermore, the side load
composed of two portions,

(M/S) and the other proportional to axial load
stress is thus expressed by

one independent of axial load
(z P/A). The total bending

and equation (4) becomes

where M/S has the more restricted
of side load which is independent
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meaning of bending stress due to that portion
of axial load.
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Equation
rived by
to axial

(9) is a general equation from which any of the others is readily de-
dropping certain terms. For example, if all side load is proportional
load, and axial load is eccentrically applied, the term M/S is dropped.

If all side load is proportional to axial load, and axial load is centrally  

applied, both M/S and P/A      are dropped, and equation (5) results.  If there

is eccentricity but no side load, M/S and z P/A are dropped, and equation (8)
results. Other loading conditions can be similarly represented by suitable se-
lection of terms. Where there is neither side load nor eccentricity, all three
terms in the numerator of the first fraction of (9) disappear, leaving only

It is to be noted that the term P/A       in equation (9) is developed from con-

sideration of a rectangular cross section. Equation (9) is therefore applicable
in this form only to columns of square-rectangular cross section.

Any of the foregoing equations can be solved, either for P/A or for M/S, if de-
sired to facilitate any particular design problem. Solution for P/A or M/S
will be easier if any redundant terms are first dropped. Newlin published
these equations in a form in which they are solved for P/A    

Long Columns

In long columns of the Euler class, the problem of eccentric and side loads is
made more complex by the addition of stress induced by the curvature of the

column itself. The secant formulas  are applicable but rather difficult to use
in problems of determination of safe load. Furthermore, it is desirable to ex-
press all conditions of side loading in terms of their resulting moments or
stresses, thus making one general formula applicable to all loading conditions.

Newlin   succeeded in doing this.

In developing a general formula for the condition of side and eccentric axial
loads, use is made of a relationship developed by Salmon~ for columns bent to
sinusoidal curvature. While it is recognized that the most common side load-
ings do not produce sinusoidal curvature, Salmon showed that with small amounts
of curvature, the deflection is practically the same whether the elastic curve
is circular, parabolic, or sinusoidal. The error introduced by assuming sinu-
soidal curvature is probably of lesser magnitude than approximations in the
present state of knowledge on the strength propetiies of wood or on the con-
ditions under which wood columns are loaded.

Salmon considered a column originally bent to a sinusoidal curvature with a de-
flection    at midlength (fig. 2). Under the action of an axial load P , the de-
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fleotion increases to a value    The original curvature of the column is rep-

resented by the equation

(10)

For this condition, Salmon arrived at the relationship

(11)

where P is the axial load on the oolumn and W is the critical Euler load (nota-
tion not the same as that used by Salmon), By algebraic transformation, equa-
tion (11) becomes

(12)

sinusoidal elastic curve is that deflection is proportionalOne property of a
to the stress causing it. Taking, for example, the equation for sinusoidal
curve (10), there follows by differentiation

(13)

Since this
moments in

is an elastic curve, the general equation of external and internal
bending may be applied:

Substituting       from equation (13)

(14)

(15)

From the general expression for bending stress equal to M/S,

stress (16)

Equation (15) shows the proportionality of moment, and equation (16) shows the
proportionality of stress to deflection.
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Newlin used Salmon's originally bent column (fig. 2) to represent an eccentri-
tally loaded long column with axial load P and an eccentricity corresponding
to the deflection If side loads are applied to such a column, additional

deflections                may result. If curvature remains sinusoidal, the summa-

tion of deflections will hold the same relationship to     as

holds in equation (12). Then

(17)

It has already been shown in equation (16) that, with sinusoidal curvature, de-
flection is proportional to stress. Since each of the curves in figure 2 is
assumed to be sinusoidal, all of the deflections   

have the same factor of proportionality to the
the deflection ratio

is thus equal to a stress ratio

The load ratio P/W can also be replaced by the corresponding stress ratio

where w is the critical Euler stress. Equation (17) then becomes

Now let     be replaced by a fictitious stress      which, if it had been present

bending stresses that cause them

(18)

in Salmon's column, would have caused the deflection      The fictitious stress

    which could have caused deflection   can be evaluated in terms of the crit-

ical Euler load by substituting in equation (16) for a sinusoidal

elastic curve

(19)

It is now necessary to determine what eccentricity e on a straight column cor-
responds to the deflection     in Salmon’s originally bent column. The two
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conditions are compared in figure 3. Consider Salmon's column (fig. 3A) with
an original deflection    and bent under a small load P to an additional de-

flection δ δ with sinusoidal curvature. From equation (12)

By algebraic traneformation

which, when P/W is small, becomes approximately

(20) 

(21) 

(22)

If the column were originally straight with the same load P applied with an
eccentricity e such that the same deflection δ δ resulted (fig. 3B), there is
obtained from the secant formula for eccentric load

Since in the Euler formula

Substituting (24) in (23) gives

Tables of integrals  express the secant of an angle in terms of the series

(23)

(24)

(25)

(26)

With P/W small, terms beyond the first two of (26) are negligible, and (25) be-
coms very nearly

(27)

  Pierce, B. O., A Short Table of Integrals, third edition revised, New York,
1929.
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Equating (27) with (22) gives

(28)

Since      is very nearly (29)

Newlin estimated the relationship of e to    from a different basis,   but ar-

rived at the same values as in (29), pointing out that could be replaced by

with results that would check quite closely with the secant formula.

Substitution of (29) in (19) gives

Substitution of expression (24) for the critical
column in (30) gives

(30)

Euler load on a pin-ended

(31)

In a rectangular column, A = bd and S =       ( d measured in the direction of

eccentricity of the load), from which

(32)

Now let     in equation (18) be replaced by M/S , a stress induced by a side load

that is independent of the axial load. Let       be replaced by z P/A , a stress

induced by a side load that is proportional to the axial load. Note that either
M/S or z P/A may be entirely missing in actual loading conditions.

Substituting the equivalents for                                in equation (18) gives

(33)

Equation (33) expresses the condition for breaking load, since w is the Euler
critical or breaking stress. The same relation holds for safe or design load
by substituting c , the Euler safe working stress, for w . Equation (33) then
becomes

Report No. 1782 -11-
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The available value for the bending stress        when all loads are on is now lim-

ited by the safe bending stress value f.  In the extreme fiber on the concave
side of the column)      and P/A are additive, and their sum cannot be permitted

to exceed f (as previously noted under "Analysis of Combined Stresses)"
analysis leading to equation (11)     was not applied, so for Salmon's relation-

ship to hold,     or its equivalent              should be deducted from the sum

     + P/A. Then, for the condition of safe loading, the sum    

cannot exceed f . To solve for the maximum safe load using the assumption de-
veloped under "Analysis of Combined Stresses,”

By transposition,                                  and equation (34) then becomes

(35)

Algebraic transformation of equation (35) by clearing fractions and collecting.
terms gives a more simple form

(36)

the general equation for the maximum safe value of any combination of side loads
and eccentricity on long columns.

Equation (36) is in a general form from which equations for a number of special
cases can be readily derived by dropping the inapplicable terms. For example,
if all side load is proportional to axial load, and axial load is eccentrically
applied, the term M/S is dropped. If all side load is proportional to axial
load, and axial load is centrally applied, both M/S and P/A       are dropped.

Where there is eccentricity but no side load, both M/S and z (P/A) are dropped.
Other loading conditions can be similarly represented by suitable selection
of terms. Where there is neither side load nor eccentricity, all three terms
in the numerator of the first fraction of (36) disappear, leaving only

P/A =c l or P/A = c . These are the same processes as in equation (9) for short
columns; it is to be remembered, however, that c in equation (36) is the safe
long-column stress, while c in equation (9) is the safe short-column stress.

Because of the method of its derivation equation (36), like equation (9), is
applicable only to columns of square or rectangular cross section.
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Equation (36) or any of the specialized equations derived from it can be solved
for P/A or for M/Sc , if desired to facilitate my particular design problem.  It
is to be noted that solution for P/A results in most cases in a quadratic equa-
tionj for which there are two roots of the form

The root using the minus sign before the radical is used, since the root using
the plus sign would give an impossible result. Newlin published these equations

in a form in which they are solved for P/A.  

Equation (36) is developed from the assumption that maximum moment and maximum
deflection occur at midlength of the column. This is true for eccentric axial
load and for side load applied symmetrically along the length, but is not true
with large side loads unsymmetrically placed along the length of the column.
Recognizing this point, Newlin made the following recommendations in regard to
unsymmetrically applied side load.

1. For a single concentrated side load, the stress under the load can be used,
regardless of the position of the side load with reference to the length of the
column. Flexural stress from side load iS maximum at this point.

2. The stress to use with a system of side loads is the maximum stress due to
the system. Where the system of side loads is such that maximum moment from
side load is present near the end of the column, some slight error on the side
of overload will occur.

Columns of Intermediate Length

Newlin chose a lower limiting value of 20 for the slenderness ratio     in his

long-column formula (36). This limit was chosen as being approximately the
lower limit for values of K (slenderness ratio separating intermediate- and
long-column groups) in the most common species and grades for structural use.
In many species and grades, the K value exceeds 20, and formula (36) may be
used for intermediate columns coming under the Forest Products Laboratory

fourth-power parabolic formula~ instead of the Euler formula. Where this is
the case, the value of c in equation (36) is determined from the parabolic in-
stead of the Euler formula, but use of equation (36) is otherwise the same.

For columns with slenderness     ratios between 11 and 20, the safe loadings

under side load and eccentricity may be determined by straight-line interpola-

tion between equation (9) for    = 11 and equation (36) for    = 20. Loadings

thus determined may be somewhat in error on the conservative side.
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Examples

Assume a species and grade of wood having the following properties:

E = 1,600,000 pounds per square inch
f = 1,600 pounds per square inch
c = 1,200 pounds per square inch (for short column)

Values of c for intermediate or long columns are obtained with the Wood Hand-

book formulas.2

Assume a 6- by 8-inch (nominal dimensions) column in various lengths and under
various conditions of loading. The side loads and eccentricity are assumed as
acting to bend the column in the 8-inch direction. The actual cross-sectional
dimensions are 5-1/2 by 7-1/2 inches.

The design of the column in these examples provides only for flexure in the 8-
inch direction. The column is assumed to be stable or supported so that there
is no deflection in the 6-inch direction; if simultaneous deflection in both
directions is possible, the analysis becomes more complex. For the purpose of
determining limits of application of the formulas in the examples, the slender-
ness ratio is based on 7-1/2 rather than 5-1/2 inches.

Long Column with Side Load and Concentric Axial Load

Let the column be 20 feet long, so that     = 32. Asumme a side load of 75

pounds per foot of length, uniformly distributed. Determine the safe axial
load centrally applied.

Equation (36) is utilized by dropping the terms representing eccentricity and
side load proportional to end load, so that it becomes

Since M/S is known, the equation is solved for P/A giving

(37)

  Forest Products Laboratory Wood Handbook. U. S. Dept. of Agr., revised 1955)
p. 216.
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The safe load is 5.5 x 7.5 x 167 = 6,900 pounds.

Eccentric Axial Load on Long Column

Let the column be 20 feet long, and the eccentricity be 2-1/2 inches, with no
side load.

Equation (36) takes the form

which, solved for P/A gives

(38)

f = 1,600 p.s.i. and c = 428 p.s.i. as before

The safe load is 5.5 x 7.5 x 240 = 9,900 pounds.

If the length of the column is 12-1/2 feet, so that    = 20, the solution is the

same except for the value of c . Since K = 23.4, which is greater than 20, the
fourth-power parabolic formula is used, and c = 986 pounds per square inch.

Report No. 1782 -15-



 Substitution of this value in equation (38) gives P/A = 335  pounds per square
inch. The safe load is 5.5 x 7.5 x 335 = 13,800 pounds.

Eccentric Axial Load on Short Column

Let the column be 7 feet long, so that    = 11. The eccentricity is 2-1/2 inches
and there is no side load. Determine the safe load.

When solved for P/A, this becomes

(39)

The safe load is 5.5 x 7.5 x 480 = 19,800 pounds.

Eccentric Axial Load on Intermediate Column

If the column is 10 feet long, so that      = 16, the safe load is obtained by

straight-line interpolation between the values for      = 11 and       = 20.

19,800 - 5/9 (19,800 - 13,800), = 16,500 pounds.

Axial Load Known

Where P/A has a known value and it is desired to determine the permissible side
load, equations (9) or (36) or any modifications thereof can be solved for M/S .
Since M/S appears only in the first power in either equation, solution for it
offers no special problems. Having determined M/S , the permissible side load
for the assumed conditions can be found.
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Eccentricity and Two Side Loads

A 4- by 16-inch (nominal) member is used with width vertical in the upper chord
of a roof truss.  It supports a number if uniformly distributed purlin loads,
with purlin assumed to give full lateral support so that the member qualifies
as a short column.  The roof system is designed so that the flexural stress
in the member from the roof loads through the purlins in one-half the axial
stress in the member from the truss reactions. There is a additon a concen-
trated load suspended near the center of length of the member, causing a flex-
ural stress of 200 pounds per square inch. The design at the panel points of the
truss is such that the axial load is centered at a point 1.55 inches above the
center of width of member. Physical properties of the material are the
same as in preceding examples. Determine the safe axial load, assuming
actual dimensions of 3-5/8 by 15-1/2 inches.

In this case, equation (9) in its complete form is used. When solved for P/A ,
this becomes

(40)

z P/A =         = 262 pounds per square inch flexural stress from purlin loads.

Safe axial load is 525 x 3-5/8 x 15-1/2 = 29,500 pounds.

Column Formula Summarized

The general formulas developed by Newlin are

for columns with slenderness ratios of 11 or less, and

for columns with slenderness ratios of 20 or more, where
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P/A =
M/S =

direct compressive stress induced by axial load.
flexural stress induced by side loads that are independent of end

load.
c =  allowable unit working stress in compression parallel to grain for

a column of the slenderness ratio under consideration with cen-
trally applied axial load and no side load.

f =  allowable unit working stress in flexure that is permitted where
flexural stress only exists.

e = eccentricity.
d = depth of column, measured in the direction of side loads or

eccentricity.
z = ratio of flexural to direct compressive stress when both result

from the same loading, so that the ratio remains constant while
the load varies.

Stresses for columns with slenderness ratios between 11 and 20 are determined
by straight-line interpolation between formula (9) for a slenderness ratio of
11 and formula (36) for a slenderness ratio of 20.

These formulas may be simplified for some conditions of loading by dropping
out certain terms; for example, if there are side loads and a concentrically
applied end load, e becomes zero, and the first term in the numerator of equa-
tions (9) and (36) disappears. The formulas can be solved for P/A or for M/S
where this will facilitate their use.

These formulae are applicable only to columns of square or rectangular cross
section.

Where side loads are such that maximum deflection axial maximum flexural stress
do not occur at midlength of the column, it is generally satisfactory to con-
sider M/S as the maximum flexural stress due to the load or loads, regardless
of its position in the length of the column. When the point of this maximum
stress is near the end of the column, a slight error on the side of overload
will occur.
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RATIO OF BENDING STRESS TO TOTAL COMBINED STRESS

Figure 1. --Strength values of clear Sitka spruce under combined
stress, as determined by test and calcualted by two methods.



Figure 2 .--Load on column with sinusoidal curvature.



Figure 3.--Straight column with eccentricity equivalent to Salmon’s
originally bent column, A , Salmon's originally bent column; B ,

    straight column with eccentric loading.
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Supplement
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- - - - -

This supplement presents formulas for columns with stresses and deflections re-
sulting from side loads or eccentricities in more than one direction. The con-
cept is thus broadened from that of the main body of this report, which deals
with side loads and eccentricities in the same plane and assumes that deflection
of the column takes place only in that plane.

A solution of this problem for short columns is not difficult, since it is
necessary only to sum up the stresses without taking into account the deflec-
tions. Consider equation (9), using the same notation for stresses and ecoen-
tricities in one direction and an equivalent notation with prime superscripts
for the counterparts in a direction at right angles. Equation (9) then becomes

( 91)

Note in the above that P is the full compressive load, causing bending stresses
from eccentricity in both directions in addition to the direct compression.
Equation (91) defines the condition for maximum allowable stress in the extreme
fiber, which in this case is on a corner rather than along one side of the
column.

The problem in long columns is somewhat more complex, since the deflections
must be considered, but an analysis along lines similar to that for short col-
umns seems possible.
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Equation (17) has for its counterpart

(171)

representing deflections at right angles to those of equation (17). Note here
that W1 the critical Euler load, differs from W except for columns of square
cross section, where the two are the same.

Substitution of stresses for deflections gives a counterpart to equation (18)

Substitution of equivalent stresses gives a counterpart to equation (33)

(181)

(331)

Equations (33) and (331) are solved for    and                        respectively, the stresses

corresponding to the total deflections when all eccentric and side loads are on.
This gives

and

(33)

(331)

Let    be a total stress corresponding to the total of all deflections in both

directions. For safe loadings, use c and c1 instead of w and w1 (in square
columns, c = c1 ). Then
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(37)

By a reasoning analogous to that leading to equation (35), the safe stress f
must be equal to

or by transposition

(38)

Elimination of     between equations (37) and (38) gives

a counterpart of equation (35).

Algebraic transformation of equation (39) by clearing fractions and collecting
terms gives the form

(40)

Equation (40) defines the condition for safe loading. It is somewhat complex,
but in its general form, any combination of side loads and eccentricities can
be represented by it. It may be simplified for some conditions; for example,
z and z1 may be equal or one or both may be zero; or in square columus,
c = c1 and d = d1 .

Equation (40) is a cubic equation in P/A so that, with other,quantities known,
three possible values for P/A are indicated. Of the three, the least value that
that is not imaginary should be used in design. Solution for

   or     is more simple and yields only one value.
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