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Abstract 

Current shear design technology in the United States for 
lumber or glued-laminated beams is confusing. This report 
summarizes shear stress and strength research including both 
analytical and experimental approaches. Both checked and 
unchecked beams are included. The analytical work has been 
experimentally verified for only limited load conditions and 
span-to-depth ratios. Future research is required to better 
define the effects of beam size, load configuration, checks, 
and combined stresses on shear design. 
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Introduction 

Current shear design technology in the United States for 
lumber or glued laminated beams is not well founded, may be 
too conservative in some cases, and is frequently ignored by 
engineering designers. Shear design requirements (American 
Institute of Timber Construction (AITC) 1986, National 
Forest Products Association (NFPA) 1986) are confusing and 
little understood. The objective of this report is to review the 
state of the art in shear design of rectangular wood beams. 

Shear stresses and strengths must first be defined. Local shear 
stresses act at a point in the beam and are dependent on the 
beam geometry and load configuration. Local shear failure 
occurs when the shear stresses parallel to the grain, i.e. shear 
stresses acting in the longitudinal-tangential (LT) or 
longitudinal-radial (LR) planes, exceed the shear strength of 
the beam. 

The shear strength of a wood member is difficult to quantify. 
It depends on test method, member size, load configuration, 
checks, splits or knots, grain slope, moisture content, and 
temperature. A pure local shear failure is difficult to attain 
since shear often interacts with bending and perpendicular- 
to-grain stresses. Additionally, the wood member may fail by 
cracks propagating from end splits or side checks. 

For unchecked members, both shear stress and strength are 
dependent on member size and load configuration. This 
complicates a generalized design procedure for all sizes and 
configurations. For checked members, different failure modes 
further complicate a generalized procedure. 

Shear Stress 

Shear stresses (τ) are local phenomena acting at a point in the 
beam. The resultant shear force (V) is defined as the integral 
of τ over a beam cross section: 

(1) 
The distribution of V along the length of the beam is easily 
calculated from applied loads and reactions at each support. 
The shear stress distribution at a cross section away from a 
support is approximated by elementary beam theory and is 
dependent on V at that cross section. The shear stress 
distribution at a cross section near a support, however, cannot 
be determined from elementary beam theory (Cowan 1962). 
These stresses can be computed using analytical or numerical 
techniques (Liu and Cheng 1979). 

Cowan (1962) experimentally found that the maximum shear 
stress near a support is about 33 percent greater than the 
maximum shear stress predicted by elementary beam theory. 
The distribution of stress, however, is considerably different 
at a support than the parabolic distribution of elementary 
beam theory for rectangular cross sections. 

Near supports, bending and perpendicular-to-grain stresses 
also occur in addition to shear stresses (Liu and Cheng 1979). 
Shear forces, therefore, can be associated with nonshear-type 
failures. For example, Bickel (1983) documented bending 
failures in floor trusses caused by shear reactions acting on 
top chord bearing extensions. In that case, the bending failure 
was located quite close to the support. Such locations are 
usually associated with shear failures. Several orthotropic 
failure criteria have been investigated for combined stresses in 
wood members (Cowin 1979, Goodman and Bodig 1971, 
Keenan 1974, Liu 1984a, Norris 1950, Tsai and Wu 1971). 
These failure criteria require strength properties (discussed 
later) that are difficult to measure. 



Shear Strength 

The evolution of allowable shear strength values has been 
traced from 1906 (Ethington et al. 1979). The early research 
summarized in that report recognized that flexural tests of 
lumber resulted in lower shear strengths than found from tests 
of small, clear, straight-grained specimens. That study traced 
the evolution of adjustment factors based on experience and 
compromise. 

Current shear strengths of small, clear specimens are given in 
American Society for Testing and Materials (ASTM) 
Designation D 2555. Adjustments for strength ratio and splits 
and checks to visually graded lumber are given in ASTM 
Designation D 245. Standard methods of establishing 
glued-laminated timber values are given in ASTM Designation 
D 3737. 

An ideal shear strength specimen would have a critical failure 
plane acted on exclusively by uniform shear stress. Such a 
state of stress is difficult to achieve. Experimental stress 
analysis of the standard test specimen ASTM D 143 has 
revealed a nonuniform shear stress distribution with a stress 
concentration near the corner (Coker and Coleman 1935, 
Radcliffe and Suddarth 1955). Keenan (1974) used wood 
tubes loaded in torsion to obtain a more uniform state of 
shear stress. It is difficult to fabricate wood specimens with 
proper grain orientation and without the development of 
residual stresses, which limits this approach. A 
butterfly-shaped specimen has been used to measure shear 
strength (Arcan et al. 1978) and shear fracture properties 
(Banks-Sills and Arcan 1983) of composite materials. 
Experimental results (Arcan et al. 1978) indicate a relatively 
uniform shear stress distribution in the failure plane. Liu 
(1984b) recently measured the shear strength of Douglas-fir 
using this specimen. 

The butterfly-shaped specimen appears promising for 
measuring clear wood shear strength. However, setting 
allowable shear strength values for beams from these data 
present certain difficulties. To overcome these difficulties, 
various researchers have considered the effects on shear 
strength of the following: 

1. Member size (Keenan 1974, Longworth 1977, Madsen and 
Nielsen 1978). 

2. Moisture content and temperature (Gerhards 1982). 

3. Grain slope variation (Liu and Floeter 1984). 

4. End splits and checks (Barrett and Foschi 1977, Murphy 
1979, 1980). 

5 .  Knots (Cramer and Goodman 1983). 

The shear strengths of timber beams have long been 
recognized as being lower than the shear strengths as 
measured in shear block tests. Wilson and Cottingham (1952) 
tested glued-laminated wood beams (both horizontally and 
vertically laminated) under two-point loading. The beams 
were 5- by 12-inch Douglas-fir and had a length-to-depth 
ratio, l /d, of 13.5. Longworth (1977) tested a number of sizes 
of Douglas-fir glued-laminated beams under two point 
loading. The beams had l /d ratios of approximately 5. 
Keenan et al. (1985) tested small sizes of several species of 
glued-laminated beams under a concentrated midspan load 
with l /d ratios of 1.5 to 5. Results of average shear strengths 
from these three references are included in figure 1. 

Foschi and Barrett developed both a theory (1976) and a 
design procedure (1977) to predict the shear strengths of 
glued-laminated beams. The theory is based on finite element 
simulations using quadratic isoparametric quadrilateral 
elements (Zienkiewicz 1976) with nonlinear constitutive laws 
for compression parallel and perpendicular to the grain. From 
the numerical stress analyses, Foschi and Barrett (1976) 
concluded that: 

1. The high shear stress near the support corners decays 
rapidly and contributes only to bearing-type failures. 

2. The maximum shear stress in regions removed from loads 
and supports is conservatively estimated by the elementary 
beam equation. 

Foschi and Barrett used the computed shear stresses in a two- 
parameter Weibull model to develop a strength theory that 
incorporates the effects of support, loading condition, and 
size. The Weibull parameters were calculated from data 
collected by Longworth (1977) for 5 beam configurations with 
30 replications of each. The parameters were calculated from 
a least squares procedure using only the mean values from 
each group. Foschi and Barrett (1976) then compared model 
predictions to shear failure loads for Griplam nail 
connections (Foschi and Longworth 1975), torque tubes 
(Keenan 1974, Madsen 1972), and beams (Keenan 1974). 

In a subsequent paper, Foschi and Barrett (1977) developed a 
design procedure by simplifying the analysis and 
incorporating the effects of support width. The final result 
was a set of tables for designing rectangular and tapered 
glued-laminated beams under various loading conditions for 
shear strength. This design methodology is now prescribed in 
the Canadian Standards Association design code (1984). 
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Figure I – Predicted fifth percentile shear strengths (Liu theory 
--- , Foschi and Barrett theory–)for various beam sizes 
and length-to-depth ( l /d) ratios for the following loading con- 
figurations: (a) uniform load, (b) concentrated midspan load, 
and (c) concentrated load at 0.1 l from the support. Experi- 
mental results for mean shear strength found by single or two- 
point concentrated loads are also included. x = Longworth 
(two-point load); 0 = Wilson and Cottingham (horizontally 
laminated); • = Wilson and Cottingham (vertically laminated); 
r = Keenan et a1. (MLR875533) 

Liu (1980) also developed a shear design methodology for 
glued-laminated beams. It was similar to that just described, 
in the sense that a stress analysis was substituted into a 
two-parameter Weibull model. Liu, however, used elementary 
beam theory to compute shear stresses. As mentioned 
previously, Foschi and Barrett (1976) concluded that this was 
a conservative approximation. By using these rather simple 
expressions for shear stress, Liu derived closed form 
expressions for design. The expressions are based on shear 
resultant force distributions in the beam. The stresses can be 
easily determined for any loading conditions. Liu also 
calculated the two Weibull parameters using Longworth's data 
(1977). He used a method described by Mitchell (1967) and 
Johnson (1964), which included the effects of the 
distributional characteristics and the suspended data (caused 
by beams that failed in bending). Because of differences in 
assumed shear stresses and in analysis of Longworth's data, 
the Weibull parameters computed by Liu (1980) and Foschi 
and Barrett (1976) are somewhat different. Liu (1981) also 
extended his approach to model tapered beams. 

In recent work, Zakic (1983, 1984) developed a theory for 
predicting the shear strengths of wood beams based on the 
plastic bending theory. This approach is applicable only to 
extremely clear wood beams. Thus, it would not be 
appropriate for a design approach and will not be reviewed in 
this report. 

Both Foschi and Barrett's and Liu's theories agree with 
Longworth's data for two-point loading and l /d ratios of 5. 
We applied the two theories to other common types of 
loading -uniform load, concentrated load at midspan, and 
concentrated load near a support - for a range of sizes and 
for other l /d ratios. The results (fig. 1) are fifth percentile 
predictions from theory compared to average values of data. 
The data were obtained from either centerpoint or two-point 
loading conditions. Several items are of interest: 

1. Liu's theory gives predicted results independent of l /d 
ratio, whereas Foschi and Barrett depend on l /d. This is 
because Liu neglected the differences that exist between the 
ordinary beam theory and the finite element analysis at the 
supports. 

2. There is no constant reliability for either theory for the 
different types of loading. Different types of loading result in 
different predicted shear strengths for a given wood member. 

3. Current allowable shear values (AITC 1986, NFPA 1986) 
range from 65 to 200 pounds per square inch for various 
species of solid-sawn and glued-laminated beams. No size 
effect is included. Both theories and data indicate this to be 
conservative for nonchecked smaller sizes. 
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Two-Beam Theory 

In the United States, current design methods to check beam 
shear strength (AITC 1986, NFPA 1986) are based on both 
elementary beam theory and the Two-Beam Theory (Newlin 
et al. 1934). A designer usually applies the elementary beam 
theory equation, which is known to be overly conservative in 
many situations. This is, however, the only. recommended 
procedure for unchecked beams in the Timber Construction 
Manual (AITC 1986). But for checked and unchecked beams 
that fail to qualify under the elementary beam theory 
equation, the National Design Specification for Wood 
Construction (NFPA 1986) allows the application of the 
Two-Beam Theory. 

Newlin et al. (1934) proposed a shear strength model for 
wood beams containing checks located at beam middepth as 
depicted in figure 2. The model is based on a combined 
analytical-experimental approach. The checks were of 
constant depth along the length of the beam and existed on 
both lateral faces. The following assumptions were made in 
the analysis: 

Figure 2–Wood beam uniformly checked on both lateral faces. 
(ML875534) 

1. Only the portion of the beam x > 0 and y > - c was 
considered. The effect of the lower beam section (y < - c) 
was assumed to be a constant shear stress (J) acting on the 
plane y = -c. The effect of the region x < 0 was assumed to 
be a support at x = 0. 

2. The effect of the support at x = a and y = -c on the 
analyzed portion was assumed to be a force one-half the 
magnitude of the reaction force (P/2). 

3. The stress perpendicular to the grain (σ,) was assumed to 
be zero throughout the beam. 

4. The beam was assumed to have isotropic properties. 

Based on these assumptions, Newlin et al. (1934) solved the 
problem of a cantilever beam with concentrated end load 
(P/2) and uniform distributed shear load (J) on y = - c as 
shown in figure 3. The authors derived a plane stress, 
elasticity solution for this idealized problem. The boundary 
conditions assumed were 

where u is the displacement component in the x direction. 
Newlin et al. (1934) derived expressions for τ, σx, and u (given 
in their equations (9), (10), and (21), respectively) that satisfy 
all governing differential equations and boundary conditions 
for the elasticity problem. Gerhardt and Liu (1983) derived 
beam equations for arbitrary shear and normal loading that 
reduce to the same expressions for the stresses. 
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From the elasticity solution, Newlin et al. (1934) derived an 
expression that is the basis of the Two-Beam Theory: 

(3) 

(4) 

(5) 

where 

and 

E is Young’s modulus, u* is u evaluated at x = a and y = 
- c, b is beam width, and h is beam height. They argue from 
equation (3) that the reaction R has two parts. The part 
represented by B is associated with middepth shear stress as 
predicted by elementary beam theory. The second term is 
independent of shear stress and increases as the point of 
loading approaches the support. It is called the two-beam 
portion of the reaction since it is caused by the beam sections 
y > - c and y < - c acting independently. 

Figure 3 –Cantilever beam with concentrated end load and 
uniform shear load. (ML875537) 

Newlin et al. (1934) used equation (3) from the elasticity 
solution to predict beam failure. Since J and u* at failure 
cannot be measured in a simple manner, the authors 
determined A and B empirically from strength tests. They 
fabricated checked beams by gluing clear pieces together. The 
beams had dimensions h = 4.5 inches, b = 2.5 inches, and 
spans ( l ) of 28, 42, and 63 inches. The beams contained 
checks 0.875 to 1.125 inches deep (70 to 90 pct of beam 
width) and were loaded at positions (a) varying from 7 to 
31.5 inches. The two-beam term in equation (3) enabled the 
model to predict the minimum failure load at a location 
several beam heights from the support, as is indicated by 
experiments. Elementary beam theory predicts the minimum 
failure load at a location just adjacent to the support. 

The strength data were analyzed in a rather peculiar fashion. 
For example, in table 1 of Newlin et al. (1934), failure 
reaction forces from all three spans were averaged together 
for a given distance (a). Thus, any dependency on the ratio 
(a/ l ) was eliminated. (In a sense, the analysis was consistent 
with scaling by (a/h) since h was not varied in the 
experiment. Note that the “two-beam” portion of equation (3) 
can be easily reformulated in terms of (a/h).) The authors 
compared the mean reaction from each distance a to the 
mean reaction from the a = 7 inches group. By assuming 
that J and u* at failure were independent of load and 
position, the authors calculated A and B. In regards to the 
pairing, the authors state: 

“It is true that if the test results of this series are combined 
in pairs in other ways than that just used, some 
considerable deviations from the values recorded will 
appear, but none of such magnitude as to cast doubt on the 
conclusion that Equation (3) describes approximately the 
behavior of a checked beam.” 

Table 1 -Coefficients of P( l - a)/ l 

a/h Equation (7) Equation (10) 

0 0 
1 1/3 
2 2/3 
3 9/11 
4 8 / 9  

1/2 
6/7 

21/22 
46/41 
81/82 

As indicated in the Newlin et al. (1934) tables 1, 2, and 3, the 
coefficients A and B depend on both beam dimensions and 
check depth. Determination of A and B for a given group, 
therefore, does not result in a usable design equation. For 
discussion purposes, define Q as the ratio of two-beam 
reaction to total reaction: 

Newlin et al. derived a design equation by making several 
additional assumptions based on the strength results: 

1. For a beam of given size and a, Q is independent of check 
depth. 

2. For beams of varying dimensions, Q is constant for a fixed 
a/h. 

3. Q is approximately equal to 2/11 when a/h = 3. 

From these assumptions, equation (3), and the equilibrium 
equation R = P(1- a/ l ) the design equation for concentrated 
load is easily derived: 

(7) 
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By integrating along the length of the beam, the authors 
derived an expression for the uniform load (W) case: 

(8) 

The authors also approximated equation (8) by 

(9) 

Equations (7) and (9) appear in the U.S. design code (NFPA 
1986) with slight modifications. These equations are applied in 
design by relating B to allowable shear strength through 
equation (5). 

We carefully analyzed the assumptions, theory, and data 
presented by Newlin et al. (1934). In our opinion, several 
difficulties make the proposed method inapplicable for 
predicting shear strengths of either glued-laminated or lumber 
beams. 

Two-Beam Theory predicts incorrect shear stress distributions 
for unchecked beams. In figure 4, predicted stresses are 
reproduced for a beam of dimensions h = 4.5 inches, b = 
2.5 inches, and l = 42 inches with a 1-inch check depth. Note 
the shear stress at the neutral axis, J, is independent of 
position: a condition imposed by the theory. The “two-beam’’ 
portion of the reaction causes a redistribution of shear 
stresses near the support as shown. This redistribution is, 
therefore, the fundamental premise of the theory. Other 
researchers have analyzed stresses in glued-laminated or clear 
wood beams. Experimental (Cowan 1962), analytical 
(Gerhardt and Liu 1983, Liu and Cheng 1979), and numerical 
(Foschi and Barrett 1976, Keenan 1974) techniques all indicate 
shear stress distributions near supports quite different than 
the parabolic redistribution predicted in figure 4. 
Furthermore, Norris (1962b) loaded unchecked beams (h = 
5.6 in, b = 1.6 in, l = 86 in) to failure with the distance a 
varied from 5 to 30 inches. Norris found the failure reactions 
calculated by Two-Beam Theory to be two to three times 
greater than those measured. Thus, Two-Beam Theory cannot 
predict shear failure in glued-laminated or clear wood beams. 
Note that the intent of Newlin et al. (1934) was to model 
deeply checked beams. 

The validity of equation (7) is restricted to the deeply 
checked, fabricated beams tested by Newlin et al. (1934). 
Norris (1962a) considered the problem defined by Newlin et 
al. and depicted in figure 2. Using a well-established analytic 
procedure, Norris derived the equation 

The only assumption made was that E/G = 16, where G is 
the shear modulus. Although equations (7) and (10) have 
a similar form, they predict quite different coefficients of 
P( l - a)/ l as indicated in table 1. From this comparison, 
Norris concluded that “ . . . equation (7) is only an empirical 
equation that fits the results of the tests reported.” 

Figure 4 – Theoretical variation of horizontal shear stress with 
distance from neutral axis of checked beams for various posi- 
tions of a single concentrated load (beams, 2.5 by 4.5 by 45 in; 
span, 42 in; depth of checks, 1 in). (ML875538) 
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Effect of Check Depth on Strength 

The design equations derived by Newlin et al. (1934) are 
independent of check depth. Both single and two-beam 
failure reactions computed by the authors show a strong 
dependence on check depth. This dependence was eliminated 
from the design equation in the derivation of equation (7) as 
previously described. Murphy (1980) used a fracture 
mechanics approach to predict the relation between check 
depth and strength. This approach, which assumes a 
singularity at the crack tip, modeled the data of Newlin et al. 
quite well. As illustrated in figure 11 of Murphy’s 1980 
report, strength is extremely dependent on check depth when 
the depth is greater than 30 percent of beam width. In light 
of contemporary fracture mechanics theory, a strength model 
that is independent of crack depth is untenable. 

The shear strength of lumber is governed by the presence of 
defects such as end splits and side checks. Barrett and Foschi 
(1977) noted that the theory developed for glued-laminated 
beams does not predict the shear strength of dimension 
lumber. Recent literature has employed linear-elastic fracture 
mechanics theory to model such defects (Barrett 1981). 
Although this methodology can predict strength, it requires 
knowledge of defect size and location. 

Barrett and Foschi (1977) considered wood beams containing 
end splits at beam center depth. The authors presented 
expressions for the stress intensity factor in regression 
equations involving crack length and beam span-to-depth 
ratio. Murphy (1979) considered the same problem and 
greatly simplified the expression for stress intensity factor by 
relating it to nominal resultant bending moment and shear 
force. In this manner, the analysis can be applied to checked 
beams under any loading conditions. 

Summary 

Current shear design technology in the United States for 
lumber or glued-laminated beams is confusing. In the United 
States, a designer usually applies elementary beam theory on 
a tacitly assumed unchecked beam. But for both checked and 
unchecked beams that fail to qualify under the elementary 
beam theory equation, the designer may apply the Two-Beam 
Theory. Glued- laminated beams, however, are designed on 
the basis of an unchecked beam. Theories exist for both 
checked and unchecked beams, but they have only been 
verified for limited load conditions and l /d ratios. 

Shear strength is difficult to measure because a pure shear 
stress condition is difficult to attain. Shear strength is 
dependent on beam size, but this relationship has not been 
adequately verified for inclusion in current design. 

Future research is required to define the effects of beam size, 
load configuration, checks, and combined stresses on shear 
design. Existing theories should be verified over a broader 
range of variables. 

Murphy (1980) also considered beams containing side checks 
identical to those tested by Newlin et al. (1934). Using 
fracture mechanics theory, Murphy predicted strength results 
that agreed with those measured by Newlin et al. 
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