Round timbers, ties, and lumber sawn from a log, regardless of species and size, are quite variable in mechanical properties. Pieces may differ in strength by several hundred percent. For simplicity and economy in use, pieces of wood of similar mechanical properties are placed in categories called stress grades, which are characterized by (a) one or more sorting criteria, (b) a set of properties for engineering design, and (c) a unique grade name. The most familiar system is that for lumber. Sorting criteria have also been established for round timbers and ties. This chapter briefly discusses the stress grades and design properties for lumber, round timber, and ties.

**Lumber**

The U.S. Department of Commerce American Softwood Lumber Standard PS 20 describes sorting criteria for two stress-grading methods and the philosophy of how properties for engineering design are derived. The derived properties are then used in one of two design formats: (a) the load and resistance factor design (LRFD), which is based on a reference strength at the lower 5th percentile 5-min stress (AF&PA [current edition]), or (b) the allowable stress design (ASD), which is based on a design stress at the lower 5th percentile 10-year stress. The properties depend on the particular sorting criteria and on additional factors that are independent of the sorting criteria. Design properties are lower than the average properties of clear, straight-grained wood tabulated in Chapter 5.

From one to six design properties are associated with a stress grade: bending modulus of elasticity for an edgewise loading orientation and stress in tension and compression parallel to the grain, stress in compression perpendicular to the grain, stress in shear parallel to the grain, and extreme fiber stress in bending. As is true of the properties of any structural material, the allowable engineering design properties must be either inferred or measured nondestructively. In wood, the properties are inferred through visual grading criteria, nondestructive measurement such as flatwise bending stiffness or density, or a combination of these properties. These nondestructive tests provide both a sorting criterion and a means of calculating appropriate mechanical properties.

The philosophies contained in this chapter are used by a number of organizations to develop visual and machine stress grades. References are made to exact procedures.
National Grading Rule, which specifies grading characteristics for different grade specifications.

Organizations that write and publish grading rule books containing stress-grade descriptions are called rules-writing agencies. Grading rules that specify American Softwood Lumber Standard PS 20 must be certified by the ALSC Board of Review for conformance with this standard. Organizations that write grading rules, as well as independent agencies, can be accredited by the ALSC Board of Review to provide grading and grade-marking supervision and reinspection services to individual lumber manufacturers. Accredited rules-writing and independent agencies are listed in Table 7–1. The continued accreditation of these organizations is under the scrutiny of the ALSC Board of Review.

Most commercial softwood species lumber manufactured in the United States is stress graded under American Lumber Standard practice and is called American Lumber Standard (ALS) program lumber. Distinctive grade marks for each species or species grouping are provided by accredited agencies. The principles of stress grading are also applied to several hardwood species under provisions of the American Softwood Lumber Standard. Lumber found in the marketplace may be stress graded under grading rules developed in accordance with methods approved by the ALSC or by some other stress-grading rule, or it may not be stress graded. Only those stress grades that meet the requirements of the voluntary American Softwood Lumber Standard system are discussed in this chapter.
National Grading Rule

Stress grading under the auspices of the ALSC is applied to many sizes and patterns of lumber that meet the American Softwood Lumber Standard provision. However, most stress-graded lumber is dimension lumber (standard 38 mm to 89 mm (nominal 2 to 4 in., actual 1.5 to 3.5 in.) thick) and is governed by uniform specifications under the National Grading Rule. The National Grading Rule provides guidelines for writing grading rules for lumber in this thickness range and specifies grading characteristics for different grade specifications. American Softwood Lumber Standard dimension lumber in this thickness range is required to conform to the National Grading Rule, except for special products such as scaffold planks. Grade rules for other sizes, such as structural timbers (standard 114-mm and larger (nominal 5-in. and larger) thick) may vary between rules-writing agencies or species.

The National Grading Rule establishes the lumber classifications and grade names for visually stress-graded dimension lumber (Table 7–2). The ALSC Machine Grading Policy provides for the grading of dimension lumber by a combination of machine and visual methods. Visual requirements for this type of lumber are developed by the respective rules-writing agencies for particular species grades.

Standards

Table 7–2 also shows associated minimum bending strength ratios to provide a comparative index of quality. The strength ratio is the hypothetical ratio of the strength of a piece of lumber with visible strength-reducing growth characteristics to its strength if those characteristics were absent. Formulas for calculating strength ratios are given in ASTM standard D 245. The corresponding visual description of the dimension lumber grades can be found in the grading rule books of the rules-writing agencies listed in Table 7–1. Design properties will vary by size, species, and grade and are published in the appropriate rule books and in the National Design Specification for Wood Construction (AF&PA).

Grouping of Species

Most species are grouped together and the lumber from them treated as equivalent. Species are usually grouped when they have about the same mechanical properties, when the wood of two or more species is very similar in appearance, or for marketing convenience. For visual stress grades, ASTM D 2555 contains procedures for calculating clear wood properties for groups of species to be used with ASTM D 245. ASTM D 1990 contains procedures for calculating design properties for groups of species tested as full-sized members. The properties assigned to a group by such procedures will often be different from those of any species that make up the group. The group will have a unique identity, with nomenclature approved by the Board of Review of the ALSC. The identities, properties, and characteristics of individual species of the group are found in the grading rules for any particular species or species grouping. In the case of machine stress grading, the inspection agency that supervises the grading certifies by testing that the design properties in that grade are appropriate for the species or species grouping and the grading process.

Foreign Species

Currently, the importation of structural lumber is governed by two ALSC guidelines that describe the application of the American Lumber Standard and ASTM D 1990 procedures to foreign species. The approval process is outlined in Table 7–3.

Visually Graded Structural Lumber

Visual Sorting Criteria

Visual grading is the original method for stress grading. It is based on the premise that mechanical properties of lumber differ from mechanical properties of clear wood because many growth characteristics affect properties and these characteristics can be seen and judged by eye. Growth characteristics are used to sort lumber into stress grades. The typical visual sorting criteria discussed here are knots, slope of grain, checks and splits, shake, density, decay, annual ring count and percentage latewood, pitch pockets, and wane.

Knots

Knots cause localized cross grain with steep slopes. A very damaging aspect of knots in sawn lumber is that the continuity of the grain around the knot is interrupted by the sawing process.
In general, knots have a greater effect on strength in tension than compression; in bending, the effect depends on whether a knot is in the tension or compression side of a beam (knots along the centerline have little or no effect). Intergrown (or live) knots resist (or transmit) some kinds of stress, but encased knots (unless very tight) or knotholes resist (or transmit) little or no stress. On the other hand, distortion of grain is greater around an intergrown knot than around an encased (or dead) knot of equivalent size. As a result, overall strength effects are roughly equalized, and often no distinction is made in stress grading between intergrown knots, dead knots, and knotholes.

The zone of distorted grain (cross grain) around a knot has less “parallel to piece” stiffness than does straight-grained wood; thus, localized areas of low stiffness are often associated with knots. However, such zones generally constitute only a minor part of the total volume of a piece of lumber. Because overall stiffness of a piece reflects the character of all parts, stiffness is not greatly influenced by knots.

The presence of a knot has a greater effect on most strength properties than on stiffness. The effect on strength depends approximately on the proportion of the cross section of the piece of lumber occupied by the knot, knot location, and distribution of stress in the piece. Limits on knot sizes are therefore made in relation to the width of the face and location on the face in which the knot appears. Compression members are stressed about equally throughout, and no limitation related to location of knots is imposed. In tension, knots along the edge of a member cause an eccentricity that induces bending stresses, and they should therefore be more restricted than knots away from the edge. In simply supported structural members subjected to bending, stresses are greater in the middle of the length and at the top and bottom edges than at midheight. These facts are recognized in some grades by differing limitations on the sizes of knots in different locations.

Knots in glued-laminated structural members are not continuous as in sawn structural lumber, and different methods are used for evaluating their effect on strength (Chap. 12).

**Slope of Grain**

Slope of grain (cross grain) reduces the mechanical properties of lumber because the fibers are not parallel to the edges. Severely cross-grained pieces are also undesirable because they tend to warp with changes in moisture content. Stresses caused by shrinkage during drying are greater in structural lumber than in small, clear straight-grained specimens and are increased in zones of sloping or distorted grain. To provide a margin of safety, the reduction in design properties resulting from cross grain in visually graded structural lumber is considerably greater than that observed in small, clear specimens that contain similar cross grain.

**Table 7–3. Approval process for acceptance of design values for foreign species**

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rules-writing agency seeks approval to include species in grading rule book.</td>
</tr>
<tr>
<td>2</td>
<td>Agency develops sampling and testing plan, following American Lumber Standard Committee (ALSC) foreign importation guidelines, which must then be approved by ALSC Board of Review.</td>
</tr>
<tr>
<td>3</td>
<td>Lumber is sampled and tested in accordance with approved sampling and testing plan.</td>
</tr>
<tr>
<td>4</td>
<td>Agency analyzes data by ALSC Board of Review, ASTM D 1990 procedures, and other appropriate criteria (if needed).</td>
</tr>
<tr>
<td>5</td>
<td>Agency submits proposed design values to ALSC Board of Review.</td>
</tr>
<tr>
<td>6</td>
<td>Submission is reviewed by ALSC Board of Review and USDA Forest Service, Forest Products Laboratory.</td>
</tr>
<tr>
<td>7</td>
<td>Submission is available for comment by other agencies and interested parties.</td>
</tr>
<tr>
<td>8</td>
<td>ALSC Board of Review approves (or disapproves) design values, with modification (if needed) based on all available information.</td>
</tr>
<tr>
<td>9</td>
<td>Agency publishes new design values for species.</td>
</tr>
</tbody>
</table>

**Checks and Splits**

Checks are separations of the wood that normally occur across or through the annual rings, usually as a result of seasoning. Splits are a separation of the wood through the piece to the opposite surface or to an adjoining surface caused by tearing apart of the wood cells. As opposed to shakes, checks and splits are rated by only the area of actual opening. An end-split is considered equal to an end-check that extends through the full thickness of the piece. The effects of checks and splits on strength and the principles of their limitation are the same as those for shake.

**Shake**

Shake is a separation or a weakness of fiber bond, between or through the annual rings, that is presumed to extend lengthwise without limit. Because shake reduces resistance to shear in members subjected to bending, grading rules therefore restrict shake most closely in those parts of a bending member where shear stresses are highest. In members with limited cross grain, which are subjected only to tension or compression, shake does not affect strength greatly. Shake may be limited in a grade because of appearance and because it permits entrance of moisture, which results in decay.

**Density**

Strength is related to the mass per unit volume (density) of clear wood. Properties assigned to lumber are sometimes modified by using the rate of growth and percentage of latewood as measures of density. Typically, selection for density requires that the rings per unit length on the cross section and the percentage of latewood be within a specified range. Some very low-strength pieces may be excluded.
from a grade by excluding those that are exceptionally low in density.

**Decay**

Decay in most forms should be prohibited or severely restricted in stress grades because the extent of decay is difficult to determine and its effect on strength is often greater than visual observation would indicate. Decay of the pocket type (for example, *Fomes pini*) can be permitted to some extent in stress grades, as can decay that occurs in knots but does not extend into the surrounding wood.

**Heartwood and Sapwood**

Heartwood does not need to be taken into account in stress grading because heartwood and sapwood have been assumed to have equal mechanical properties. However, heartwood is sometimes specified in a visual grade because the heartwood of some species is more resistant to decay than is the sapwood; heartwood may be required if untreated wood will be exposed to a decay hazard. On the other hand, sapwood takes preservative treatment more readily than heartwood and it is preferable for lumber that will be treated with preservatives.

**Pitch Pockets**

Pitch pockets ordinarily have so little effect on structural lumber that they can be disregarded in stress grading if they are small and limited in number. The presence of a large number of pitch pockets, however, may indicate shake or weakness of bond between annual rings.

**Wane**

Wane refers to bark or lack of wood on the edge or corner of a piece of lumber, regardless of cause (except manufactured eased edges). Requirements of appearance, fabrication, or ample bearing or nailing surfaces generally impose stricter limitations on wane than does strength. Wane is therefore limited in structural lumber on that basis.

**Procedures for Deriving Design Properties**

The mechanical properties of visually graded lumber may be established by (a) tests of a representative sample of full-size members (ASTM D 1990 in-grade testing procedure) or (b) appropriate modification of test results conducted on clear specimens (ASTM D 245 procedure for small clear wood). Design properties for the major commercial softwood dimension lumber species given in current design specification and codes in the United States have been derived from full-size member test results. However, design properties for some species of softwood and most species of hardwood dimension lumber (standard 38- to 89-mm (nominal 2- to 4-in.) thick) and all species of structural timbers (standard 114-mm and larger (nominal 5-in. and larger) thick) are still derived using results of tests on small clear samples.
The range of strength ratios in a grade and the natural variation in clear wood strength give rise to variation in strength between pieces in the grade. To account for this variation and to ensure safety in design, it is intended that the actual strength of at least 95% of the pieces in a grade exceed the design properties (before reduction for duration of load and safety) assigned to that grade. In visual grading, according to ASTM D 245, this is handled by using a near-minimum clear wood strength as a base value and multiplying it by the minimum strength ratio permitted in the grade to obtain the grade strength property. The near-minimum value is called the 5% exclusion limit. ASTM D 2555 provides clear wood strength data and gives a method for estimating the 5% exclusion limit.

For example, suppose a 5% exclusion limit for the clear wood bending strength of a species in the green condition is 48 MPa (7,000 lb in$^{-2}$). Suppose also that among the characteristics allowed in a grade of lumber, one characteristic (a knot, for example) provides the lowest strength ratio in bending—assumed in this example as 40%. Using the numbers, the bending strength for the grade is estimated by multiplying the strength ratio (0.40) by 48 MPa (7,000 lb in$^{-2}$), equaling 19 MPa (2,800 lb in$^{-2}$) (Fig. 7–4). The bending strength in the green condition of 95% of the pieces in this species in a grade that has a strength ratio of 40% is expected to be ≥19 MPa (≥2,800 lb in$^{-2}$). Similar procedures are followed for other strength properties, using the appropriate clear wood property value and strength ratio. Additional multiplying factors are then applied to produce properties for design, as summarized later in this chapter.

Modulus of Elasticity—Modulus of elasticity $E$ is a measure of the ability of a beam to resist deflection or of a column to resist buckling. The assigned $E$ is an estimate of the average modulus, adjusted for shear deflection, of the lumber grade when tested in static bending. The average modulus of elasticity for clear wood of the species, as recorded in ASTM D 2555, is used as a base. The clear wood average is

![Figure 7–4. Example of relation between strength and strength ratio.](image)

![Figure 7–5. Histogram of modulus of elasticity observed in a single visual grade, from pieces selected over a broad geographical range.](image)
multiplied by empirically derived “quality factors” to represent the reduction in modulus of elasticity that occurs by lumber grade for pieces tested in an edgewise orientation. This procedure is outlined in ASTM D 245. For example, assume a clear wood average modulus of elasticity of 12.4 GPa (1.8 × 10^6 lb in⁻²) for the example shown earlier. The limiting bending strength ratio was 40%. ASTM D 245 assigns a quality multiplying factor of 0.80 for lumber with this bending strength ratio. The modulus of elasticity for that grade would be the product of the clear wood modulus and the quality factor; that is, 12.4 × 0.8 = 9.9 GPa (1.8 × 0.8 = 1.44 × 10^6 lb in⁻²).

Actual modulus of elasticity of individual pieces of a grade varies from the average assumed for design (Fig. 7–5). Small individual lots of lumber can be expected to deviate from the distribution shown by this histogram. The additional multiplying factors used to derive final design values of modulus of elasticity are discussed later in this chapter.

### In-Grade Procedure

To establish the mechanical properties of specified grades of lumber from tests of full-size specimens, a representative sample of the lumber population is obtained following procedures in ASTM D 2915 and D 1990. The specimens are tested using appropriate procedures given in ASTM D 198 or D 4761. Because the range of quality with any one specific grade may be large, it is necessary to assess the grade quality index (GQI) of the sampled material in relation to the assumed GQI. In the North American In-Grade Program, GQI was the strength ratio calculated according to formulas in ASTM D 245. The sample GQI and the assumed GQI are compared to see if adjustment to the test data is necessary. An average value for the edgewise modulus of elasticity or a near-minimum estimate of strength properties is obtained using ASTM D 1990 procedures. The grade GQI is also used as a scaling parameter that allows for modeling of strength and modulus of elasticity with respect to grade. These properties are further modified for design use by consideration of service moisture content, duration of load, and safety.

### Machine-Graded Structural Lumber

Machine-graded lumber is lumber evaluated by a machine using a nondestructive test followed by visual grading to evaluate certain characteristics that the machine cannot or may not properly evaluate. Machine-stress-rated (MSR) lumber and machine-evaluated-lumber (MEL) are two types of machine-graded lumber used in North America. MSR is lumber that has modulus of elasticity $E$ evaluated by mechanical stress equipment, with each piece being marked to indicate the modulus of elasticity $E$. MEL is lumber that has a parameter, often density, nondestructively evaluated by mechanical grading equipment approved by the ALSC Board of Review to predict certain mechanical properties. The MEL machine evaluates each piece and sorts each piece into various strength classification grade categories. Machine-graded lumber allows for better sorting of material for specific applications in engineered structures. The basic components of a machine-grading system are as follows:

| Grade name (MPa (lb in⁻²)) (GPa (×10^6 lb in⁻²)) (MPa (lb in⁻²)) (MPa (lb in⁻²)) |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| MSR             |                 |                 |                 |                 |
| 1350f–1.3E      | 9.3 (1,350)     | 9.0 (1.3)       | 5.2 (750)       | 11.0 (1,600)    |
| 1450f–1.3E      | 10.0 (1,450)    | 9.0 (1.3)       | 5.5 (800)       | 11.2 (1,625)    |
| 1650f–1.5E      | 11.4 (1,650)    | 10.3 (1.5)      | 7.0 (1,020)     | 11.7 (1,700)    |
| 1800f–1.6E      | 12.4 (1,800)    | 11.0 (1.6)      | 8.1 (1,175)     | 12.1 (1,750)    |
| 1950f–1.7E      | 13.4 (1,950)    | 11.7 (1.7)      | 9.5 (1,375)     | 12.4 (1,800)    |
| 2100f–1.8E      | 14.5 (2,100)    | 12.4 (1.8)      | 10.9 (1,575)    | 12.9 (1,875)    |
| 2250f–1.9E      | 15.5 (2,250)    | 13.1 (1.9)      | 12.1 (1,750)    | 13.3 (1,925)    |
| 2400f–2.0E      | 16.5 (2,400)    | 13.8 (2.0)      | 13.3 (1,925)    | 13.6 (1,975)    |
| 2550f–2.1E      | 17.6 (2,550)    | 14.5 (2.1)      | 14.1 (2,050)    | 14.0 (2,025)    |
| 2700f–2.2E      | 18.6 (2,700)    | 15.2 (2.2)      | 14.8 (2,150)    | 14.4 (2,100)    |
| 2850f–2.3E      | 19.7 (2,850)    | 15.9 (2.3)      | 15.9 (2,300)    | 14.8 (2,150)    |
| MEL             |                 |                 |                 |                 |
| M–10            | 9.7 (1,400)     | 8.3 (1.2)       | 5.5 (800)       | 11.0 (1,600)    |
| M–11            | 10.7 (1,550)    | 10.3 (1.5)      | 5.9 (850)       | 11.5 (1,675)    |
| M–14            | 12.4 (1,800)    | 11.7 (1.7)      | 6.9 (1,000)     | 12.1 (1,750)    |
| M–19            | 13.8 (2,000)    | 11.0 (1.6)      | 9.0 (1,300)     | 12.6 (1,825)    |
| M–21            | 15.9 (2,300)    | 13.1 (1.9)      | 9.7 (1,400)     | 13.4 (1,950)    |
| M–23            | 16.5 (2,400)    | 12.4 (1.8)      | 13.1 (1,900)    | 13.6 (1,975)    |
| M–24            | 18.6 (2,700)    | 13.1 (1.9)      | 12.4 (1,800)    | 14.5 (2,100)    |

*Forest Products Society (1997). Other grades are available and permitted. $F_b$ is allowable 10-year load duration bending stress parallel to grain. $E$ is modulus of elasticity. $F_t$ is allowable 10-year load duration tensile stress parallel to grain. $F_{cl}$ is allowable 10-year load duration compressive stress parallel to grain.
In the United States and Canada, MSR and MEL lumber are also subjected to a visual assessment because the size of edge knots in combination with $E$ is a better predictor of strength than is $E$ alone. Maximum edge knots are limited to a specified proportion of the cross section, depending on grade level. Other visual restrictions, which are primarily appearance rather than strength criteria, are placed on checks, shake, skips (portions of board “skipped” by the planer), splits, wane, and warp.

**Machine Sorting Criteria**

The most common method of sorting machine-graded lumber is modulus of elasticity $E$. When used as a sorting criterion for mechanical properties of lumber, $E$ can be measured in a variety of ways. Usually, the apparent $E$, or deflection related to stiffness, is actually measured. Because lumber is heterogeneous, the apparent $E$ depends on span, orientation (edgewise or flatwise in bending), load speed of test (static or dynamic), and method of loading (tension, bending, concentrated, or uniform). Any of the apparent $E$ values can be used, as long as the grading machine is properly calibrated, to assign the graded piece to a “not to exceed” grade category. Most grading machines in the United States are designed to detect the lowest flatwise bending $E$ that occurs in any approximately 1.2-m (4-ft) span and the average flatwise $E$ for the entire length of the piece.

Another method of sorting machine-graded lumber is using density measurements to estimate knot sizes and frequency. X-ray sources in conjunction with a series of detectors are used to determine density information. Density information is then used to assign the graded piece to a “not to exceed” grade category.

**Procedures for Deriving Design Properties**

Mechanical properties of machine-graded structural lumber may be established using ASTM D 6570.

**Allowable Stress for Bending**

A stress grade derived for machine-graded lumber relates design strength to a nondestructive parameter such as $E$ or...
density. For this example, it will be considered to be \( E \). Because \( E \) is an imperfect predictor of strength, lumber sorted solely by average \( E \) falls into one of four categories, one of which is sorted correctly and three incorrectly (Fig. 7–6).

Consider, for example, the simplest case (sometimes referred to as “go” or “no go”) where lumber is sorted into two groups: one with sufficient strength and stiffness for a specific application, the other without. In Figure 7–6a, a regression line relating \( E \) and strength is used as the prediction model. The “accept–reject” groups identified by the regression sort can be classified into four categories:

- **Category 1**—Material that has been accepted correctly, that is, pieces have sufficient strength and stiffness as defined.
- **Category 2**—Material that has been accepted incorrectly, that is, pieces do not have sufficient strength.
- **Category 3**—Material that has been rejected correctly because it does not have sufficient stiffness.
- **Category 4**—Material that has been rejected correctly because it does not have sufficient stiffness.

Thus, the sort shown in Figure 7–6a has worked correctly for categories 1, 3, and 4 but incorrectly for category 2. Pieces in category 2 present a problem. These pieces are accepted as having sufficient strength but in reality they do not, and they are mixed with the accepted pieces of category 1. The number of problem pieces that fall in category 2 depends on the variability in the prediction model.

To minimize the material that falls into category 2, adjustments are made to the property assignment claims made about the sorted material. An appropriate model is one that minimizes the material in category 2 or at least reduces it to a lower risk level. Additional grading criteria (edge-knot limitations, for example) are also added to improve the efficiency of the sorting system relative to the resource and the claimed properties.

Commonly, a lower confidence line is used as the prediction model (Fig. 7–6b). The number of pieces that fall into category 2 is now low compared with the regression line model. Furthermore, the probability of a piece (and thus the number of pieces) falling into category 2 is controlled by the confidence line selected.

In actual MSR systems, the lumber is sorted (graded) into \( E \) classes. In the United States and Canada, the number of grades has increased as specific market needs have developed for MSR lumber. Today, individual grading agencies list as many as 13 \( E \) classifications and more than 20 different grades. The grades are designated by the recommended extreme fiber stress in bending \( F_b \) and edgewise modulus of elasticity \( E \). For example, “2100F–1.8E” designates an MSR grade with a design stress \( F_b = 14 \text{ MPa} (2,100 \text{ lb in}^{-2}) \) and \( E = 12.4 \text{ GPa} (1.8 \times 10^6 \text{ lb in}^{-2}) \).

In theory, any \( F–E \) combination can be marketed that can be supported by test data. In practice, a mill will usually produce only a few of the possible existing \( F–E \) classifications depending on the potential of the timber being harvested, mill production capabilities, and product or market demand. When a mill has determined the grades it would like to produce (based on their lumber resource and marketing issues), grade boundary machine settings are used to separate the lumber into \( F–E \) classifications. A qualification sample of lumber is tested by a grading agency for strength and stiffness, to verify that the proper machine settings are being used. After initial qualification, additional quality control tests are performed during production.

Figure 7–7 illustrates how \( F_b–E \) classifications have been developed historically for species groups. Data for a particular species group are collected, the relationship of \( E \) and modulus of rupture (MOR) is evaluated, and a lower confidence line is established for the species, as illustrated in Figure 7–6b. Using the lower confidence line of this relationship, a MOR value corresponding to the “minimum \( E \)” assigned to the grade is determined. The “minimum \( E \)” assigned to the grade represents the 5th percentile of the \( E \) distribution. The 5th percentile value is expected to be exceeded by 95% of the pieces in a grade or class. In this example, for a grade with an assigned \( E \) of 13.8 GPa \((2.0 \times 10^6 \text{ lb in}^{-2}) \), the “minimum \( E \)” is 11.3 GPa \((1.64 \times 10^6 \text{ lb in}^{-2}) \). The corresponding MOR value from the lower confidence line prediction model, approximately a 5th percentile MOR value, is 34.8 MPa \((5.04 \times 10^3 \text{ lb in}^{-2}) \). This value is then adjusted by a factor (2.1) for assumed 10-year duration of load and safety to obtain \( F_b \). This factor
applied to an estimated 5th percentile MOR value of 34.8 MPa (5.04 × 10^3 lb in^-2) yields an \( F_b \) of 16.5 MPa (2.40 × 10^3 lb in^-2) for the 2.0E grade; in other words, a 2400f–2.0E MSR grade.

**Design Stresses for Other Properties**

Properties in tension and compression are commonly developed from relationships with bending rather than estimated directly by the nondestructive parameter \( E \). In Canada and the United States, the relationships between the 5th percentile 10-year bending stress and those in tension and compression are based upon limited lumber testing for the three properties but supported by years of successful experience in construction with visual stress grades of lumber. For tension, it is assumed that the ratio of design bending stress \( F_b \) to design tensile stress \( F_t \) is between 0.5 and 0.8, depending on the grade, whereas the relationship between \( F_b \) and fiber stress in design compressive parallel-to-grain stress \( F_c \) is assumed to be

\[
F_c = \frac{0.338(2.1F_b) + 2060.7}{1.9}
\]

Strength in shear parallel to the grain and in compression perpendicular to the grain is poorly related to modulus of elasticity. Therefore, in machine stress grading these properties are assumed to be grade-independent and are assigned the same values as those for visual lumber grades, except when predicted from specific gravity on a mill-by-mill basis. It is permissible to assign higher allowable stress for shear parallel to grain and compression perpendicular to grain to specific grades based on additional specific gravity research.

**Quality Control**

Quality control procedures are necessary to ensure that stresses assigned by a machine-grading system reflect the actual properties of the lumber graded. These procedures must check for correct machine operation. Verification of the relationships between bending and other properties may also be required by the rules-writing agency, particularly for fiber stress in tension \( F_t \).

Daily or even more frequent calibration of machine operation may be necessary. Depending upon machine principle, calibration may involve operating the machine on a calibration bar of known stiffness, comparing grading machine \( E \) values to those obtained on the same pieces of lumber by calibrated laboratory test equipment, determining if machine-predicted density matches a calibration sample density, or in some instances, using two or more procedures. Machine operation should be certified for all sizes of lumber being produced. Machine settings may need to be adjusted to produce the same grade material from different widths.

Quality control procedures of the MSR prediction model (\( E \)--bending strength relationship) have been adopted in Canada and the United States. Daily or more frequently, lumber production is representatively sampled and proof-loaded, usually in bending, with supplementary testing in tension. The pieces are proof-loaded to at least twice the design stress (\( F_b \) or \( F_t \)) for the assigned \( F_b –E \) classification. In bending, the pieces are loaded on a random edge with the maximum-edge defect within the maximum moment area (middle one-third span in third-point loading) or as near to that point as possible. In tension, the pieces are tested with a 2.4-m (8-ft) gauge length.

If the number of pieces in the sample failing the proof-test load indicates a high probability that the population from which the pieces came does not meet the minimum grade criteria, a second sampling and proof test are conducted immediately. If the second sample confirms the results of the first sample, the MSR grading system is declared “out of control” and the operation is shut down to isolate and correct the problem. The lumber that was incorrectly labeled is then correctly labeled.

Cumulative machine calibration records are useful for detecting trends or gradual change in machine operation that might coincide with use and wear of machine parts. The proof-test results are also accumulated. Standard statistical quality control procedures (such as control charts) are used to monitor the production process so that it can be modified as needed in response to change in the timber resource, and to make the output fit the assumed model.

Too many failures in one, or even consecutive, samples do not necessarily indicate that the system is out of control. If the prediction line is based on 95% confidence, it can be expected by chance alone that 1 sample in 20 will not meet the proof-load requirements. One or more out-of-control samples may also represent a temporary aberration in material properties (\( E \)--strength relationship). In any event, this situation would call for inspection of the cumulative quality control records for trends to determine if machine adjustment might be needed. A “clean” record (a period when the system does not go out of control) rectifies the evaluation of a system thought to be out of control.

**Adjustment of Properties for Design Use**

The mechanical properties associated with lumber quality are adjusted to give design unit stresses and a modulus of elasticity suitable for engineering uses. First, a lower confidence level is determined for the material, and this value is then adjusted for shrinkage, size, duration of load, and in ASD, an additional factor of safety. These adjustment factors are discussed in the following text (specific adjustments are given in ASTM D 245 and D 1990).

**Shrinkage**

As described in Chapter 4, lumber shrinks and swells with changes in moisture content. The amount of dimensional change depends on a number of factors, such as species and ring angle. The American Softwood Lumber Standard PS 20 lists specific shrinkage factors from green to 15% moisture content that were used historically to set green lumber dimensions for most species (2.35% for thickness and 2.80% for width). The standard does provide a means of adjusting...
lumber dimensions to other moisture content by recognizing an allowance of a tolerance below or above minimum standard dry sizes on a basis of 1% shrinkage or expansion for each 4% change in moisture content. (See sections 6.2.3.1 and 6.2.5.1 of PS 20 for additional information.) The standard also provides specific shrinkage factors for species such as redwood and the cedars, which shrink less than most species. Using the PS 20 recommendations and an assumed green moisture content $M_0$, we derive equations that can be used with most species to calculate the shrinkage of lumber as a function of percentage moisture content $M$. The equation is applicable to lumber of all annual ring orientations. For dimension lumber, the dimensions at different moisture contents can be estimated with the following equation:

$$d_2 = d_1 \left(1 - \frac{(a - bM_2)}{(100 - (a - bM_1))}\right)$$

where $d_1$ is dimension (mm, in.) at moisture content $M_1$, $d_2$ dimension (mm, in.) at moisture content $M_2$, $M_1$ moisture content (%) at $d_1$, $M_2$ moisture content (%) at $d_2$, and $a$ and $b$ are variables from Table 7–5.

### Size Factor

In general, a size effect causes small members to have greater unit strength than that of large members. Two procedures can be used for calculating size-adjustment factors—small clear and In-grade.

#### Small Clear Procedure

ASTM D 245 provides only a formula for adjusting bending strength. The bending strength for lumber is adjusted to a new depth $F_n$ other than 2 in. (51 mm) using the formula

$$F_n = \left(\frac{d_0}{d_n}\right)^{0.5} F_o$$

where $d_0$ is original depth (51 mm, 2 in.), $d_n$ new depth, and $F_o$ original bending strength.

This formula is based on an assumed center load and a span-to-depth ratio of 14. A depth effect formula for two equal concentrated loads applied symmetrical to the midspan points is given in Chapter 9.

#### In–Grade Test Procedures

ASTM D 1990 provides a formula for adjusting bending, tension, and compression parallel to grain. No size adjustments are made to modulus of elasticity or for thickness effects in bending, tension, and compression. The size adjustments to dimension lumber are based on volume using the formula

$$P_1 = P_2 \left(\frac{W_1}{W_2}\right)^w \left(\frac{L_1}{L_2}\right)^l$$

where $P_1$ is property value (MPa, lb in$^{-2}$) at volume 1, $P_2$ property value (MPa, lb in$^{-2}$) at volume 2, $W_1$ width (mm, in.) at $P_1$, $W_2$ width (mm, in.) at $P_2$, $L_1$ length (mm, in.) at $P_1$, and $L_2$ length (mm, in.) at $P_2$. Exponents are defined in Table 7–6.

### Moisture Adjustments

For lumber ≤102 mm (≤4 in.) thick that has been dried, strength properties have been shown to be related quadratically to moisture content. Two relationships for modulus of rupture at any moisture content are shown in Figure 7–8. Both models start with the modulus of elasticity of green lumber. The curves with solid dots represent a precise quadratic model fit to experimental results. In typical practice, adjustments are made to correspond to average moisture contents of 15% and 12% with expected maximum moisture contents of 19% and 15%, respectively, using simplified expressions represented by the open dot curves. Below about 8% moisture content, some properties may decrease with decreasing moisture content values, and care should be exercised in these situations. Equations applicable to adjusting properties to other moisture levels between green and 10% moisture content are as follows:

For MOR, ultimate tensile stress (UTS), and ultimate compressive parallel-to-grain stress, the following ASTM D 1990 equations apply:

- For $\text{MOR} \leq 16.7 \text{ MPa (2,415 lb in}^{-2})$
- $\text{UTS} \leq 21.7 \text{ MPa (3,150 lb in}^{-2})$
- $\text{UCS} \leq 9.7 \text{ MPa (1,400 lb in}^{-2})$

$$P_1 = P_2$$

Thus, there is no adjustment for stresses below these levels.

### Tables

#### Table 7–5. Coefficients for equations to determine dimensional changes with moisture content change in dimension lumber

<table>
<thead>
<tr>
<th>Species</th>
<th>Width</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$a$</td>
<td>$b$</td>
</tr>
<tr>
<td>Redwood, western redcedar, and northern white cedar</td>
<td>3.454</td>
<td>0.157</td>
</tr>
<tr>
<td>Other species</td>
<td>6.031</td>
<td>0.215</td>
</tr>
</tbody>
</table>

Note: $M_0$ is assumed green moisture content.

#### Table 7–6. Exponents for adjustment of dimension lumber mechanical properties with change in size

<table>
<thead>
<tr>
<th>Exponent</th>
<th>MOR</th>
<th>UTS</th>
<th>UCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w$</td>
<td>0.29</td>
<td>0.29</td>
<td>0.13</td>
</tr>
<tr>
<td>$l$</td>
<td>0.14</td>
<td>0.14</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: $w$, $l$, $w$, and $l$ are variables from Table 7–6.
stress design, design stresses are based on an assumed 10-year loading period (called normal loading). If duration of loading, either continuously or cumulatively, is expected to exceed 10 years, design stresses are reduced 10%. If the expected duration of loading is for shorter periods, published design stresses can be increased using Figure 7–9. Ultimate limit-state design stresses are based on a 5-min loading period. If the duration of loading is expected to exceed 5 min, limit-state design stresses are reduced by applying the time effects factor. Intermittent loading causes cumulative effects on strength and should be treated as continuous load of equivalent duration. The effects of cyclic loads of short duration must also be considered in design (see discussion of fatigue in Chap. 5). These duration of load modifications are not applicable to modulus of elasticity.

In many design circumstances, several loads bear on the structure, some acting simultaneously and each with a

Table 7–7. Coefficients for moisture adjustment of dimension lumber mechanical properties with change in moisture content

<table>
<thead>
<tr>
<th>Property (MPa (lb in$^{-2}$))</th>
<th>MOR</th>
<th>UTS</th>
<th>UCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_1$</td>
<td>16.6 (2,415)</td>
<td>21.7 (3,150)</td>
<td>9.6 (1,400)</td>
</tr>
<tr>
<td>$B_2$</td>
<td>0.276 (40)</td>
<td>0.552 (80)</td>
<td>0.234 (34)</td>
</tr>
</tbody>
</table>

*MOR is modulus of rupture; UTS, ultimate tensile stress; and UCS, ultimate compressive parallel-to-grain stress.

Table 7–8. Example of duration of load adjustments for ASD

<table>
<thead>
<tr>
<th>Time (year)</th>
<th>Total load (kPa (lb ft$^{-2}$))</th>
<th>Load adjustment$^a$</th>
<th>Equivalent 10-year design load (kPa (lb ft$^{-2}$))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.8 (100) + 0.96 (20) = 5.7 (120)</td>
<td>0.93</td>
<td>5.36 (112)</td>
</tr>
<tr>
<td>50</td>
<td>0.96 (20)</td>
<td>1.04</td>
<td>1.0 (21)</td>
</tr>
</tbody>
</table>

$^a$Figure 7–9.

Figure 7–8. Modulus of rupture as a function of moisture content for dimension lumber. Open dots represent the ASTM D 1990 model, and solid dots represent the more precise quadratic surface model on which the ASTM D 1990 model was based.

$$P_2 = P_1 + \left( \frac{B_1 - B_2}{B_2 - M_1} \right)(M_1 - M_2)$$

where $M_1$ is moisture content 1 (%), $M_2$ is moisture content 2 (%), and $B_1$, $B_2$ are constants from Table 7–7.

For $E$, the following equation applies:

$$E_1 = E_2 \left( \frac{1.857 - (0.0237M_2)}{1.857 - (0.0237M_1)} \right)$$

where $E_1$ is property (MPa, lb in$^{-2}$) at moisture content 1 and $E_2$ is property (MPa, lb in$^{-2}$) at moisture content 2.

For lumber thicker than 102 mm (4 in.), often no adjustment for moisture content is made because properties are assigned on the basis of wood in the green condition. This lumber is usually put in place without drying, and it is assumed that drying degrade offsets the increase in strength normally associated with loss in moisture.

Duration of Load

Design may be based on either design stresses and a duration of load factor or on ultimate limit state design stresses and a time effects factor. Both the duration of load and time effects factor describe the same phenomenon. In allowable

Figure 7–9. Relation of strength to duration of load.
different duration. When loads of different time duration are applied, the load duration factor corresponding to the shortest time duration is used. Each increment of time during which the total load is constant should be treated separately, and the most severe condition governs the design. Either the design stress or the total design load (but not both) can be adjusted using Figure 7–9.

For example, suppose a structure is expected to support a load of 4.8 kPa (100 lb ft$^{-2}$) on and off for a cumulative duration of 1 year. Also, it is expected to support its own dead load of 0.96 kPa (20 lb ft$^{-2}$) for the anticipated 50-year life of the structure. The adjustments to be made to arrive at an equivalent 10-year design load for ASD are listed in Table 7–8.

The more severe design load is 5.36 kPa (112 lb ft$^{-2}$), and this load and the design stress for lumber would be used to select members of suitable size. In this case, it was convenient to adjust the loads on the structure, although the same result can be obtained by adjusting the design stress.

**Treatment Effects**

Treatments have been shown to affect the final strength of wood (see Chap. 5 for detailed discussion). There is a 5% reduction in $E$ and a 15% reduction in strength properties of incised and treated dimension lumber for both dry- and wet-use conditions in the United States. In Canada, a 10% reduction in $E$ and a 30% reduction in all strength properties from incising are applied to dry-use conditions, whereas 5% and 15% reductions are used for wet-use conditions. The wet-use factors are applied in addition to the traditional wet-use service factor. Reductions in energy-related properties are about 1.5 to 2 times those reported for static strength properties. There is no difference in long-term duration of load behavior between treated and untreated material (Fig. 7–10). Current design standards prohibit increases in design stresses beyond the 1.6 factor for short-term duration of load when considering impact-type loading for material treated with waterborne preservative.

**Temperature Effects**

As wood is cooled below normal temperatures, its properties increase. When heated, its properties decrease. The magnitude of the change depends upon moisture content. Up to 65 °C (150 °F), the effect of temperature is assumed by design codes to be reversible. For structural members that will be exposed to temperatures up to 65 °C (150 °F), design values are multiplied by the factors given in Table 7–9 (AF&PA). Prolonged exposure to heat can lead to a permanent loss in strength (see Chap. 5).

**Round Timbers and Ties**

**Strength Properties**

Allowable strength properties of round timbers have been developed and published in several standards. In most cases, published values are based on strength of clear test samples. Allowable stresses are derived by adjusting clear test values for effects of growth characteristics, conditioning, shape, and load conditions as discussed in applicable standards. In addition, published values for some species of poles and piles reflect results of full-sized tests.

**Poles**

Most poles are used as structural members in support structures for distribution and transmission lines. For this application, poles may be designed as single-member or guyed cantilevers or as structural members of a more complex structure. Specifications for wood poles used in single pole structures have been published by the American National Standards Institute (ANSI) in Standard O5.1. Guidelines for the design of pole structures are given in the ANSI National Electric Safety Code (NESC) (ANSI C2).

**Table 7–9. Property adjustment factors for in-service temperature exposures**

<table>
<thead>
<tr>
<th>Design values</th>
<th>In-service moisture content</th>
<th>$T \leq 37$ °C ($T \leq 100$ °F)</th>
<th>$37$ °C &lt; $T \leq 52$ °C ($100$ °F &lt; $T \leq 125$ °F)</th>
<th>$52$ °C &lt; $T \leq 65$ °C ($125$ °F &lt; $T \leq 150$ °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_P, E$</td>
<td>Wet or dry</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>$F_B, F_V, F_C, F_{c\perp}$</td>
<td>Dry</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Wet</td>
<td>1.0</td>
<td>0.7</td>
<td>0.5</td>
</tr>
</tbody>
</table>
The ANSI O5.1 standard gives values for fiber stress in bending for species commonly used as transmission or distribution poles. These values represent the near-ultimate fiber stress for poles used as cantilever beams. For most species, these values are based partly on full-sized pole tests and include adjustments for moisture content and pretreatment conditioning. The values in ANSI O5.1 are compatible with the ultimate strength design philosophy of the NESC, but they are not compatible with the working stress design philosophy of the National Design Specification (NDS).

Reliability-based design techniques have been developed for the design of distribution–transmission line systems. This approach requires a strong database on the performance of pole structures. Supporting information for these design procedures is available in a series of reports published by the Electric Power Research Institute (EPRI).

Piles

Bearing loads on piles are sustained by earth friction along their surface (skin friction) or by bearing of the tip on a solid stratum. Wood piles, because of their tapered form, are particularly efficient in supporting loads by skin friction. Bearing values that depend upon friction are related to the stability of the soil and generally do not approach the ultimate strength of the pile. Where wood piles sustain foundation loads by bearing of the tip on a solid stratum, loads may be limited by the compressive strength of the wood parallel to the grain. If a large proportion of the length of a pile extends above ground, its bearing value may be limited by its strength as a long column. Side loads may also be applied to piles extending above ground. In such instances, however, bracing is often used to reduce the unsupported column length or to resist the side loads.

The most critical loads on piles often occur during driving. Under hard driving conditions, piles that are too dry (<18% moisture content at a 51-mm (2-in.) depth) have literally exploded under the force of the driving hammers. Steel banding is recommended to increase resistance to splitting, and driving the piles into predrilled holes reduces driving stresses.

The reduction in strength of a wood column resulting from crooks, eccentric loading, or any other condition that will result in combined bending and compression is not as great as would be predicted with the NDS interaction equations. This does not imply that crooks and eccentricity should be without restriction, but it should relieve anxiety as to the influence of crooks, such as those found in piles. Design procedures for eccentrically loaded columns are given in Chapter 9.

There are several ways to determine bearing capacity of piles. Engineering formulas can estimate bearing values from the penetration under blows of known energy from the driving hammer. Some engineers prefer to estimate bearing capacity from experience or observation of the behavior of pile foundations under similar conditions or from the results of static-load tests.

Working stresses for piles are governed by building code requirements and by recommendations of ASTM D 2899. This standard gives recommendations for adjusting small clear strength values listed in ASTM D 2555 for use in the design of full-sized piles. In addition to adjustments for properties inherent to the full-sized pile, the ASTM D 2899 standard provides recommendations for adjusting allowable stresses for the effects of pretreatment conditioning.

Design stresses for timber piles are tabulated in the NDS for wood construction. The NDS values include adjustments for the effects of moisture content, load duration, and preservative treatment. Recommendations are also given to adjust for lateral support conditions and factors of safety.

Construction Logs

Design values for round timbers used as structural members in pole or log buildings may be determined following standards published by ASTM International. The ASTM standard D 3200 refers pole designers to the same standard used to derive design stresses for timber piles (D 2899). Derivation of design stresses for construction logs used in log homes is covered in ASTM D 3957, which provides a method of establishing stress grades for structural members of any of the more common log configurations. Manufacturers can use this standard to develop grading specifications and derive engineering design stresses for their construction logs.

Ties

Railroad cross and switch ties have historically been overdesigned from the standpoint of rail loads. Tie service life was limited largely by deterioration rather than mechanical damage. However, because of advances in decay-inhibiting treatment and increased axle loads, adequate structural design is becoming more important in increasing railroad tie service life.

Rail loads induce stresses in bending and shear as well as in compression perpendicular to the grain in railroad ties. The American Railway Engineering and Maintenance-of-Way Association (AREMA) manual gives recommended limits on ballast bearing pressure and allowable stresses for cross ties. This information may be used by the designer to determine adequate tie size and spacing to avoid premature failure due to mechanical damage.

Specific gravity and compressive strength parallel to the grain are also important properties to consider in evaluating cross tie material. These properties indicate the resistance of the wood to both pull out and lateral thrust of spikes.

Literature Cited

Design values for wood construction—a supplement to
the national design specification for wood construction.

National design specification for wood construction.

Additional References

Lumber
ALSC. 1995. Germantown, MD: American Lumber Stan-
dards Committee.
ASTM. [Current edition]. Section 04—Construction; Vol-
ume 10—Wood. West Conshohocken, PA: American Soci-
ey for Testing and Materials.
ASTM D 198–05a. Standard methods of static tests of
timbers in structural sizes.
ASTM D 245–06. Standard methods for establishing
structural grades for visually-graded lumber.
allowable properties for visually-graded dimension
lumber from in-grade tests of full-size specimens.
ASTM D 2555–06. Standard methods for establishing
clear wood strength values.
ASTM D 2915–03. Standard practice for evaluating
properties for stress grades of structural lumber.
ASTM D 4761–05. Standard test methods for mecha-
nical properties of lumber and wood-base structural
materials.
ASTM D 6570–04. Standard practice for assigning al-
lowable properties for mechanically graded lumber.
DOC. [Current edition]. American softwood lumber stan-
U.S. Department of Commerce.
Galligan, W.L.; Green, D.W.; Gromala, D.S.; Haskell, J.H.
1980. Evaluation of lumber properties in the United States
and their application to structural research. Forest Products
Gerhards, C.C. 1977. Effect of duration and rate of loading
FPL–RP–283. Madison, WI: U.S. Department of Agriculture,
Forest Service, Forest Products Laboratory. 27 p.
Green, D.W. 1989. Moisture content and the shrinkage of
ment of Agriculture, Forest Service, Forest Products Labora-
tory. 11 p.
Green, D.W.; Evans, J.W. 1987. Mechanical properties of
Vol. 1–Vol. 7.
47(9): 78–85.
Green, D.W.; Shelley, B.E. 2006. Guidelines for assigning
allowable properties to visually graded foreign species. Ger-
mantown, MD: Board of Review, American Lumber Stan-
dards Committee. 10 p.
Green, D.W.; Shelley, B.E. 2006. Guidelines for assigning
allowable properties to mechanically graded foreign species.
Germantown, MD: American Lumber Standard Committee.
12 p.
Green, D.W.; Shelley, B.E.; Vokey, H.P. 1989. In-grade test-
ing of structural lumber. In: Proceedings of workshop spon-
sored by In-grade Testing Committee and Forest Products
Society.
content–mechanical property relationships for clear Southern
submissions under ASTM D 1990 since the North American
Madison, WI: U.S. Department of Agriculture, Forest Ser-
vice. Forest Products Laboratory. 52 p.
Winandy, J.E. 1995. The influence of time–to–failure on the
45(2): 82–85.

General
AWPA. [Current edition]. Book of standards (includes stan-
dards on pressure and thermal treatment of poles, piles, and
ties). American Wood-Preserver’s Bureau official quality
control standards. Bethesda, MD: American Wood Protec-
tion Association.
Engineering Data Management and Colorado State Univer-
piles. Conference proceedings. Fort Collins, CO: Engineer-
ing Data Management and Colorado State University.
USFSS. [Current edition]. Poles and piles, wood. Fed-
eral Specification MM–P–371c—ties, railroad (cross and
switch); Federal Specification MM–T–371d—wood preser-

Poles
Standards Institute.
ANSI O5.1. Specifications and dimensions for wood
poles.
ANSI O5.2. Structural glued laminated timber for utility structures.


ASTM D 3200–74. Standard specification and methods for establishing recommended design stresses for round timber construction piles.


Piles


ASTM D 2899–03. Establishing design stresses for round timber piles.


Construction Logs


Ties