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Abstract
Nondestructive evaluation procedures are now widely used 
in the forest products industry. These procedures rely upon 
nondestructive tests to evaluate important physical and 
mechanical properties of wood-based materials and began 
with fundamental research during and after World War II. 
An important outcome was the evolution of machinery and 
process for grading lumber and veneer. A dedicated group of 
scientists and engineers conducted and adapted this research 
for industrial use and developed equipment to make 
accurate measurements of wood properties in a production 
setting. One of those engineers, Dr. Friend K. Bechtel, spent 
over 40 years developing modern testing equipment for 
use by the forest products industry. Among his significant 
contributions to the nondestructive testing field is his 
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fundamental analytical work. Most of his design work 
began with a thorough evaluation of a test method, starting 
with underlying physical and mechanical principles. As an 
industrial research engineer, he focused on designing quality 
equipment that would provide accurate information to 
manufacturers and users of wood products. This publication 
describes some of his work in context with that of others, 
some previously reviewed and published and some not. 
It begins with a history of the industrial development of 
the machine stress rating lumber grading process. It then 
summarizes analytical work that delves into the effects that 
nonhomogeneities frequently found in wood products have 
on their mechanical properties. 
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Preface
Wood is an interesting and useful material, and products made from wood have been used since ancient times. 
Prehistoric users of wood likely performed some sort of testing to ensure that it would meet requirements for tools 
and structures. One of the early uses of a nonvisual nondestructive testing method involved a procedure to evaluate 
timbers for boats used by the Hudson Bay Company, Canada:

A York boat, which took two skilled men two weeks to build, would last three seasons with minimum 
maintenance.  The trickiest part of the construction process was to find the proper piece of spruce or tamarack 
for a seaworthy keel.  Samples were tested by being placed on stocks and a pocket watch held against the butt at 
one end.  The builder listened for the tick at the other.  Only if the ticking resonated loudly and clearly through 
the wood was it judged suitable to withstand the stresses of being carved into a keel. (From Caesars of the 
Wilderness: Company of Adventures, Volume II, by Peter C. Newman.)

Nondestructive evaluation procedures are now widely used in the forest products industry, from grading logs to 
evaluating historic wood artifacts and structures. These procedures rely upon nondestructive tests to evaluate 
important physical and mechanical properties of wood-based materials and began with fundamental research during 
and after World War II. The purpose was to more efficiently use the wood resource. Universities, government 
laboratories, and industrial research centers developed testing techniques and methodologies to assign appropriate 
design values for wood products. An important outcome was the evolution of machinery and process for grading 
lumber and veneer. 

A dedicated group of scientists and engineers conducted and adapted this research for industrial use and 
developed equipment to make accurate measurements of wood properties in a production setting—a demanding 
environment—on a daily basis. 

One of those engineers, Dr. Friend K. Bechtel, an electrical engineer by training, spent over 40 years developing 
modern testing equipment for use by the forest products industry. He worked on the development and design of 
equipment to grade lumber, evaluate veneer, and test structural timbers. This was first as Director of Research and 
Vice President of Metriguard Inc., in Pullman Washington, USA, and then on his own with Kierstat Systems LLC, 
in Mead, Washington, USA.

Among his significant contributions to the nondestructive testing field is his fundamental analytical work. He took 
a scientifically rigorous approach in his assessment of a test method and in his equipment designs. Most of his 
design work began with a thorough evaluation of a test method, starting with underlying physical and mechanical 
principles. As an industrial research engineer, he focused on designing quality equipment that would provide 
accurate information to manufacturers and users of wood products. 

This publication describes some of his work in context with that of others, some previously reviewed and published 
and some not. It begins with a history of the industrial development of the machine stress rating lumber grading 
process. It then summarizes analytical work that delves into the effects that nonhomogeneities frequently found in 
wood products have on their mechanical properties. 

Easy access to previous work is important in any research effort. This publication summarizes Bechtel’s work in 
context with that of others, and its purpose is to capture and compile some of this work and provide references for 
use by current and future scientists and engineers working on nondestructive testing of wood products. For his own 
use, Bechtel sometimes wrote about other subjects that were important to this work, and some of that is included for 
the possible benefit of others. Much work remains to be done, and suggestions for some future research directions 
are included.

The forest products business is interesting, challenging, and fulfilling. Bechtel has expressed his thanks to all the 
many friends and acquaintances he has had the pleasure of meeting and working with over the years. Memory and 
space do not allow mention of all their names and helpful inputs. 

Robert J. Ross
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Foundation of Nondestructive Testing of 
Wood Products
Contributions from an Industrial Research Engineer

Friend K. Bechtel
Kierstat Systems LLC, Mead, Washington, USA
Robert J. Ross, Supervisory Research General Engineer
USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA

Lumber Testing and the Machine 
Stress Rating Process
By the 1960s, research had shown that the intrinsic material 
property modulus of elasticity (E) is correlated with lumber 
strength (Hoyle 1961; McKean and Hoyle 1962; Senft et 
al. 1962). The macro-quantity, stiffness, being machine 
measurable and related to E, led to the development of 
various types of machinery for testing lumber stiffness, and 
the sorting of it into machine-stress-rated (MSR) lumber 
grades. More history and details of the MSR process were 
described by Galligan and McDonald (2000) in their update 
and revision of an earlier report (Galligan et al. 1977). 
Further interesting history was provided by Washington 
State University Professor Robert J. Hoyle at a workshop 
on machine stress rating (Hoyle 1981). That history is 
linked here because it may otherwise be difficult to obtain. 
Additional perspective about the field of wood products 
testing is provided in a more recent report (Ross 2015).

The C-L-T (Continuous Lumber Tester), which is the 
forerunner of the machine that today provides the fastest 
accurate production-line measurement of bending stiffness, 
was patented and prototyped by Keller of Potlatch Forests, 
Inc., in Lewiston, Idaho, USA (U.S. Patent No. 3,196,672) 
(Keller 1965). Industrial Sciences in Portland, Oregon, 
USA, and then Irvington–Moore in Tigard, Oregon, USA, 
manufactured commercial machines based on the Keller 
patent. The C-L-T consists of a series of rollers that propel 
and cause the lumber to be bent in the least stiff (flatwise) 
direction, first downward and then upward, as each piece 
progresses longitudinally through it. 

In its day, the C-L-T was the fastest and most accurate 
production-line equipment used in the production of MSR 
lumber due to three basic design features. First, the bending 
is accomplished with load-measuring rollers whose axes 
are fixed in translation. Thus, the stiffness is a measure 
of the bending force required to achieve a fixed bending 
deflection. In contrast to the alternative of measuring the 
deflection caused by a fixed applied force, this largely 
eliminates the inertial effects caused by the translating load 

roller used in some competing equipment that attempted a 
fixed loading force. Second, there are two bending sections, 
each 1,220 mm (48 in.) long; the first bends the lumber 
downward and the second upward. The average from the 
second measurement with a delayed measurement from the 
first is taken as the result for that 1,220-mm length, thereby 
correcting for naturally occurring bow of the lumber that 
is almost always present to some degree. Potential grade 
category from the machine is based on both the average and 
the lowest of these measurements over the board length. 
The third basic design feature isolates each bending span 
with multiple rollers at the span ends. These rollers clamp 
the lumber and reduce effects of dynamic transverse motion 
of the lumber external to the spans as it enters and exits 
at production speeds. Final grade category is based on the 
machine stiffness measurements and visual characteristics 
of the piece.

Competing production-line equipment did not have all 
three basic C-L-T features, and these machines were used 
primarily at low speeds or in the laboratory.

The C-L-T was installed in several locations in the early 
1970s. However, in its early days, the C-L-T was largely 
ineffective because its data processing system was 
inefficient. Among these machines languishing in the mills, 
one was at Frank Lumber Company in Mill City, Oregon, 
USA. There, the marketing manager, Len Moyer, recognized 
the potential marketing and use advantages of MSR lumber.

Moyer teamed up with the owner, Ed DeKoning, of 
Irvington Moore, then the manufacturer of the C-L-T, to 
find someone who could solve its data system problems. 
They found James D. Logan, an instructor in the Electrical 
Engineering Department of Washington State University 
in Pullman, Washington, USA. Logan had previously 
developed an E-computer system based on a U.S. patent by 
Pellerin and himself (U.S. Patent No. 3,513,690) (Pellerin 
and Logan 1970) and described elsewhere (Pellerin 1965) 
to measure E of a beam from its transverse vibrational 
characteristics and other parameters. (In 1972, Logan, 
DeKoning and Pellerin founded Metriguard Inc. in Pullman, 
Washington, USA. In 2017, Metriguard Inc. was purchased 
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by Raute Corporation of Lahti, Finland. Metriguard still 
operates from Pullman, but now it is known as Metriguard 
Technologies.) 

After numerous visits to Frank Lumber Company, Logan 
retrofitted the C-L-T there—as well as those at several other 
mills—with an entirely new data system. This new data 
system used robust electronic load cells in place of force 
measuring rings to measure bending force in each bending 
span of the C-L-T. In this new design, which proved to be 
both reliable and accurate at the speeds required, Logan also 
used integrated circuit technology that was maturing with 
the space program. 

MSR lumber became a reality by the mid-1970s because of 
its availability from functioning equipment and recognition 
of its advantages by producers of engineered products such 
as roof trusses, glulam beams, and parallel chord trusses. 
However, accuracy and reliability questions remained, and 
MSR lumber production needed a more formal quality 
control (QC) process than what the individual mills were 
using. 

In 1978, Bechtel compared E measurements from an 
E-Computer with average E measurements from the C-L-T 
at Frank Lumber Company. Logan (1978) used Bechtel’s 
results, scatter plot, and linear regression in his presentation 
(also fig. 10 of Bechtel (1982), which describes other details 
of the MSR grading process at that time). The plot and 
regression show an R2 value exceeding 0.97. In his paper, 
Logan noted that the E-Computer method of measuring E 
has proved valuable in estimating the potential value of the 
MSR process to a lumber mill.

An early laboratory device developed by Stan Pelster 
(similar to a device sold by Metriguard Technologies, 
Pullman, Washington, USA, as the Model 440 Static 
Bending Tester) measures E with a dead load applied at the 
third points of a 1,220-mm (48-in.) bending span. The E 
when averaged over three or four locations along the lumber 
length compares well with the C-L-T average E, and R2 
values typically exceed 0.97 (Bechtel 1981c).

In 1978, Warren presented a procedure known as the 
cumulative sum, or just CUSUM, procedure for tracking 
and maintaining acceptable levels of quality in MSR lumber 
grades as produced at mills (Warren 1978). As adopted for 
use, a small sample, typically 10 pieces from every shift of 
production, for each grade and size combination is randomly 
selected from the MSR grade-sorted output and checked 
with off-line equipment for both bending E and strength. 
Whereas the production-line C-L-T and the off-line Pelster 
type of tester measure E in the flatwise direction, the QC 
equipment verifies E and strength in the edgewise direction. 
(Bendtsen and Youngs (1981) state that “There appears to be 
little difference in strength predictability from using either 
E measured flatwise or edgewise. Commonly, machines 
utilize flatwise loading because large, more easily measured 

deflections can be obtained at low stress levels, thus 
avoiding damage to the lumber. Flatwise loading also allows 
flexibility in adjusting to different widths. Edgewise loading 
is possible, but requires greater measurement sensitivity 
because of the smaller deflections.”) From these tests, 
the CUSUM procedure can show that the 5th percentile 
(the value below which 5% of the population exists) of 
both E and strength in edgewise bending meet the grade 
requirements. In addition, the population mean value of E 
must be at least as high as the value assigned to the grade. 
The grade mark applied to the lumber shows both E and 
maximum extreme fiber stress in bending that may be used 
in design for that grade of MSR lumber. The assigned grade-
mark stress value is intended to be a factor, typically 2.1 in 
North America, below the actual 5th percentile of the grade. 
This is to accommodate effects such as duration of load and 
includes a safety factor.

In addition to off-line QC of MSR lumber in bending, some 
lumber producers perform QC in tension using the CUSUM 
process to verify that the 5th percentile of tensile strength 
meets grade requirements. If QC in tension is performed, a 
maximum design tensile stress value may be placed on the 
grade stamp as well as bending E and stress values.

By statistical chance, the CUSUM process will sometimes 
indicate that the process is out of control, when in fact it 
is in control. An intensive sampling procedure can show 
that the process is in control. If it does not, then the lumber 
graded since last in control must be regraded after the 
process is back in control, either by correcting machine 
malfunction or by increasing machine grade thresholds.

At the same conference at which Warren described the 
CUSUM QC procedure that has since enjoyed widespread 
use, methods for estimating percentiles of a distribution 
were presented (Bechtel 1978). These methods, although 
useful, are not used in the QC process for MSR lumber 
production. The estimation of lower percentiles has always 
been an issue in testing of wood-based structural materials 
because of the wide variability of their properties. In 
particular, the designer must be cautious to keep design 
loads below the low end of a strength distribution. Sharp 
(1988) expressed concerns regarding the tensile strength 
of some MSR graded lumber. Unpublished notes (Bechtel 
1988b) partially addressed these concerns. 

If every piece of lumber in production is subjected 
to a proof load test, it has been shown that it can be 
economically feasible to break as much as 10% or more of 
a typical population of lumber produced (Bechtel 1983). By 
removing these low-quality pieces from the distribution, the 
lower percentiles of the distribution are increased, thereby 
increasing the value of the remaining material. 

The form of property distributions for various wood 
populations has often been of concern. Often these have 
involved the shape of probability density functions. 
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However, when the lower tail of the distribution is of 
primary importance, as it is for strength distributions, the 
distribution shape is usually immaterial except in how it 
influences the lower tail. A simple procedure for estimating 
the integral of a probability density function known as the 
cumulative distribution function has been found useful 
(Bechtel 1981b). In the case of strength testing, where only 
the lower tail is important, it is not necessary to break every 
piece and learn the entire distribution. It is necessary only 
to estimate the lower tail of the distribution, and strength 
testing only up to and perhaps a little beyond the value of 
interest is sufficient.

Comparisons of results from different types of testing 
apparatus are important in determining the accuracy and 
reliability of the equipment. As noted above, E from the 
C-L-T correlates well with E either from an E-Computer or 
from a Pelster-type of tester.

Measurements should be repeatable. If a machine does 
not yield repeatable results from more than one test of the 
same specimen, then its accuracy may be questioned. For 
example, one can test each of n pieces of lumber in the 
C-L-T m times and gain an indication of the measurement 
repeatability. A study of this issue determined that from 
an efficiency standpoint, it is better to use fewer pieces of 
lumber and increase the number of times each is tested; 
that is, small n and large m (Bechtel 1993). However, in the 
C-L-T, rollers press the lumber into a bending configuration 
and propel it through the machine. A small amount of 
wood fiber compression occurs at roller contact points so 
that testing alters a tested specimen slightly. To avoid a 
cumulative effect, it is better to use small m and large n. By 
testing each piece just twice, two being the smallest value 
of m for repeatability testing, minimal change is observed 
in the tested pieces. In the C-L-T, a 30-piece sample has 
proved sufficient; that is, m = 2 and n = 30. For other types 
of measurements, a different conclusion might be reached. 

Logan of Metriguard used the repeatability analysis 
described above and developed a program based on it that 
some MSR producers have used to good effect. Data from 
mill tests are analyzed, and the results are presented to the 
mill. This is particularly useful for a mill because it allows 
the mill to compare its machine performance, not only 
with itself at previous times, but also with other machines 
operating elsewhere—all while maintaining confidentiality 
among the mills.

In 1995, a new machine from Metriguard largely made the 
C-L-T obsolete (U.S. Patent No. 5,503,024) (Bechtel and 
Allen 1995; Bechtel et al. 1996). This successor machine, 
known as the Model 7200 or H-C-L-T (High Capacity 
Lumber Tester) was developed using the accumulated 
experience of Metriguard personnel over some two decades 
of selling, servicing, rebuilding, and modifying the older 
C-L-T. The H-C-L-T is capable of speeds exceeding 15 m/s 
(3,000 ft/min) and can receive lumber in-line directly from 

all except the very highest speed modern planers. By design, 
when compared with the older C-L-T, it is inherently more 
robust and accurate at high speeds, and it is simpler to 
maintain. 

Bending stiffness, or E, is still the single most important 
measurement in sorting lumber for its structural value. 
Along with E, visual characteristics such as edge knots, 
wane, and planer skip are used to determine the MSR grade. 
In recent times, these characteristics come from optical or 
other sensors; in the past—and sometimes still today—a 
human visual grading expert performs that task. 

Local variation in wood properties, such as E, density, 
grain angle, and the location of these properties on a 
board, can affect its strength. Various optical methods, 
X-ray determination of density variation (U.S. Patent No. 
4,941,357) (Schajer 1990), and grain angle measurements 
have been proposed and/or used to improve the sorting of 
lumber into structural grades. 

Bending Test Span Length
E measured on a short span is a better predictor than that 
from a long span for bending and tensile strength of lumber 
(Corder 1965; Orosz 1973; Oscarsson et al. 2014). In a 1990 
meeting, Bechtel (1990b) presented features of the C-L-T; a 
proponent of a competing machine conceded accuracy and 
speed but claimed better resolution of E along the lumber 
length because his machine operated with a shorter bending 
span (900 mm). With development of the span function 
concept (Bechtel 2007), that claimed advantage was refuted. 
Bechtel and Allen (1995) discussed the new HCLT and 
illustrated with a figure showing span functions that gave 
better length resolution with 1,220-mm spans and clamp-
roller end supports than competing equipment with 900-mm 
spans and simple end supports.

A direct measurement of E on spans much shorter than 
now used has been impractical with bending equipment. 
Increased bending force relative to deflection when using 
shorter spans causes measurement precision to suffer from 
irregularities at the lumber surfaces contacted by rollers 
defining the deflection. Compression of wood fibers 
perpendicular to grain at roller contact points, debris left 
on the wood surface, or other lumber surface irregularities 
cause increasingly greater discrepancies in deflection and 
consequent E measurement noise. This was alluded to by 
Bendtsen and Youngs (1981) in their discussion of flatwise 
versus edgewise bending and the difference in stress for a 
given deflection. In the future, we may see optical methods 
become useful for measuring small deflections. For those 
interested in pursuing this potentially very useful field, 
Goodman (2017) is an excellent text on Fourier optics and 
would be a useful starting point.

Other measurements (X-ray, grain angle, optical) can 
add local detail about wood quality useful for estimating 



General Technical Report FPL–GTR–280

4

strength. Stress waves may also provide some detail, but 
more research will be required to overcome problems of 
reliably coupling stress waves into and out of the wood at 
production speeds to obtain local detail along the board 
length. Even so, the stress wave method has proved useful 
in the production-line for veneer testing (U.S. Patent No. 
4,201,093) (Logan 1980; Uskoski et al. 1993) and in a 
number of other applications (Ross 2015; Chang et al. 
2019). (Metriguard Technologies, Pullman, Washington, 
USA, produces veneer grading equipment based on use of 
stress waves.)

Local E Estimation
Short of a direct measurement, can we estimate local E from 
bending measurements? Here, we define “local E” as the E 
for spans shorter than those that can be measured practically 
with a direct bending test—and, yes, we can estimate local 
E by processing the available sequence of E measurements 
along the length of a board.

Present production-line equipment assigns each measured 
E to a location then at span center on a tested board. As the 
board moves longitudinally through the span, the equipment 
assigns a sequence of measured E values to a succession 
of span center locations along the board. In this way a 
sequence of measurements is assigned to a sequence of 
locations along the board between half the span length from 
its leading end to half the span length from its trailing end. 

Each measurement clearly is not determined by just the one 
local E value at the center of the measurement span. Rather, 
the measurement is a composite value from all locations 
along the board within the bending span, and clearly not all 
values contribute equally. Intuitively, values near the ends 
of the span will not contribute as heavily as those near the 
center. If a measurement is identified only with the local E 
at span center, then contributions from this measurement to 
other local values are largely wasted. A weighting function 
showing how the local values in the span contribute is 
needed as well as method for using those contributions. 
The sequence of measurements may be considered the 
result of a mechanical filter applied to local values along 
the board length. The mechanical filter properties are 
determined by the bending span configuration, and the goal 
of local E estimation is to undo the mechanical filtering by 
appropriately processing the sequence of measurements. 

In practice, production machines electrically filter the E 
signal to reduce measurement noise that is always present, 
such as from machine vibration and lumber surface 
imperfections. The filtering brings a type of average of 
neighboring E values together into each result, thereby 
implicitly assuming that neighboring E values are much 
the same, a reasonable assumption and necessary to reduce 
measurement noise. This necessary electrical filtering is a 
local effect and is in addition to the undesirable mechanical 
filtering.

The weighting function mentioned above defines the 
mechanical filter properties of the bending span. This 
function, called “span function,” is shown to work with 
the reciprocals of E, which we call compliance. That is, 
compliance is 1/E, and local compliance is 1/(local E). 
The first weighting function for this purpose was alluded 
to and presented in a workshop (Bechtel 1981a) and then 
later more formally (Bechtel 1985). Local compliance 
values are linearly, but not equally, weighted to yield 
measured compliance, that is, the reciprocal of measured 
E. For a simply supported, center-loaded bending span, 
the weighting function is cusp shaped, beginning at zero 
from one span end to maximum at span center and then 
falling to zero at the other span end. The form of this 
cusp is a two-piece quadratic, first up and then down. 
The 1985 presentation (Bechtel 1985) incorrectly applied 
this weighting function, since called “span function,” to 
the C-L-T—incorrectly, because the spans of the C-L-T 
are not simply supported. A method for computing the 
span function for a general system of supports, including 
the clamp-roller supports of the C-L-T or H-C-L-T, was 
described years later (Bechtel 2007).

Although Bechtel (1985) required the span function 
for estimating local E, it also seems to largely explain 
measurement differences when different types of loading 
configurations are used, such differences sometimes 
determined experimentally (for example, Paulo (2018)). 
Span functions show how local values are weighted into 
the measurements. When different bending configurations 
with different span functions are used, one could predict the 
differences in results depending on the uniformity of each 
tested board. 

For the 1985 presentation (Bechtel 1985), Bechtel and 
colleague James R. Allen made bending E measurements on 
a 38- by 89-mm (2 by 4) board at a sequence of locations 
along the board with a simply supported, center-loaded 
bending span of 1,220 mm. Recognizing that the measured 
compliance function can be written as the convolution of 
the local compliance function with the span function, we 
applied the complex convolution theorem of the Fourier 
transform (Oppenheim 1989) and obtained the Fourier 
transform of the local compliance function by division. 
Then, in theory, the local compliance function can be 
estimated by inverse Fourier transform. Because the data are 
discrete, the discrete Fourier transform was used (Bechtel 
2019c; Oppenheim 1989). In practice, as is usual with 
such operations, noise was a significant issue. Extensive 
measures were used for noise reduction as well as methods 
to wrap the ends of the limited data stream. The figure 
showing the result was not realized in time to be included in 
the proceedings record (Bechtel 1985), but it was presented 
at the conference and is attached to the linked reference. 
Although impractical due to the extensive computations 
required, the result showed that local E can be estimated 
from bending measurements. A better determination of knots 
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and their effect on E is seen with the local E result than with 
the original measured data sequence.

Methods other than the Fourier transform method have since 
been described to obtain local E. A second method used a 
Kalman filter (U.S. Patent No. 7,047,156) (Bechtel et al. 
2006, 2007) and is more conducive to implementation than 
the Fourier transform method.

A third method uses straightforward linear algebraic 
processing (Bechtel 2009). The most recent reference for 
the third method (Bechtel 2018) discloses details of the 
proprietary method that achieved results reported earlier.

The results shown in the references are for simply 
supported, center-loaded bending spans. The method 
applied to the clamp-roller spans of the C-L-T and H-C-L-T 
would process the data similarly. A computational detail 
will require additional bookkeeping to track at least three 
different span functions as a board engages more and then 
fewer rollers when it first enters a bending span, completes 
it, and then exits it. Strictly speaking, five different span 
functions apply for an H-C-L-T and seven for a C-L-T, 
but in practice, there is not much difference between them 
except for a dominant three. 

This third method achieves its result by using a vector 
of Lagrange multipliers (Kaplan 1952) to minimize a 
measure of dispersion among the infinite possible sets of 
estimated local components, each set of which satisfies 
an underdetermined algebraic system of linear equations 
obtained from the measurements.

None of these three methods (Fourier transform, Kalman 
filter, or algebraic) has been used in the production line, 
although all three give similar results for local E. Both the 
second and the third of these methods are implementable 
at production speeds, but the third (algebraic) is simpler to 
grasp.

The advantage of processing the measured data to yield 
local E is made clear by the following summary of salient 
points:

•	The change from present method is primarily in software, 
and many software details are available with general 
purpose programs (for example, The MathWorks Inc. [no 
date]).

•	All the measurements made while a local length of the 
tested board is within a test span contribute to its local 
E estimate. It does not make sense to use just one of the 
measurements for this purpose and discard the others, as 
in present MSR implementations, particularly now that 
computer processing speeds are available for real-time 
analysis.

•	Some preliminary electrical filtering (averaging) of 
measurements is still required to reduce measurement 
noise. By taking this filtering to an extreme, the computed 
local E profile is practically identical with the measured 

E profile, but without as much measurement noise. This 
result can make implementation a smooth and painless 
process. First, start with extreme filtering designed to 
give the same estimated local E profile as the present 
measured E profile. (By itself, this could improve yields 
by reducing downgrading caused by noise in measured E.) 
Then, gradually reduce the amount of filtering and reduce 
the grade thresholds at the same time. Grading rules allow 
efficient small reductions in thresholds.

•	A question is always raised: If local E estimation causes 
local reductions in the E profile along a board, will that 
cause more boards to be downgraded? This would occur 
except that the grade thresholds are also lowered. More 
boards that do not have significantly low local E values 
are retained in higher grades. To catch and fail the boards 
with low local E values, the present system must operate 
with higher than necessary grade thresholds. Local E 
estimation can catch and remove the bad actors even with 
lower grade thresholds because the low local E values 
are no longer masked by neighboring higher E values. 
Overall, it is anticipated that the increased accuracy of 
local E determination will increase value of the product 
mix.

Further Local E Research 
Possibilities
Local E estimation using the preferred algebraic method 
described in the previous section depends on a sequence 
of bending measurements that yield a set of equations 
as described in the literature (Bechtel 2009, 2018). 
Each equation relates a measured compliance to a linear 
combination of local compliances. Coefficients applied to 
each local compliance come from the span function for that 
measurement. For each measurement, a local compliance 
is at center of a bending span, but local compliances 
near the board ends cannot be at the center of any span. 
Consequently, there are fewer measurements than local 
compliances, and the algebraic system of equations is 
underdetermined. From the infinite number of solutions, 
the method finds the one that minimizes a measure of 
dispersion.

Bending tests suffer from only very small contributions to 
measurements from local values near board ends, so these 
local values are not well estimated. Other types of bending 
spans have different span functions, and span functions can 
be deduced for non-bending types of measurements. Some 
longitudinal vibration and stress wave testing methods 
weight local elements along a board equally. So, it seems 
reasonable to assign a uniform weighting function to that 
type of testing. By appending the appropriate equations 
from other measurements to the linear system of equations, 
additional estimation precision could be attained. 
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With enough additional equations from other measurements, 
the linear system of equations could become overdetermined 
with no exact solution. In that case, a solution with least 
square error could be determined much like solutions are 
obtained from global positioning systems that use timing 
information from multiple satellites. A brief section below 
discusses solution of linear equations.

Length Effect
In testing pieces of lumber to failure in tension, a weak-link 
theory and testing indicate that the tensile strength of long 
pieces is not as high as it is for short pieces (Taylor and 
Bender 1991). Statistics of Weibull distributions are often 
used to quantify this effect. The weak link theory can be 
modified to address the idea that there is correlation of local 
strength properties along the length (Bechtel 1988a, 1992).

Transverse Vibration E-Computer
Early use of the E-computer raised a question for which 
there seemed to be no answer: How do the local E values 
along the length of a board influence the measured result? 
For example, how does a knot with different properties than 
clear wood influence the result differently depending on 
where it is located in the board? 

Using an approach with the E-computer similar to that used 
with bending test configurations to determine span function, 
Bechtel (2017) deduced span functions for the E-computer. 
(This reference has not been thoroughly reviewed by 
others.) Because it affects the vibration dynamics, mass 
density along a board must also be considered as well as 
local E. The E-computer method requires the board weight 
as an input, and usually the weight is approximated as 
double the measured weight at just one end. This simplifies 
the apparatus, and the resulting error is generally deemed 
acceptably small. However, the results are different, and the 
reference considers both situations. A section showing the 
arithmetic on which the E-computer depends is included 
because it is necessary for the derivations. 

The transverse vibration nondestructive test can also be used 
to determine the damping characteristics of materials. A 
NASA reference publication (Spera et al. 1990) reported the 
use of a transverse vibration E-Computer to study damping 
characteristics of laminated Douglas-fir/epoxy lumber 
specimens from an effort led by Bechtel.

Bechtel (1990a) provides a description of terms sometimes 
used with vibrational analyses.

Grain Angle Measurement
Stiffness and strength in bending and in tension are heavily 
influenced by grain angle (FPL 2010). McLauchlan et al. 
(1973) described a grain angle measurement method based 
on dielectric properties of wood (James 1975). Bechtel 

developed those ideas into a measurement device sold 
by Metriguard as the Model 5100 Grain Angle Indicator. 
The equipment was bulky, required mechanically rotating 
electrodes, and was used in research but not in a production 
environment. Later, a stationary electrode version, the 
Model 520, was developed and described in U.S. Patent No. 
4,972,154 (Bechtel et al. 1990a) and elsewhere (Bechtel et 
al. 1990b). 

Although the literature describes the stationary 
electrode technology in detail, this technology has been 
misunderstood and misrepresented (Steele and Kumar 
1996). The stationary electrodes do not cause a rotating 
field as did the rotating version. Rather, the stationary 
electrode method begins with a defined reference direction 
(typically the main lumber axis). Multiple electrodes are 
rapidly switched electrically between polarities of an 
applied voltage and cause different sets of electrodes to be 
grouped together with the same polarity during different 
time intervals. In a first interval, an electric field probes in 
one direction to yield a signal proportional to the sine of 
two times the grain angle. In a second interval, the field 
probes in another direction, to yield a signal proportional 
to the cosine of two times the grain angle. Division of the 
sine signal by the cosine signal removes the proportionality 
factor to obtain the tangent of two times the grain angle. 
An inverse tangent operation followed with division by two 
gives grain angle. The result is an accurate measurement of 
wood fiber direction, which, within limits, is independent of 
spacing from the electrodes to the wood surface. 

Bechtel and Allen (1987) used a grain angle indicator to 
measure grain angle on a 1-cm grid over a 70-cm length on 
the surface of each piece of a 24-piece lumber sample. The 
pieces, selected at a local lumber yard, were loaded with 
knots. Bending E was measured on a simply-supported, 
center-loaded span of 122 cm centered on the 70-cm length 
of grain angle measurements. Then each tested section 
was loaded to failure in a Metriguard Model 401 Tension 
Proof Tester. Several methods were used to estimate 
tensile strength based on E and grain angle measurements. 
Results showed improvement in strength estimation (U.S. 
Patent No. 4,926,350) (Bechtel and Allen 1987, 1990). The 
best approach using multiple linear regression of tensile 
strength on both E and a number derived from grain angle 
measurements yielded R2 > 0.91.

In reviewing a manuscript for a report by Geimer et al. 
(1993) on using a grain angle indicator to determine amount 
of flake alignment in flakeboard, Bechtel suggested that 
Mardia’s statistics of directional data (Mardia 1972) could 
be used to indicate the amount of alignment. The paper 
was modified to describe that method; however, much 
more could be done in an implementation. For example, 
the alignment of different layers could be investigated with 
different appropriately sized sensor electrodes. This remains 
a potentially fruitful field for further research. 
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Ancillary Topics
Discrete Fourier Transform
The Fourier transform has been of interest for many years 
because it represents functions in terms of their frequency 
content. The development of high-speed digital computers 
now available at reasonable cost has revolutionized 
frequency analysis methods with use of the discrete 
Fourier transform. Efficient algorithms, generally known 
as fast Fourier transform algorithms, for implementation 
of the discrete Fourier transform are in widespread use. 
However, the terms fast Fourier transform (FFT), Fourier 
transform (FT), and discrete Fourier transform (DFT) are 
often used interchangeably, and they are not the same. 
The relationship between the FT and DFT was described 
by Bechtel (2019c) in an attempt to reduce this confusion. 
Briefly, the FT operates on a continuous function, whereas 
the DFT operates on sampled data. The domain changes 
from being a continuum to a set of numbers that are samples 
of a continuous function at discrete points of its domain. 
If samples of the function are sufficiently close together, 
the DFT usefully represents the FT.  If not, it is known that 
aliasing can occur in the DFT. Aliasing is a concept where 
one frequency masquerades as another.

The DFT and its inverse are developed as a pair to show 
their similarities. Tradeoffs among frequency resolution, 
sampling interval, number of sample points, and represented 
length (period) in both the original and frequency domains 
become evident.

Linear Equations and Singular Value 
Decomposition (SVD)
Bechtel (2019a) may provide helpful insight to the topic of 
solving a system of linear equations. More comprehensive 
expositions are available (Strang and Borre 1997; Strang 
2005). Understanding of this topic is key to the method for 
local E estimation.

Projection
Bechtel (2019b) may provide helpful insight to projection 
onto a subspace, another useful topic for the solution of 
linear equations. Projection is covered in more detail by 
Strang and Borre (1997) and Strang (2005).

Concluding Comments
As noted, the topics included in this publication are those 
that have surrounded Bechtel’s work on the research, 
design, and development of modern test equipment used by 
the forest products industry. The referenced papers address 
only a small part of the broad spectrum of issues important 
to wood products testing, but they do address some topics 
not covered well elsewhere. Many important references by 
others are not included, although some of them can be found 
in the reference lists of the papers cited here. The links to 
unpublished or otherwise difficult to obtain references will

be useful to those working in the forest products arena by 
making these references easily obtainable.
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E-Computer weighting of local properties 
By: 
Friend K. Bechtel 
 
1  Introduction. 
 A beam, simply supported at its ends as in Figure 1, can be excited into transverse vibration as 


shown by thumping it near its center.  


 
 Figure 1.  Simply-supported beam in transverse vibration. 
 


The distribution of mass, cross-sectional geometry, modulus of elasticity, loss mechanisms along the 


beam, and the distance between supports affect the vibration.  Assuming uniform property values 


throughout the beam, the relationship of Eq. (1) can be derived and used to compute modulus of elasticity 


(Em) from a measurement of vibrational frequency and beam weight, (ASTM D6874-12, 2013)
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Em is computed (measured) modulus of elasticity, f is vibration frequency in Hertz, W and L are weight 


and length of the beam, g is the acceleration of gravity, and I is the cross-sectional moment of inertia of 


the beam about its neutral surface.  The length L is assumed equal to the distance between supports.  


 Although the E-Computer method and the derivation of Eq. (1) are well known, we re-derive it 


here in Appendix A, both as a review and as a prologue to what follows.  In Eq. (1) and in Figure 1, the 


first order vibration mode has been assumed. 


2  Objective. 


 Pellerin 1965; Pellerin and Logan 1970; Ross, et al. 1991; Metriguard 2007; Zhang et al. 2007, 


and others have implemented the E-Computer method to practical advantage in the wood products 


industry to measure Em of wood beams.  Murphy 2000a computed the effect of several factors on the 


measurement, e.g. overhang of the beam at the supports, and made recommendations for corrections.  The 


same author (Murphy 2000b) provided a numerical solution for vibrating tapered beams.  He partitioned 


the beam into constant-property short lengths, the number of elements in the partition increasing until the 


result was stable.  He used continuity of beam displacement, slope, moment and shear at the boundaries to 


obtain a solution.  While directed toward solving the tapered beam problem, thus accounting for per unit 


length mass density and moment of inertia changes induced by taper along the length, Murphy’s 


numerical method could be adapted for other specific types of property variations along the beam length. 


 Here, we address the effects of arbitrary perturbations in property values along the span.  


Knowing the effect on the measurement of, e.g., a knot at the center of the span versus one near the span 
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ends helps in assessing the measurement result.  We apply the result to the local properties of compliance 


(reciprocal of local E or local EI product, depending on application) and local mass density, and show 


how these local properties affect the computed Em.  Thus, we quantify the effects of compliance and mass 


density deviations from uniformity. 


3  Span Function. 


3.1  Overview.  
 The span function concept stems from a development (Bechtel 1985) for a simply-supported 


center-loaded beam, and Appendix C reviews that result as motivation for the present work. 


 Span function h(x) shows how a measurement is affected by local property values at each position 


x along the span.  First, we consider local compliance c(x), defined here as the reciprocal of the local EI 


product, i.e. c =1/(EI).  Measured compliance cm, is a weighted average of the local compliance over the 


test span:  


 ∫= dxxhxccm )()(  (2) 


The span function h(x) weights the local compliance c(x) into the result with weight h(x)dx.  The area 


under the span function is one, so that if the local compliance function has uniform value co, then the 


measured compliance cm is co.   


 For more complicated loading configurations than the one described in Appendix C, we may 


compute the span function h(x) with the help of a fictitious local compliance test function (Bechtel 2007).  


The test function has uniform compliance co except at a point where a compliance impulse of weight b is 


located.  Then, “measured compliance” is: 


 [ ]∫ −+= dwwhxwbcxbc om )()(),( δ  (3) 


In Eq. (3), the weighted impulse )( xwb −δ of the test function is located at position x, the dummy 


variable of integration in Eq. (2) has been replaced with w, and the compliance test function, is shown in 


brackets [  ].  The partial derivative with respect to the test function impulse weight is:  
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We used properties of the impulse, also called the Dirac Delta function, specifically that its integral is one, 


and it has zero value everywhere except where its argument w – x is zero.  The value h(x) may be removed 


from the integrand because everywhere else the impulse )( xw−δ is zero, see e.g. (Hancock 1961, Page 14).  


The only place where the integrand has non-zero value is where w = x, and there h(w) = h(x).  We use the 


definition of the derivative at b = 0, to write: 


 




 −


=
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∂
=


→= b
cxbc


b
xbcxh om


bb


m ),(lim),()(
00


 (5) 


 To determine the span function, the process is: use the beam equations e.g. in (Higdon, et al. 


1960) to compute the measured compliance using the compliance test function as the local compliance 
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function for the beam, subtract the uniform compliance co, divide by the impulse weight b, and take the 


limit as b approaches zero.   


 In the present case, we use a similar method to obtain span functions but will be interested in span 


functions for both local compliance and local mass density along the beam.  The E-Computer 


measurement is a dynamic measurement; hence the distribution of mass is also important.  To carry out 


the determination of span functions, we define test functions of compliance and mass distribution for a 


fictitious test beam having three contiguous segments.   The first segment begins at x = 0 at one end of the 


test beam and ends at x = x1, the second segment begins at x = x1 and ends at x = x2, and the third segment 


begins at x = x2 and ends at x = L at the other end of the test beam.  Within each segment the properties are 


uniform.  In the first and third segments, the compliance and mass density are c and m respectively.  In the 


second segment, the compliance c2 and mass density m2, while uniform within the segment, take on values 


different from the first and third segments.  The limit is taken as the length of the second segment goes to 


zero and c2 and m2 go to infinity in such a way that the products c* = c2(x2 -x1) and m* = m2(x2-x1) remain 


finite.  The products c* and m* become impulse weights in compliance and mass density. 


 The compliance and mass density impulses may be viewed as approximating, e.g. the compliance 


and mass density increases seen about a typical knot.  The span function hc(x) applicable for local 


compliance is the derivative of the measured or computed result cm with respect to c*, in the limit as c* 


goes to zero.  For reasons that will be discussed, the similarly obtained derivative hm(x) for local mass 


density is called a pseudo-span function and has limitations not seen for the local compliance span 


function. 


3.2  Derivation of Span Functions. 


 First, partition the beam into three segments as described above.  The differential equations of 


Eqs. (A8) describe each segment except that the parameter values for the second segment become E2, I2, 


and m2 instead of E, I, and m, again using the reciprocal of the EI product as compliance. 


 For the first and third segments, from Eq. (A18) in Appendix A. 


 2
2


4
o


o mc
EI


m
ω


ω
α ==  (A18) 


As in the Appendix A derivation, use Eq. (A19) for the general solution of the first equation in Eqs. (A8).   


For the second segment, use Eq. (A19), but with second segment values: 


 2
22


22


2
24


2 o
o cm


IE
m


ω
ω


α ==  (6) 


3.2.1  Segments 1 and 3.  The deflection and its second derivative (moment) must be zero at the 


supports where x = 0 and x = L.  After a little juggling of coefficients, Eq. (A19) may be simplified to:  


 
( ) ( ) 3Segment,)(sin)(sinh)(


1Segment0,)sin()sinh()(


221x


121x


LxxxLCxLCxy
xxxAxAxy


≤≤−α+−α=
≤≤α+α=       (7) 


In Eqs. (7), the coefficients A1, A2, C1, and C2 are arbitrary, and the parameter α satisfies Eq. (A18). 
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3.2.2  Segment 2.  Full generality in the solution for segment 2 is retained: 


 2,)( 214321
2222 SegmentxxxeBeBeBeBxy xjxxjx


x ≤≤+++= −− αααα  (8) 


where α2 satisfies Eq. (6). 


3.2.3  Boundary Conditions for Segment 2.  Because there are no external forces applied between 


supports, the deflection, slope, moment and shear are continuous and therefore must match these 


quantities for the first and third segment solutions at the boundaries x = x1 and x = x2 respectively.  At the 


boundary x = x1 between segments 1 and 2, the conditions for matching deflection, slope, moment and 


shear are: 
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 (9) 


Similarly, at the boundary x = x2 between segments 2 and 3: 
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 (10) 


To derive compliance and mass density span functions, we put Eqs. (9) and (10) into matrix form and 


laboriously proceed; details are in Appendix B.   


4  Results. 


4.1  Usual case where weight at just one support is measured. 


 Computations in Appendix B lead to Eq. (B30) repeated here.  This differential change in 


measured compliance dcm is caused by impulses of compliance *cd  and mass density *md at position x 


along the beam.  As is often the case in use of the E-Computer method, Eq. (B30) comes from an 


approximate beam weight as double the weight W1 at one support. 


 *122cos1*2cos11 md
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From Eq. (B30), the span function hc(x) is: 


 
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










 π


−=
L


x
L


xh 2cos11)(c  (11) 


and graphed in Figure 2.  This raised cosine function shows the relative effect on measured compliance 


caused by a compliance impulse at positions x along the beam span, the impulse having differential 


weight dc*. 
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 Figure 2.  Span function hc(x) for local compliance.    (L=450 cm) 
  
Figure 2 is intuitively satisfying because it indicates that a compliance impulse at either end of the span 


would have no effect on the measurement while one at center span would have maximum effect.  If the 


beam properties were uniform from one end to the other, with the exception of varying compliance, then 


we can write the E-Computer measured compliance cm as: 
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Assuming uniform moment of inertia I over the beam length, the E-Computer measured Em is: 
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 From Eq. (B30), a pseudo-span function hm(x) showing the relative effect on the E-Computer 


compliance measurement from local mass density impulse dm* at x is a negative cosine function 


combined with a ramp function: 
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The function hm(x), except for the factor c/m, is plotted in Figure 3.  No equivalent to Eq. (12) showing a 


component of measured compliance as a functional of local mass density m(x) is given because of the 


ratio c/m that appears in hm(x).  This is why we call hm(x) a pseudo-span function and use it with caution.  


 
Figure 3.  Pseudo-span function hm(x)/(c/m) for local mass density, using approximate weight as 
twice the weight W1 measured at the left end support. 
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 The integrals of the span function for local compliance and the pseudo-span function for local 


mass density are one and zero, respectively. 


 1d2cos11L
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Eq. (15) is expected because in Eq. (12), if the compliance in the beam had the uniform value co, it may be 


taken outside the integral; the remaining integrand integrates to one, and the measured compliance cm is 


just co the uniform value. 


It is tempting to write: 
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This seems reasonable because if mass density m(x) were uniform, it could be taken out of the integral and 


from Eq. (16), the second term of Eq. (17) would be zero.  However, the factors c and m in the ratio c/m 


are respectively the uniform compliance and uniform mass density used for the test beam of the 


derivation; not the case for a general beam with varying property values.  


 We suggest that the pseudo-span function hm(x) of Eq. (14) be used as a guide to indicate the 


effect on E-Computer measurements of a local mass density perturbation from a uniform mass density.  If 


the beam has a local mass density increase, as for a knot near the E-Computer weight measuring end, then 


from Eq. (14) or Figure 3, we see the knot would have a maximum negative contribution to measured 


compliance.  At the other end, where weight is not measured, there would be no contribution.  Maximum 


positive effect on measured compliance would occur from a knot just past center span toward the support 


where weight is not measured.  The ratio c/m scales the effect. 


4.2  Case using sum of weights at both supports. 


 If the actual weight of the beam were measured; e.g. as the sum of the weights at both supports, 


then a similar computational procedure in Appendix B yields Eq. (B33).  
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The span function for compliance is the same as Eq. (11) and Figure 2, but the pseudo-span function for 


density becomes:  
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Except for the ratio c/m Figure 4 is a graph of the pseudo-span function of Eq. (18). 


Eq. (18) is the same as Eq. (14), but without the ramp function.  Eq. (18) integrates to zero just as did Eq. 


(14), see e.g. Eq. (16). 
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Figure 4.  Pseudo-span function hm(x)/(c/m) for local mass density, using actual weight of the beam, 
e.g. as measured as the sum of weights at both supports. 
 
5  Practical Implications. 


 To illustrate the effect of a local non-uniformity and its position in the beam, consider a uniform 


beam with local compliance c and local mass density m from x = 0 to x = L.  Now consider a knot in the 


beam that affects the compliance and mass density over a short length from x = x1 to x = x2.  We can model 


the compliance and mass density increases due to the knot by Δc and Δm respectively so that between x1 


and x2 the compliance and mass density are c+Δc and m+Δm.  Let the fractional increase in both 


compliance and mass density be equal and given by r so that: 
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It is not necessary to make the fractional increase in compliance and mass density equal, but it simplifies 


the computations and allows us to demonstrate the effect of a knot at various positions in the span.  


Further, it is reasonable that a knot might cause an equal fractional increase in compliance and in mass 


density.  Also, in this case, the ratio of compliance to mass density is equal to c/m even in the region of 


the simulated knot, and so the question mark in Eq. (17) may be removed. 


5.1  Effect of simulated knot when weight at just one end is measured. 


 From Eq. (17): 
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If the length of the interval from x1 to x2 is small relative to the span L, we can approximate Eq. (20) with: 
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where Δx = x2 - x1.   Take x as the midpoint in this small interval and use it to identify the simulated knot 


location. 
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 Now, let r = 1, so that in the region of the knot, the compliance and mass density are double what 


they are throughout the rest of the beam.  Also, let Δx = 5 cm, and L = 450 cm.  Using the reciprocal of 


Eq. (21), Figure 5 illustrates percentage change in measured modulus of elasticity from a uniform beam as 


a function of position of the simulated knot. 


     
Figure 5.  Effect of simulated knot.  Over a length of 5 cm the knot is assumed to have double the 
compliance and double the mass density of the uniform properties in an otherwise uniform beam.  
At the weight measuring end this knot will cause measured Em to be a little more than 2% greater 
than the uniform value, but at center span Em is more than 3% less than the uniform value. 


5.2  Effect of simulated knot when the sum of weights at both supports is used. 
 Similarly to the previous computation, we now integrate the differential of Eq. (B33) to obtain the 


result: 
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Figure 6 illustrates the percentage change in measured modulus of elasticity from a uniform beam as a 


function of position for the same simulated knot used in Figure 5. 


     
   Figure 6.  Effect of simulated knot.  The only difference from Figure 5 is that weights at both ends 
of the span are measured.  Here the effect is symmetrical and Em is a little more than 1% greater 
than the uniform value if the knot is at span ends but more than 3% less if it is at span center.  


6  Conclusions. 
 The span function hc(x) showing the effect of local compliance on E-Computer measurements is a 


raised cosine function, Eq. (11) and Figure 2.  If the beam is uniform except for local compliance 


variation, the E-Computer measured compliance cm or measured Em respectively can be computed from 


Eq. (12) or (13) as a weighted composite of local compliance values where the weighting function is the 
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span function hc(x).  However, if a beam has variation in compliance, it probably also has variation in 


mass density.  An E-Computer measurement of compliance or Em is a dynamic measurement; hence, the 


effect of mass density variation is important and should be considered. 


 Using a weight measurement as a doubled weight at just one support, a weighting function hm(x) 


showing the effect on measured compliance of local mass density variation is a composite of a negative 


cosine function and a ramp function, Eq. (14) and Figure (3).  If the E-Computer weight input for the 


measured beam is changed from its doubled half weight approximation to the sum of weights at both 


supports, the ramp function component is not present, Eq. (18) and Figure (4).  A complication in both 


cases is the ratio c/m which appears as a scaling factor, and comes from the uniform compliance c and 


uniform mass density m used in computation of hm(x).  It is this scaling factor that leads us to call hm(x) a 


pseudo-span function.  The ratio c/m can be approximated from E-Computer measurements of weight and 


vibration frequency.  Simply manipulate Eq. (1) and definitions of factors to obtain:  
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W1 is the half weight and W is the full weight of the beam.  The compliance is taken as 1/(EmI) from Eq. 


(1).  This may be useful in a computation for a beam having a general compliance and mass density 


distribution to obtain an approximation of the measured compliance or modulus of elasticity result using 


either the integration of Eq. (17) or the equivalent integration when the full weight of the beam is 


measured, i.e. beginning with Eq. (B33) instead of Eq. (B30).    


 Span function hc(x) and pseudo-span function hm(x) can be used as indicators of how E-Computer 


measurements are affected by variations in local compliance and local mass density.  These functions are 


particularly useful in showing how much effect that perturbations in local compliance and local mass 


density have on E-Computer measurements and the sensitivity of this effect to location of the 


perturbations.  Figures 5 and 6 demonstrate this for a simulated knot. 
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Appendix A.  Derivation of Eq. (1) 
 Let y(x,t) denote the transverse displacement of the vibrating beam at position x along the beam 


and at time t.  A separable solution is assumed so that: 


 )()()( tx tyxytx,y =  (A1)  


From beam theory, e.g. (Higdon et al, 1960), moment M(x,t), shear V(x,t) and force f(x,t) are: 
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where f(x,t), the distribution of force per unit length, is a function of both distance along the beam and 


time.  The modulus of elasticity, E, and moment of inertia, I, are assumed constant along the beam. 


 In the absence of external forces, we write the force f(x,t)dx for a differential length element dx of 


the beam as the sum of the forces due to inertia,
2


2 ),(d
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txy xm
∂


∂
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t
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−
),(d , each in a 


direction opposed to the acceleration and velocity respectively of the element.   Here, we assume uniform 


distributions of mass  m(x) = m and damping d(x) = d along the beam.  The value m is in units of 


mass/length, and d is in units of forcetime/length2.  After dividing by the differential length dx: 
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Combine Eqs. (A4) and (A5) to obtain: 


 )(
d


)(d
d


)(d
)(


d
)(d


x
t


2
t


2


t4
x


4
xy


t
ty


d
t


ty
mty


x
xy


EI 









+−=  (A6) 


Divide by m yt(t) yx(x), and invoke standard reasoning for the method of separation of variables by setting 


both sides of the equation equal to the same constant value ωo
2 that is independent of both x and t and has 


consistent units, i.e time-2. 
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The two equations to be solved are: 
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For the second of the equations in (A8), assume an exponential solution ptYty e)(t = , and obtain the 


characteristic equation: 


 02
o


2 =ω++ p
m
dp  (A9) 


The solutions p1 and p2 are: 
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 (A10) 


where the damping coefficient σ in nepers/second and frequency ω in radians/second are: 
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The general solution for the second equation in (A8) is: 


 ( ) )cos(e)(or)sin()cos(e)( t21t θ+ω=ω+ω= σ−σ− tAtytAtAty tt  (A12) 


We can obtain the coefficients A1 and A2, or A and θ from initial conditions, but these coefficients are 


arbitrary at the moment.  The “un-damped natural frequency”, ωo, in terms of the damping coefficient σ 


and the frequency ω, see Eqs. (A11), is: 


 22
o ω+σ=ω  (A13) 


That ωo is known as the un-damped natural frequency is explained by Eqs. (A11), (A12) and (A13), where 


we see that the vibration frequency ω becomes ωo if damping d and hence damping coefficient σ is zero.  


It is convenient to define damping ratio ς as:  
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o
1thatso ς−ω=ω


ω
σ


=ς  (A14) 


Our experience indicates that the damping ratio for wood or structural wood composite materials is 0.02 


or less.  Substitute ς = 0.02 into (A14), and observe that ω = 0.9998ωo, thus showing that ω is an excellent 


approximation for ωo. 


 Now try an exponential solution for the first equation in (A8): 


 qxYxy e)(x =  (A15)  


giving the characteristic equation: 
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m
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2
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=  (A16) 


The four solutions qi are given by: 


 α−α−αα= j,,j,,,, 4321 qqqq  (A17) 


respectively, where: 
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The general solution of the first equation in (A8) is: 


 xxxx BBBBxy α−α−αα +++= j
43


j
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Because the beam is simply supported at its ends, i.e. at x = 0 and L: 


 0)()0( xx == Lyy  (A20) 


so that from (A19): 
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The simply-supported end conditions cause the moment and therefore the second derivative of the 


deflection to be zero at the beam ends; see Eq. (A2).   The second derivative of (A19) is:  
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Setting it to zero at x = 0 and L gives:  
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43


j
214321 =−+−=−+− α−α−αα LLLL BBBBBBBB  (A23) 


From (A21) and (A23): 
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From the third equation in (A24), we conclude that B1 = 0 because the other factor, sinh(αL), is not zero 


unless its argument αL = 0, which would imply a trivial solution.  In the last equation of (A24), B2 = 0 


would also imply a trivial solution; hence, we set the second factor, sin(αL) = 0.  Consequently: 


 
L


nnL π
=απ=α or,  (A25) 


where n is any integer except zero, which would imply a trivial solution.  In practice, care is taken to 


excite only the fundamental mode of vibration, and so we set n = 1. 


 The solution including both time and spatial variables is: 


 






 πθ+ω== σ−


L
xtAxytytx,y t sin)cos(e)()()( xt  (A26) 


where amplitude and phase constants A and θ can be obtained from initial conditions.   From (A18) and 


(A25), with n = 1: 
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Solve Eq. (A27) for E, call it Em, and substitute the weight of the beam, W = mgL and oo2 ω=πf , to 


obtain: 
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Replace )2/(oo πω=f with )2/( πω=f according to the justification given earlier; see Eq. (A14) and 


following.  Eq. (1) follows.  
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 Appendix B.  Continuation of Section 3.2,  Derivation of Span Functions 
Eqs. (9) and (10) may be rewritten in matrix format: 


 
BPJCDV
BPJADV


22


11


=
=  (B1) 
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Pre-multiplying Eqs. (B1) by (PJ1)-1 and (PJ2)-1 respectively and equating eliminates B.  Solving for V1A 


gives: 
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Recognize that the inverse of Q is 0.5Q so that 0.5Q2 = I, the 4-dim identity matrix.  Consequently, 0.5Q2 


may be inserted into Eq. (B6) just before V2.   Then pre-multiply both sides of Eq. (B6) by Q to obtain: 


 [ ] CQVDQPJPJQDAQV 2211
111


2
1 −−−=  (B8)  


In the steps of evaluating the bracketed matrix product in Eq. (B8), first, the product J1J2
-1 is evaluated 


and approximated for the case when |α2(x1-x2)| << 1: 
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where I is the 4-dim identity matrix.  Note that the inverse P-1 of matrix P is 0.25P*, where P* is the 


complex conjugate of P.   Using Eqs. (A18), (6) and (B9), the bracketed matrix in Eq. (B8) without the 


leading and trailing Q factors is: 


 ( )




























−α+≅−−−


000
1000


000
0010


2


2


21
111


m
m


c
c


xxI21 DPJPJD  (B10) 


where c and c2 are defined by: 
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To get the bracketed matrix in Eq. (B8), pre- and post-multiply Eq. (B10) by Q: 
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Apply the limiting operation:  
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where c* and m* are impulse weights.  
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In  Eq. (B8), evaluate QV1 and QV2 noting that x1 → x, and x2 → x. 
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Substitute Eqs. (B14) and (B15) into Eq. (B8): 


( )
( )


( )
( )


CA


























−α−
−α


−α−
−α



































 +


α







 −


α
−









 −


α







 +


α
−


=


























α
α


α
α


)(cos0
)(sin0


0)(cosh
0)(sinh


1**
2


01
0**


2


00


0**
2


00
1**


2


01


)cos(0
)sin(0


0)cosh(
0)sinh(


xL
xL


xL
xL


m
m


c
c


m
m


c
c


m
m


c
c


m
m


c
c


x
x


x
x


  


  (B16) 







© Nov 2017  Kierstat Systems LLC  15902 E. Holcomb Rd. Mead, WA 99021-- E-Comp Weighting _110817.doc 16 


Define:  
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Pre-multiply both sides of Eq. (B16) by F to eliminate A: 
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In Eq. (B18), considering x to be fixed, nontrivial solutions occur only if the determinant H(α, c*, m*) of 


the matrix that pre-multiplies vector C is zero. 
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Because of the product c*m* appearing in the last term of Eq. (B19), the last term is negligible in the limit 


as the impulse weights become small.  Setting the remaining parts of the determinant to zero: 
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As c* and m* change, α, which depends on frequency ωo, will change.  However, even with these 


changes, the determinant as expressed in Eq. (B20) must remain zero.  The total differential of H(α, c*, 


m*) evaluated at the operating point, c* = 0, m* = 0 and α = π/L must be zero.  Therefore, to obtain the 


effect of impulses c* and m*, compute and set to zero the total differential of H(α, c*, m*) evaluated at 


the operating point: 
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From Eq. (B20),  
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From Eqs. (B21), (B22), (B23) and (B24): 
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Eq. (B25) shows how the differential dα is affected by the differential impulses dc* and dm* at position x.  


It remains to show how these impulses affect the measurement EmIm or its reciprocal cm.  Eq. (A28) gives 


the formula for computing Em from frequency fo and beam weight W.  However, often only the weight at 


one end of the beam is measured.  In that case, W is replaced with half the beam weight W1 multiplied by 


two.  We treat I = Im as part of the computed result, and write: 
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Arbitrarily assign the longitudinal position at the end of the beam where the weight W1 is measured as x = 


0.  We defined a mass impulse of weight m* = m2(x2-x1) at position x, where both x2 and x1 converge to x.  


The mass density m has units of mass/length; therefore, m* has units of mass.  The measured weight W1, 


including both the effect of a uniform beam of weight W and the effect of mass m* at x, is: 
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The reciprocal compliance measurement cm = 1/(EmIm)  from Eq. (B26) is: 
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The differential effect on the measurement cm caused by compliance and mass density impulses at x is:  
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Use Eq. (A18) with ωo = 2π fo  to get fo
2 = α4/(4π2cm).  Then, use Eqs. (B25) and (B27), carry out the 


indicated differentiations at the operating point, α= π/L, m* = 0, c* = 0, and W1 = mgL/2 and obtain: 
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If the actual weight of the beam were measured; e.g. as the sum of the weights at both supports, then Eq. 


(B27) would be replaced with: 


 gmmgLW *+=  (B31) 


and used in Eq. (B32) for cm. 
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Following a similar procedure, we obtain Eq. (B33) instead of Eq. (B30) for dcm: 
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Appendix C.  Development of Span Function for Simple Static Bending Example. 
 We use the beam equations (found in texts such as Higdon, et al. 1960) to define relationships 


among force F(x), shear V(x), moment M(x), slope S(x) and deflection D(x) at points x along a beam 


simply-supported at its ends and subjected to a center transverse load.  We assume that plane sections of 


the beam remain plain during bending.  Shear forces cause this assumption to be violated, particularly 


when the span length to beam depth ratio is small; however, for many cases of interest involving testing of 


wood beams, the span to depth ratio is large enough, that the assumption causes only negligible errors.  


Beam weight is neglected in the development. 


 Start with the force distribution as transverse point forces at x = 0, x = L/2, and x = L, with L being 


the span length between end supports.  These forces are represented as impulses δ(x).
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P is the center load on the beam.  The integral of the force distribution is shear V(x): 
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u(x) is the unit step function: 


 u(x) = 0,  if x ≤ 0 


         = 1, if x > 0 (C3) 


The integral of the shear distribution is moment M(x): 
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 (C4) 


r(x) is the unit ramp function: 


 r(x) = 0,  if x ≤ 0 


        = x,  if x > 0 (C5) 


In the last line of Eq. (C4), we drop the last term because it is zero for all points x of interest.  For this 


simple configuration, we assume that shear and moment are zero outside the domain 0 ≤ x ≤ L.  Obtain 


slope S(x) as the integral of the moment distribution divided by the product EI.   E is the modulus of 


elasticity of the beam, and I is the cross-sectional moment of inertia about the neutral surface of bending.  


Normally, in this type of development, we would consider E and I as constant or uniform over the length 


of the beam and take them outside the integral.  Here, we allow them to be functions of position along the 


beam.  For notational ease, define the reciprocal of their product as compliance c, allow it to be a function 


of position along the beam, and call it local compliance.  Thus, 
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Slope, as opposed to shear and moment for our simple case, may have a non-zero value outside the 


bending span.  It is: 
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The presence of c(w) in the integrand complicates the integration, but we proceed.  The integral of slope is 


deflection D(x): 
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In Eq. (C8), without loss of generality, we set the deflections at the end supports to be zero, i.e. D(0) = 


D(L) = 0.  Set x = L in Eq. (C8) to obtain the initial slope: 
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Substitute this slope into Eq. (C8): 
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 It is possible to interchange the order of integration in the two terms of Eq. (C10) and reduce the 


double integrals to single integrals.  For example, in the first term of Eq. (C10) we see this most easily by 


drawing in the (v, w) plane, a triangle with vertices at (0, 0), (0, x) and (x, x).  The integral specifies 


integration first horizontally along the horizontal differential strip of height dw from v = 0 to w, and then 


vertically from w = 0 to x.  Instead, we integrate first vertically over the vertical differential strip of width 


dv from w = v to x and then horizontally from v = 0 to x.  Thus, rewrite Eq. (C10) as:  
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At span center: 
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Now substitute M(v) from Eq. (C4) into Eq. (C12): 
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If the beam compliance is the uniform value co, then after removing it from the integral: 
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This is a familiar formula for the center deflection of a simply-supported center-loaded beam.  We and 


others use this result often to obtain measured modulus of elasticity Em.  We can also use it to obtain 


measured compliance cm: 
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Now use Eq. (C13) for D(L/2) in Eq. (C15): 
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This gives measured compliance in terms of local compliance and “span function” h(x): 
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We can easily show that the integral of this span function is one.  The cusp-shaped span function in Eq. 


(C17) is quadratic up to center span and then back down at span ends.  The span function h(x) shows that 


in the measurement of compliance as in Eq. (C15), local compliance values c(x) near span center are 


weighted much more heavily than local compliance values near span ends.  This, of course is an intuitive 


result, but the span function quantifies the effect. 


 


Historical Note: 


While the referenced 1985 paper developed the function of Eq. (C19) as a weighting function, it was not 


then denoted span function.  In that paper, the function was incorrectly applied to the CLT Continuous 


Lumber Tester, a machine which does not use simply supported bending spans.  Not until 2007 was a 


method described for determining span functions applicable with more general bending spans such as 


used in the CLT and the more recent HCLT (High Capacity Lumber Tester).   The present paper uses 


those later ideas to determine span functions for the Transverse Vibration E-Computer.  
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Local modulus of elasticity by constrained optimization 
 
 
Friend K. Bechtel 
Kierstat Systems LLC, Mead, WA, USA, fbechtel@ieee.org 
 
Abstract 


 
Machine stress rating (MSR) is generally accepted as the preferred production-line process in the grading 
of lumber for structural applications. The most widely used MSR machinery measures bending stiffness, 
and from stiffness, modulus of elasticity (E), on a sequence of bending spans along a wood board.  Strength 
is inferred from its correlation with E. 
 
The advantages of estimating local modulus of elasticity (local E), particularly regarding strength 
inferences, have been discussed in the literature along with two viable local E estimation methods, both of 
which use the sequence of E measurements as inputs. The first method uses a Kalman filter*, and the 
second chooses from among an infinite number of solutions for an under-determined set of linear 
equations. In the second method, although a means for choosing a solution that makes physical sense has 
been described (setting values near the ends of the board to be equal), this choice is somewhat arbitrary.  
 
Here, we optimize the second method by using Lagrange multipliers to minimize a measure of local 
compliance variation while constraining the solution to satisfy the set of linear equations. This method 
makes better use of the E measurement sequence than the usual MSR measurement process.  
 
We graph local E results from constrained optimization for the same piece of lumber studied in previous 
work, and we use the same bending E measurement data. Our conclusion is that constrained optimization is 
a practical method for estimating local E of structural lumber. All indications point toward efficient and 
beneficial production-line implementation from software modifications in existing MSR equipment. 
___________________________________________________________ 
*An earlier method made use of the Fourier Transform, but has been abandoned in favor of the ideas here. 
 
Keywords: local E, modulus of elasticity, compliance, span function, lumber grading, MSR, 
span matrix, constrained optimization, Lagrange multipliers, Kalman filter 
 
Introduction 
 
The production of machine stress rated (MSR) lumber typically uses overlapping sequences of bending 
modulus of elasticity (E) measurements. Past work used these measurements to estimate local E on short 
length increments of lumber (Bechtel 1985, 2009; Bechtel et al. 2006, 2007a, 2007b; Foschi 1987; Lam et 
al. 1993; Pope and Matthews 1995). The bending span is usually about 900 to 1200 mm long, and each 
measurement of E is therefore a composite of the local E values within the span. As a board is displaced 
longitudinally relative to a bending span, the next E measurement in the sequence is a composite of most of 
the same local values but from a different position in the span. As a new local value enters the span at one 
end, another exits at the other end.   
 
The arithmetic of previous and present work to estimate local E from the measured E sequence uses 
compliance as the reciprocal of modulus of elasticity because we recognize that measured compliance is the 
convolution of a “span function” with unknown local compliance values. The span function (Bechtel 2007) 
is a weighting function that weights each local compliance within a bending span into a measured 
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compliance result. As a board moves through the bending span, we relate each compliance measurement 
with a position along the board, noting that each measurement is a weighted combination of local values. 
 
We write the sequence of measured compliances as a set of linear equations, one equation for each 
measurement in the sequence. There are fewer measurements, hence fewer equations, than unknown local 
compliance values because the first measurement in the sequence begins when the center of the bending 
span is one-half the bending span length from the leading end of the board, and ends when the last 
measurement is one-half this distance from the trailing end.  For a typical bending span system of supports, 
it has long been obvious that the local E (or compliance c) near the leading and trailing ends of the span do 
not contribute much to a measurement. The span function quantifies the contribution amounts.   
 
Fewer equations than unknowns, leads to an infinite number of solutions in a manifold of solutions. We can 
obtain a unique solution by adding to the number of equations. One artificial approach discussed in the 
references requires local compliance values near ends of the board to have the same value.  Another would 
make additional measurements with different machine types having different span functions; thereby 
adding to the number of equations. So long as the span functions of the added equations satisfy conditions 
of linear independence from the existing span functions, this method can reduce the dimensionality of the 
manifold of solutions and yield improved results.  Defining a bending span that would weight local 
compliance values more heavily near span ends would be ideal. 
   
We use here the method of Lagrange Multipliers (Kaplan 1952) to choose a “best” solution from among the 
manifold of solutions.  We treat the equations as constraints and minimize a function of the local 
compliances.   
 
Compliance equations (the constraints) 
 
Consider the length of a board to be regularly subdivided into n local length increments, each associated 
with a local compliance. The set of linear equations to solve is (Bechtel 2009): 
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Each of the m measurements, CM(·), is a weighted combination of the local compliances, C(1), C(2), . . . , 
C(n) where we call the weights h(1), h(2), . . . , h(p) span weights. The span weights, which sum to one, 
correspond to local increments of the bending span adjacent the board during the measurement. In Eqs. (1), 
there are n local compliances along the board, p span weights and m measurements. Span weights outside 
the span have zero values and are omitted from the equations. We obtain span weights as discretized 
versions from a bending span function (Bechtel 2007), and they determine how much each local 
compliance contributes to a measurement. In some production-line machines (Bechtel and Allen 1995, 
Metriguard 2007), the number of bending span support points, and hence the span function along with the 
span weights, changes as a board moves through the machine. This is a result of multiple rollers at span 
ends and leading and trailing ends of a board engaging a different number of rollers as the board moves 
through the machine.  Consequently, the span weights may not be the same in each of the m equations of 
Eqs. (1). That adds notational and bookkeeping complexity but does not affect the ideas we present here. 
For simplicity of presentation, and without loss of generality in the approach, we now restrict discussion to 
simply-supported, center-loaded bending spans. In this case, the span functions, and hence span weights are 
identical for each measurement, and they do not change other than in position from one equation to the 
next. The notation of Eqs. (1) is sufficient, and we can write the equations in matrix form as: 
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 MCHC =  (2) 
 
where the (m,n)-dimensional “span matrix” H, the n-dimensional local compliance vector C, and the m-
dimensional measured compliance vector CM are: 
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Entries in the jth row of H are the p span weights of the span function used for the jth measurement, arranged 
in reverse order, and shifted so that they multiply the correct local compliance values.  This is a result of 
the discrete convolution wherein the leading end of a board meets the last span function weight in the span 
and then leaves the span. 
 
Solution by method of Lagrange multipliers 
 
The set of linear equations, Eqs. (1) and (2), is under-determined, i.e., there are more unknown local 
compliances than there are measurements (n > m). A careful look at Eqs. 1 and 3 reveals that n = m + p -1. 
Assume that the matrix H in Eqs. (3) has rank m, a reasonable assumption if the bending span and span 
weights h(·) are typical of MSR production-line machinery. Then, there exists an infinite number of 
solutions to Eq. (2). 
 
Subject to the constraint HC - CM = 0 of Eq. (2), which identifies the family of solutions, we minimize a 
scalar function of the local compliances. 
 
As part of the scalar function definition, let A be an estimate of the n-dimensional mean vector for the 
unknown local compliance vector C. While the mean vector is unknown, there is no reason to believe that 
any component of it would be different from any other. Because each measured compliance is a weighted 
average of the local compliances, a good estimator for each component is the sample mean of the 
components of CM. Thus, the estimate A of the mean is taken as:  
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where “T“ indicates matrix transpose so that [ ]T111  is an n-dimensional vector of ones. Next, let W 
be the covariance matrix of the local compliance vector C, and assume that W is a symmetric Toeplitz 
matrix: 
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2σ  is the variance of each component of local compliance vector C, and r is a correlation coefficient 


relating adjacent components of C. Assumptions in Eqs. (5) are reasonable because they allow the 
components of C  to be less closely correlated the farther they are apart. As will become apparent, the 
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results are insensitive to r. The result does not depend on the variance 2σ , and we do not discuss it further. 
We define the following scalar quadratic function of C and proceed to minimize it.. 
 
 ( ) ( )ACWAC −− −1T  (6) 
 
All values of C for which quadratic (6) is constant define the surface of an ellipsoid in n-dimensional space 
about the mean vector.  We minimize this quadratic expression while satisfying the constraint of Eq. (2) by 
using the method of Lagrange multipliers. This has the effect of minimizing the variation among the local 
compliance components of C while satisfying the constraint of Eq. (2).  We form the Lagrangian: 
 
 ( ) ( ) ( )M


1T CHCγACWAC T −−−− −  (7) 
 
where γ is an m-dimensional vector of Lagrange multipliers. Set the gradient of the Lagrangian to zero. 
 
 ( ) 0=−−− γHACW T12  (8) 
 
Solving Eq. (8) for C gives: 
 


 AγHWC += T


2
1  (9) 


 
After substituting Eq. (9) into Eq. (2) and solving for γ : 
 
 ( ) ( )AHCHWHγ −= M


-1T2  (10) 
 
Because H has rank m, the inversion in Eq. (10) is possible.  Use Eq. (10) in Eq. (9) to obtain: 
 
 ( ) ( ) AAHCHWHHWC +−= M


-1TT  (11) 
 
Lastly, use Eq. (5) in Eq. (11) to obtain the result:  
 
 ( ) ( ) AAHCHRHHRC +−= M


-1TT  (12) 
 
Results 
 
We used data from a previously studied 38 mm x 89 mm x 4500 mm piece of Douglas Fir lumber, selected 
for its large knots (Bechtel 2009). The compliance vector CM was from 73 measurements on overlapping 
bending spans spaced 50 mm apart longitudinally. The apparatus had a simply supported, center-loaded 
bending span 900 mm long. The vector and matrix size parameters in Eqs. (3) were m = 73, p = 19, and n = 
91. The references contain details for the span matrix H. We used the vector CM as input to Eq. (12), but 
note that the entry for A also depends on CM, see Eq. (4). Fig. 1 illustrates local E we obtained by taking the 
component by component reciprocal of C.  To combat the noise, obvious in Fig. 1, we filtered CM and then 
applied Eq. (12) to the filtered CM to obtain the result in Fig. 2. We used the same filter as in the previous 
work and denote the filtered CM by CMf to distinguish it from CM.  
 
In Figs. 1 and 2, r = 0.97. In Figs. 3 and 4, computations are identical to those of Fig. 2 except that r = 0 
and r = 0.9 respectively. We observe only small differences from the result in Fig. 2 at the beginnings and 
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ends of the computed local E curves. There are no discernable differences for r values larger than 0.97 until 
the matrix R is close to singular, i.e. close to all ones. 
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 Figure 1.  Measured EM and computed local E without filtering measured compliances. 
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 Figure 2.  Measured EM and computed local E after first filtering measured compliances. 
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 Figure 3.  Same as Fig. 2, but with correlation coefficient = 0. 
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 Figure 4.  Same as Fig. 2, but with correlation coefficient = 0.9. 
 
We set r = 0.97, and explored further the effect of filtering. It is a simple matter to pass the filtered 
measured compliance data through the filter again, and Fig. 5 shows the result.  
 


0 50 100 150 200 250 300 350 400 450


0


5


10


Distance along lumber (cm)


M
od


ul
us


 o
f e


la
st


ic
ity


 (G
P


a)


Measured E and local E computed from filtered measured compliances
Mat'l: 38mm x 89mm x 4.5m Douglas Fir; corr coef = 0.97


Measured E
Computed local E
10 x Error in measurement space; percent error = 1.7%


 
 Figure 5.  Same as Fig. 2, but measured compliances are passed twice through the filter. 
 
Computed local E in Fig. 5 is smoother than for Fig. 2.  Continuing in this manner, Fig. 6 shows the result 
of passing the measured compliance seven times through the filter before computing local E. 
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 Figure 6.  Same as Fig. 2, but measured compliances are passed seven times through the filter. 
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For Figs. 5 and 6, we do not actually pass the measured data through the filter multiple times, but the result 
is the same as if we had. 
 
Because matrix H has rank m, both the m-dimensional vectors CM and CMf must be in the column space of 
matrix H. Therefore, both the local compliance vector C we obtain by using CM as input to Eq. (12) and the 
local compliance vector Cf we obtain with filtered CMf as input satisfy Eq. (2).  However, the noisy local E 
result of Fig. 1 is not reasonable and cannot be correct. It comes from the reciprocal of local C using 
unfiltered measurements CM as input to Eq. (12). We suspect unavoidable quantization and other 
measurement noise errors in CM. We argue therefore that CM cannot be correct because of the noise. This 
noise error is reduced by filtering, and the local E result of Fig. 2 obtained by applying Eq. (12) to filtered 
measurement vector CMf is reasonable. Low areas line up with observed large knots in the measured board, 
and there are no unreasonably high values. We graph in the figures the noise as the difference of the 
reciprocals of CM and CMf, referring to it as noise in the measurement space. In Figs. 1-5, the errors are 
small so the error graph is ten times the error.  We state also a percent error computed as: 
 
 Percent error = 100 sqrt(var(CM - CMf)) / mean(CM) (13) 
 
where variance (var) and mean are computed from the components of the vectors CM and CMf.  
 
Discussion 
 
It is interesting to compare the computed local E with the measured EM in the figures.  In Fig. 1 the large 
discrepancy between the two is attributed to measurement noise.  The question is: how much measurement 
noise.  Repeatability studies (Bechtel 1993, Metriguard 2007) have indicated that the so-called “low point” 
error to be expected in production-line machines is about one percent or less for a well-tuned machine. Low 
point E corresponds to a component of the reciprocal of our measured compliance CM. While we base our 
percent error on measured compliance (not on E), there is little difference between the two error measures 
for errors in the neighborhood of one percent. 
 
We argue that we should set the amount of filtering so that the error in Eq. (13) agrees with the low point 
measurement error observed in practice. On this basis we argue in favor of the local E results of Figs. 2, 3 
or 4.  As more filtering is used, the local E result is even smoother and can be made to look quite similar to 
the measured EM as shown in Fig. 6 where the measurement error is 3.8% 
 
Suggested Implementation: Initially, to avoid disrupting the MSR process, implementation may begin 
with rather extensive filtering. As well as giving local E results almost identical with the usual measured 
EM using well-tuned equipment (compare local E with measured EM in Fig. 6.), such implementation will 
have the added benefit of reducing noise in the result thereby improving yield on that basis alone. The real 
benefit will occur with less extensive filtering so as to allow the result to track more closely with the actual 
local E of the measured lumber (see e.g. Fig. 2). 
 
Conclusions 
 
The results show that local E estimation by constrained optimization is feasible and may be implemented in 
the production of MSR lumber with minimal disruption. Existing equipment can be upgraded with software 
modification. We expect thresholds may be lowered to allow a larger part of the grade mix to be in the 
higher grades and yet still catch the bad actors due to local problems no longer disguised in an average of 
good material.  Reduced filtering and simultaneous small reductions in grade thresholds will allow the 
process to remain in control while increasing yields.  We expect the major benefits to be better grading 
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accuracy, increased high-grade yields, and greater profits to mills.  A secondary benefit is robustness of the 
result in the presence of measurement noise. 
 
These benefits are neither magical nor unexpected. We should expect benefits from a process that uses all 
measurements for which a local E value contributes rather than just the measurement where that local E is 
at the center of a bending test span, as in present-day processing. We merely use the same data more fully 
than presently, where much of the available information is wasted from the measurements.  Let’s correct 
this oversight and fully use the measurements. 
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Linear Equations and Singular Value Decomposition (SVD) 


Introduction: 


Consider the linear system of equations written in matrix form as: 


 Ax b=  (1a) 


where A is a (m,n)-dimensional matrix, x is a n-dimensional vector, and b is a m-dimensional vector.  


In this note, all components of A, x and b are assumed to be real numbers.  Expanded, this is: 


 


11 12 1n 1
1


21 22 2n 2
2


n
m1 m2 mn m


a a a b
x


a a a b
x


x
a a a b


   
    
    
    =
    
    
       








    





    





 (1b) 


We can think of this in 2 ways: 


First, we can express each component of b, say bi as the inner product (dot product) of the ith row of 


A and x, both the ith row and x being vectors in n-dim vector space nR . 


 
i1 1 i2 2 in n i


n


ij j i
j 1


a x a x a x b


i 1 m
a x b


=


+ + + = 



== 



∑





  (1c) 


Second, the m-dim vector b in mR  is expressed as a linear combination of the m-dim columns of A, 


each column being a vector also in mR . 


 
1 2 n1 2 n


T
1j 2 j mjj


x a x a x a b
where


a a a a , j 1, 2, , n


+ + + =


 = = 





 


 (1d) 


In Eq. (1d) only, the vectors are shown with underbars to avoid confusion1.  


 
1 The superscript T indicates transpose. 
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While the equations have been written with equal signs as though they were equalities, there is no 


assurance that a solution x exists.  This is most easily seen with Eq. (1d), where the vector b in mR is 


expressed as a linear combination of the n columns of A.  The subspace in mR spanned by the 


columns of A, and called the column space, or range of A, is denoted R(A).  The number of 


independent columns of A is the rank r of the matrix A and also the dimensionality of the subspace 


R(A).  If either the rank r = m or if the vector b is in R(A), then Ax b=  has at least one solution.  If 


the rank r < m, then it is possible that b is not in R(A).  In that case no solution exists.  We can 


decompose b into a part rb in R(A) and a complementary part b⊥ that is orthogonal to every vector in 


R(A).   


 rb b b⊥= +  (2) 


The part b⊥ is in a (m-r)-dimensional subspace N( TA ) defined (for reasons not clear at the moment) 


as the left null space of A.  The subspaces R(A) and N( TA ) in mR are orthogonal to each other and 


together comprise mR .  The equation: 


 rAx b=  (3) 


has at least one solution because by definition rb is in R(A).  If  r = m, the left null space N( TA ) is 


zero dimensional, and the range R(A) is the entire space mR . 


Many solutions x to Eq. (3) exist if n r> .  First, decompose x as: 


 rx x x⊥= +  (4) 


where rx in nR is in the r-dim subspace of nR consisting of the row space of A, which is the same as 


the column space or range R( TA ) of TA .  The remaining part of x, namely x⊥ in nR is confined to 


the complementary (n-r)-dim subspace N(A), known as the null space of A.  The matrix A takes 


every vector x⊥  in N(A) into the zero vector of mR . 


 Ax 0⊥ =  (5) 
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The inner product of every vector x⊥  in N(A) with every row of A is zero, and every vector x⊥  in 


N(A) is orthogonal to every vector rx in R( TA ).   The subspaces R( TA ) and N(A) both in nR are 


orthogonal subspaces. 


Now, we go back to the (m-r)-dim subspace in mR  known as the left null space N( TA ) of A.  The 


matrix TA takes every vector b⊥ in the subspace N( TA ) into the zero vector of nR . 


 TA b 0⊥ =   or equivalently,  T Tb A 0⊥ =  (6) 


The zeros in Eqs. (6) are zero vectors, column and row respectively, both n-dim.  The second 


equation of Eqs. (6) is justification for referring to the subspace N( TA ) as the left null space of A. 


The inner product of every vector b⊥  in N( TA ) with every row of TA is zero, and every vector b⊥  


in N( TA ) is orthogonal to every vector rb in R(A).   The subspaces R(A) and N( TA ) are 


complementary orthogonal subspaces in mR  . 


Thus, for review, we are considering four subspaces:  


R(A) and N( TA ) are complementary orthogonal subspaces in mR .  Both the range R(A) and 


the left null space domain N( TA ) are in mR .  These subspaces are r-dim for R(A) and (m-r)-


dim for N( TA ). 


R( TA ) and N(A) are complementary orthogonal subspaces in nR .  Both the range R( TA ) and 


the domain N(A) are in nR .  These subspaces are r-dim for R( TA ) and (n-r)-dim for N(A). 


The following diagram might be useful. 
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Example: 


Let: 
1 3 5


A
2 4 6
 


=  
 


 


There are three columns, n = 3, and two rows, m = 2, but only two columns (or equivalently, two 


rows) are independent, so r = 2.  The equation Ax b=  in expanded form is: 


 
1


1
2


2
3


x
b1 3 5


x
b2 4 6


x


 
     =          


 (7)  


The null space N(A) can be found by solving the two equations in Ax = 0. 


 1 2 3


1 2 3


x 3x 5x 0
2x 4x 6x 0


+ + =


+ + =
    or 1 2 3


2 3


x 3x 5x 0
x 2x 0


+ + =


− − =
   or  1 3


2 3


x x 0
x 2x 0


− =


+ =
 


Arbitrarily setting 1x 1= , yields the 1-dim null space N(A) as any multiple α  of the vector: 


 [ ]Tx 1, 2,1⊥ = −  (8) 


which resides in 3R .  Substitution verifies that x⊥ solves the matrix equation A x⊥  = 0.  Dimension of 


the null space N(A) is n-r = 3-2 = 1, and the dimension of the range R( TA ) is r = 2.  Because the 
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range R(A) is 2-dim, the dimension of the left null space N( TA ) is m-r = 2-2 = 0, and the only vector 


in N( TA ) is the zero vector.  Thus, in the representation of Eq. (2), the component b 0⊥ = .    


Because the 1-dim null space N(A) is not empty, there are an infinite number of solutions to Eq. (7).  


Any x⊥ in the null space N(A) can be added to any solution of Ax b= .  For example, one can check 


by substitution that one solution to Eq. (7) is:  


 [ ]T1 2 3x x x x=      where 1 1 2
3x 2b b
2


= − +  ,       2 1 2
1x b b
2


= −  ,       3x 0=  (9) 


Any valueα  times the vector of Eq. (8), which is in N(A) can be added to the solution of Eq. (9). 


The resulting components:  


 1 1 2
3x 2b b
2


= − + +α  ,       2 1 2
1x b b 2
2


= − − α  ,       3x = α  (10) 


satisfy Eq. (7). 


ATA is Symmetric and Positive Semidefinite: 


Clearly ATA is symmetric because (ATA)T = ATA.  But not every symmetric matrix is positive 


semidefinite.  By definition, the (n,n)-dim symmetric matrix B is positive semidefinite if the 


quadratic form Tx Bx 0≥  for every n-dim vector x.  The matrix B = ATA is positive semidefinite 


because the quadratic form T T Tx A Ax b b 0= ≥ , where b = Ax.  The inner product of a real vector b 


with itself (length squared) is non-negative. 


Eigenvalues and Eigenvectors of ATA, and Singular Value Decomposition (SVD) of A: 


Scalars λi and vectors vi,  i = 1, . . . , n, that are solutions of the matrix equation 


 T
i i iA Av v= λ  (11) 


are respectively eigenvalues and eigenvectors of the matrix ATA.  For the real, symmetric matrix 


ATA , the eigenvalues λi are real and non-negative, and eigenvectors vi are orthogonal to one 


another.  Assume the eigenvectors have been scaled in length to form an orthonormal set so that 
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T
i i
T
j i


v v 1, i 1 n


v v 0, i j


= =


= ≠





 (12) 


Pre-multiplying Eq. (11) by vj
T gives: 


 


T T T
j i i j i


i


v A Av v v


0, if j i
0, if j i


= λ


λ ≥ =
=  ≠


  (13) 


Assume that the eigenvalues and corresponding eigenvectors are arranged so that  


 1 2 r r 1 n 0+λ ≥ λ ≥ ≥ λ ≥ λ = = λ =   (14) 


where only the first r eigenvalues are greater than zero so that 


 r 1 n 0+λ = = λ =  (15) 


For the r non-zero eigenvalues, define r new vectors ui as: 


 


i
i


i


i


i


Avu


Av , i 1, , r


=
λ


= =
σ





 (16) 


where i i , i 1, , nσ = λ =   are known as the singular values of A.  By Eq. (13), iσ is the length of 


vector Avi.  From Eqs. (16) the vectors 1 ru , , u  are an orthonormal set because: 


 


T T 2
jT i i i


j i
j i


v A Av / 1, if j iu u
0, if j i


i, j 1, , r


λ σ = == = σ σ ≠
= 


 (17) 


Now, define V as a matrix whose columns are orthonormal eigenvectors 1 nv , , v  of ATA, and 


define Λ as the diagonal matrix whose diagonal elements are the corresponding eigenvalues.  Write 


the n matrix equations implied by Eq. (11) compactly as the single matrix equation: 


 TA AV V= Λ  (18) 
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Partition the (n,n)-dim eigenvector and eigenvalue matrices V and Λ as: 


 
[ ] [ ]1 r r 1 n r


r


V v v v v V V


0
0 0


+ ⊥= =


Λ 
Λ =  


 


 


 (19) 


 
[ ]
[ ]


r 1 r


r 1 n


1


2
r


r


V v v


V v v


0 0
0


0
0 0


⊥ +


=


=


λ 
 λ Λ =
 
 λ 











 


  





 (20) 


where columns of rV  are the orthonormal eigenvectors corresponding to the r non-zero eigenvalues.  


The columns of V⊥ are any set of orthonormal eigenvectors in nR corresponding to the zero 


eigenvalues and which span the (n-r)-dim subspace orthogonal to the columns of rV .   


From Eqs. (18) and (19), the subspace spanned by V⊥  is the same as the null space N(A).  Every row 


of A is orthogonal to every column of V⊥ .  Similarly, the subspace spanned by rV is the same as the 


space spanned by the rows of A, that is R T(A ) . 


From Eqs. (16), a set of r  m-dim orthonormal vectors ui was defined.  To these vectors, append a set 


of m-r orthonormal vectors r 1 mu , , u+   in mR  that are orthogonal to the vectors 1 ru , , u  so that the 


set of all m vectors { }m
i i 1u =  spans m-dim space.  Define a matrix U whose columns are these m 


vectors 


 
[ ]
[ ]


1 r r 1 m


r


U u u u u


U U
+


⊥


=


=


 


 (21) 


The components of the partition of U are: 


 
[ ]
[ ]


r 1 r


r 1 m


U u u


U u u⊥ +


=


=








 (22) 
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Multiply each equation in Eqs. (16) by its corresponding singular value iσ  and then combine these 


equations into the compact matrix equation: 


 r r rU AVΣ =  (23) 


Where: 


 


1


2 1/2
r r


r


0 0
0


0
0 0


σ 
 σ Σ = = Λ
 
 σ 





 


  





 (24) 


Then, without affecting the result, append additional columns to Ur and Vr in Eq. (23) to obtain 


 U AVΣ =  (25) 


where 


 r 0
0 0
Σ 


Σ =  
 


    with dimensionality: 
(r, r) (r, n r)


(m, n)
(m r, r) (m r,n r)


− 
=  − − − 


 (26) 


To obtain the singular value decomposition of A, post-multiply Eq. (25) by VT. 


 
T TU V AVV


A
Σ =


=
 (27)  


The last step follows because V is a matrix whose columns are orthonormal and hence its inverse is 


its transpose. 


Reduced Singular Value Decomposition (SVD): 


Writing A in terms of its SVD where factors are partitioned, we have: 


 [ ]


T


T
rr


r T


T
r r r


A U V


V0
U U


0 0 V


U V


⊥
⊥


= Σ


 Σ 
=   


    


= Σ


 (28) 
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which has been called a reduced SVD.  In Eq. (28), pre-multiply by T 1
r r rU , then , and then V−Σ to get: 


 1 T T
r r r r rV U A V V−Σ =  (29) 


The right side of Eq. (29) is a projection matrix onto the row space of A because T
rV x finds a set of r 


coefficients showing how much of x is in each of the r directions of 1 2 rv , v , , v and then applies 


these coefficients to these directions.  


Similarly, in Eq. (28), we can post-multiply by 1 T
r r rV , then , and then U−Σ to get: 


 1 T T
r r r r rAV U U U−Σ =  , a projection onto the column space of A. (30) 


More details can be found in the literature under the terms pseudoinverse, generalized inverse, 


Penrose inverse, and Moore inverse.  


Use of SVD in the Solution of Ax = b: 


Given a solution or an approximation x for the linear system of Eqs. (1), the error Ax - b will be 


minimized in the least squares sense, i.e. T(Ax b) (Ax b)− −  minimized, if it is orthogonal to the 


column space of A, that is if: 


 TA (Ax b) 0− =  (31) 


To show this, let x̂  be a solution satisfying Eq. (31) and let x be any other solution.  The square 


error using x as a solution is: 


T T


T T T T T


T T T


T


ˆ ˆ ˆ ˆ(Ax b) (Ax b) (Ax Ax Ax b) (Ax Ax Ax b)


ˆ ˆ ˆ ˆ ˆ ˆ(Ax b) (Ax b) 2(x x) A (Ax b) (x x) A A(x x)


ˆ ˆ ˆ ˆ(Ax b) (Ax b) (x x) A A(x x)


ˆ ˆ(Ax b) (Ax b)


− − = − + − − + −


= − − + − − + − −


= − − + − −


≥ − −


   


  


 


 (32) 


The second term in the second line of Eq. (32) is zero because x̂ satisfies Eq. (31), and the second 


term in the third line of Eq. (28) is non-negative because it is the squared length of vector ˆA(x x)− .  


This shows that a solution x satisfying the orthogonality condition of Eq. (31) is a minimum squared 


error solution.  Starting from Eq. (31), write the “normal equations” in matrix form as: 
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 T TA Ax A b=  (33) 


Substituting for A its reduced SVD equivalent: 


 
T T T T T


r r r r r r r r r
T T T T


r r r r r


V U U V x V U b


V x U b


Σ Σ = Σ


Σ Σ = Σ
 (34) 


The second line is obtained from the first by pre-multiplying by T
rV , recognizing that the columns 


of rV  are orthonormal so that T
r rV V is the r-dim identity matrix.  A similar argument is made for the 


product T
r rU U .  Pre-multiply by the diagonal matrix 2


r
−Σ and then by rV  to obtain: 


 T 1 T
r r r r rV V x V U b−= Σ  (35) 


As noted after Eq. (29), T
r rV V is a projection matrix that projects x onto the subspace R T(A ) spanned 


by the rows of A, which is the same as the subspace spanned by the r eigenvectors in rV .   


Remembering that each iu in rU  is defined from i i iu Avσ = and that i i iu Av 0σ = = , for i > r, it may be 


seen that each iu in rU  is a linear combination of columns of A.  A vector y = Ax for any x in n-dim 


space is in the column space of A.  The vector x can be written in terms of the complete orthonormal 


set 1 nv , , v  as 1 1 n nx c v c v= + + .  Pre-multiplying x by A gives: 


 1 1 r r


1 1 1 r r r


y Ax
c Av c Av
c u c u


=
= + +
= σ + + σ








 (36) 


the last n-r terms of this sum being omitted because i i iAv u 0= σ =  for i > r.  Thus, any vector y in 


the column space of A is in the r-dim space spanned by columns of rU .  In Eq. (35) the product T
rU b  


finds the part of b that is in the column space of rU and zeros out the part that is orthogonal to it.  In 


Eq. (35), decompose x as in Eq. (4) into a part that is in the row space of A and a part orthogonal to 


it, and similarly decompose b as in Eq. (2) into a part that is in the column space of A and a part 


orthogonal to it. 


Eq. (35) may be written: 
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( ) ( )T 1 T


r r r r r r r
1 T


r r r r r


V V x x V U b b


x V U b


−
⊥ ⊥


−


+ = Σ +


= Σ
 (37) 


The left side of Eq (37) projects rx onto itself and x⊥ onto the zero vector.  This result is to be 


interpreted as being able to add to the solution any component x⊥ that is orthogonal to the row space 


of A, i.e. any component in N(A) the null space of A without changing the error.  As discussed 


previously, if b contains a component b⊥  not in the column space of A then there is no solution to 


Ax = b.  While solutions to Ax = rb are exact, the error: 


 Ax – b = b⊥   (38) 


in solving the original Eq. (1) remains. 


Among all solutions having the error b⊥ , the solution x that is in the range R( TA ), namely rx , has 


the smallest magnitude because its squared magnitude is less than that of any other solution as is 


easily seen by the orthogonality of rx and x⊥ :   


 


( ) ( )TT
r r


T T T
r r r
T T
r r
T
r r


x x x x x x


x x 2x x x x


x x x x


x x


⊥ ⊥


⊥ ⊥ ⊥


⊥ ⊥


= + +


= + +


= +


≥


 (39) 


There may be no particular reason why the solution rx  having smallest magnitude is the best one to 


use, and some other criterion or criteria may be preferable in any given situation.  In that case the 


most desirable solution x could have a component x⊥ that is in the space orthogonal to rx of Eq. (37) 


and still give the same error of Eq. (38). 
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Projection  
 
 
Introduction: 


Preliminary to some topics in linear algebra, it is useful to understand and be able to evaluate the projection of a 


vector onto a subspace.  The figure shows a simple example where it is desired to project the vector b onto the 


subspace consisting of the line defined by vector a.  The vector b can be decomposed into the part that lies in the 


direction of vector a  and the part that is orthogonal (perpendicular) to it.  The part of b that is in the direction of a  is 


the projection of b onto the direction of a.  A recommended reference is the one listed, but also a Massachusetts 


Institute of Technology lecture series by the same author Gilbert Strang is available on the internet at no cost.  


Professor Strang is an unusually talented lecturer. 


 


Similarly, if b were in 3-dimensional space, we can visualize projection of b onto a line (one-dimensional subspace) 


or onto a plane (two-dimensional subspace).  In either case it is useful to consider b as being decomposed into a 


component in the line or in the plane (the projection) and a component orthogonal to the line or the plane.  While it 


is difficult to visualize higher dimensional spaces than 3, the arithmetic can be extended. 


 


                                                      vectors b from the origin to this line have constant T ab   
                                               
    
       b   b a− γ                                                 


           
              a              
                      θ  
  
 


 


Def:  Norm a , the length of vector a, is ( )1/2Ta a a=  where ( )Ta a  is the inner product of a with itself.  In 


Euclidean vector space, this is the sum of the squares of the components, i.e. ( )T 2 2 2
1 2 ma a a a a= + + + . 


The figure shows vectors b and a drawn in 2-dimensional Euclidean space, that is m = 2.  The angle between b and a 


is θ.  In the figure, a line through the tip of vector b is shown that is orthogonal to vector a.  This line can be defined 


by setting to zero the inner product of vector a with a vector b a− γ , the scalar γ chosen to make this inner product 


zero, and therefore the vectors a and b a− γ orthogonal.  That is: 


 ( )Ta b a 0− γ =  (1) 


Use Eq. (1) to compute γ according to: 


 
T


T
a b
a a


γ =  (2) 


With γ set as in (2), the vector b a− γ  is the vector going from the tip of vector aγ  to the tip of vector b.  In the 


figure, b a− γ is perpendicular to vector a.  The inner product Ta b may be written as: 
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 T
1 1 2 2a b a b a b a b cos= + = θ  (3) 


The second expression of Equation (3) can be shown equivalent to the first: 


 


T
2 2T


T


1 1 2 2


a a ba b a b cos a b a a
b a a


a b a b


γ
= θ = = γ =


= +


 (4) 


From the figure and Eq. (3), we see that the coefficient giving the amount of vector b in direction a is given by:  


 
Ta bb cos
a


θ =  (5) 


If the vectors a and b are m-dimensional, Eq. (5) still applies, and the projection of vector b onto the direction of 


vector a has magnitude given by Eq. (5), and direction given by the unit vector a /║a║. Thus, the projection of b onto 


a is: 


 
( )TT


2


a b aa b a
a a a


=  (6) 


Parentheses have been used in the numerator of Eq. (6) to ensure that the product b a is not attempted.  Clearly, the 


dimensions of the column vectors b and a do not allow this matrix product to be taken.  However, the scalar Ta b can 


be moved to the end of this expression to give the projection as:  


 
T T


2 2
aa b aa b
a a


=  (7) 


The fraction
T


2
aa


a
is a projection operator that operates on the vector b to give the projection’s magnitude


Ta b
a


and 


direction a
a


.  If the vector a has been previously normalized so that a 1= , then the projection operator is just Taa , 


and the projection is Taa b .  The projection operator Taa is a (m,m)-dimensional matrix. 


To visualize the projection, it is helpful to think of Ta b as the amount of b in direction a and then apply this amount 


to a unit vector in direction a.  This viewpoint is particularly useful when considering a matrix with columns that are 


a set of orthogonal and normalized vectors.  For example, suppose Vr is a (m,r)-dimensional matrix whose columns 


are the r orthogonal and normalized m-dim vectors 1 2 rv , v , , v , now omitting underlines on vector notation.  This 


requires that r ≤ m because no more than m vectors can be orthogonal in m-dim space.  Then T
r rV V b is the projection 


of m-dim vector b onto the space spanned by the r columns of Vr.  This can be written: 


 
r


T T
r r i i


i 1


V V b v v b
=


=∑  (8) 


Eq. (8) expresses the projection as the sum of the projections of vector b onto the individual orthogonal directions.  


If the vectors vi have not been normalized, but they are still orthogonal, then a little thought will show that the 


projection is: 
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r T


T 1 T i i
r r r r 2


i 1 i


v vV (V V ) V b b
v


−


=


=∑  (9) 


with the projection operator being T 1 T
r r r rV (V V ) V− .  It goes like this: 


 [ ]


2
1T


1 2
T 2
r r 1 r


T
r 2


r


v 0 0
v


0 v 0V V v v


v
0 0 v


 
  
  


= =   
  
  
  








 


   





 (10) 


 ( )


1
1


11/2T 2
r r


1
r


v 0 0


0 v 0V V


0 0 v


−


−−


−


 
 
 


=  
 
 
  








   





 (11) 


The product ( ) 1/2T T
r r rV V V b


−
 is an r-dim vector of coefficients, which are the inner products of the vectors i iv / v  


and b.  These show how much of b is in each of the directions i iv / v .  Then, when these coefficients are applied 


to the vectors i iv / v , which are the normalized columns of Vr, we have the projection of vector b onto the space 


spanned by these vectors.  Eq. (9) can be interpreted as using the normalized vectors i iv / v  in Eq. (8).  


 


More generally, if the r columns of (m,r)-dimensional matrix A are linearly independent, which requires that r ≤ m, 


then T 1A(A A) A−  is a projection operator onto the space spanned by the columns of A.  We see this with an 


argument similar to that used in Eq. (1) for each column of A.  


The goal is to project the m-dim vector b onto the space of the columns of A.  Choose an r-dim vector x of 


coefficients so that the linear combination Ax of the r columns of A is the projection.  To be a projection, the m-dim 


difference vector b - Ax must be orthogonal to each column of A; that is: 


 T
ja (b Ax) 0 , j 1, , r− = =   (12) 


These conditions are combined into the single matrix equation: 


 ( )TA b Ax 0− =  (13) 


Solving for x: 


 T 1 Tx (A A) A b−=  (14) 


The inverse in Eq. (14) is allowed because the r columns of A are linearly independent and thus the (r,r)-dimensional 


matrix ATA has full rank.  Therefore the projection of b onto the column space of A is given by: 


 T 1 TAx A(A A) A b−=  (15) 


and the projection operator P that projects an m-dimensional vector b onto the space spanned by the r linearly 


independent columns of A is: 


 T 1 TP A(A A) A−=  (16) 
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Of course if r = m, then A with full rank has an inverse, and T 1 T 1 T 1 TP A(A A) A AA (A ) A− − −= = reduces to the 


identity matrix and projects an m-dim vector onto itself, as we know it must. 


 


 


 


Reference: Strang G. & K. Borre.  Linear Algebra, Geodesy, and GPS.  Wellesley-Cambridge Press. 1997. 
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Introduction 
 
Since about the mid 1960’s, the Discrete Fourier Transform (DFT) has become quite useful in signal 
processing.  Among the reasons for this have been the general availability of low cost digital computers 
and efficient algorithms for computation of the DFT. 
 
With digital processing equipment, it is necessary to sample signals before processing, and deal with 
sampled data defined at discrete points of the domain, e.g. at discrete times. This is different from the 
case where the signals are defined on a continuum of points.  The DFT is used with sampled data while 
the Fourier Transform (FT) is used with continuous data. 
 
There has been some confusion about how the DFT operating on sampled data relates to the FT 
operating on continuous data, and sometimes they are referred to interchangeably.  While they are 
related, the DFT is not the same as the FT.  To add to the confusion, the abbreviation FFT has been used 
in reference both to the Fast Fourier Transform which can be any of a class of efficient algorithms for 
computing the DFT, and to the Finite Fourier Transform which is here, and generally elsewhere, called 
the Discrete Fourier Transform. 
 
The objective of this paper is to relate the DFT to the FT in a way that will remove the confusion.  While 
this relationship has been approached previously in different ways, and in the author’s opinion, best 
done by Cooley, Lewis and Welch (1967), whose work has heavily influenced this paper, the 
presentation here is believed original.  The objective will have been achieved if the following one 
sentence statement by Cooley, Lewis and Welch relating the DFT and the FT is completely understood. 
 


“Thus, if two functions are Fourier transforms of one another, then the sequences 
obtained from them by aliasing and sampling in this fashion are finite Fourier transforms 
of one another.” 


 
It is interesting that in the above paper, FFT refers to fast Fourier transform, and, in the same 
paper, finite Fourier transform refers to what we call Discrete Fourier Transform. 
 
Other useful references on this subject are Bracewell (1990), Deller (1994), and Oppenheim and 
Schafer (1989).  Bracewell places the DFT in perspective along with a number of other 
transforms.  Deller develops the DFT with a story involving students faced with homework 
where they wished to use a computer for Fourier analysis.  Oppenheim and Schafer describe the 
DFT in context with signal processing methods. 
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From the FT to the DFT 
 
The Fourier Transform G(f) of a continuous function g(t) and the Inverse Fourier Transform are 
defined by the following equations.  It is convenient (although not necessary) to consider the 
continuous variable t as representing time in seconds and the continuous variable f as 
representing frequency in Hertz.  Frequency f in Hertz is used, rather than the often usedω in 
radians per second, for no other reason than to eliminate a factor 2π , thereby enhancing the 
appearance of symmetry in the two equations (and avoiding having to remember which equation 
needs the factor). 


j2 ftG f e g t dt
+∞ − π
−∞


= ∫( ) ( )  Fourier Transform 


(1) 
j2 ftg t e G f df


+∞ + π
−∞


= ∫( ) ( )  Inverse Fourier Transform 


 
Throughout the development, the transform and its inverse are manipulated as a pair to 
emphasize their symmetry. 
 
First, approximate these relationships by summations. 


j2 fn t


n
G f e g n t t


+∞
− π ∆


=−∞
≅ ∆ ∆∑( ) ( )  


(2) 
j2 q ft


q
g t e G q f f


+∞
+ π ∆


=−∞
≅ ∆ ∆∑( ) ( )  


where   
q and n are integers
t n t dt t


f q f df f



 → ∆ →∆
 → ∆ →∆


,
,


 


 
Next, restrict attention to evaluation of G(f) at f q f= ∆ and g(t) at t n t= ∆ .  Thus: 


j2 qn f t


n
G q f e g n t t


+∞
− π ∆ ∆


=−∞
∆ ≅ ∆ ∆∑( ) ( )  


(3) 
j2 qn f t


q
g n t e G q f f


+∞
+ π ∆ ∆


=−∞
∆ ≅ ∆ ∆∑( ) ( )  


 
A further restriction is placed on the increments t and f∆ ∆ so that their product is the reciprocal 
of an integer N.  That is, let: 


1t f
N


∆ ∆ =           (4) 


This restriction sets up the complex exponentials j2 qn f t j2 qn Ne e± π ∆ ∆ ± π= /  so that they are periodic 
with period N in either q with n fixed or n with q fixed.  Notice that the “resolution element” 


t f∆ ∆  has units of cycles and hence for all N>1, t f 1 N∆ ∆ = /  is a fraction of a cycle.  In the 
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exponent of the relationships (3), recognize that 2π is radians/cycle, and consequently, 
2 t f 2 Nπ∆ ∆ = π /  is in radians.  Rewrite (3) as: 


2 qnj
N


n
G q e g n t


π+∞ −


=−∞
≅ ∆∑( ) ( )  


(5) 
2 qnj


N


q
g n e G q f


π+∞ +


=−∞
≅ ∆∑( ) ( )  


 
The functions G and g in (5) should be renamed, e.g. g n g n t= ∆ˆ ( ) ( ) , to account for the different 
arguments.  However, the notation is simpler as is, and it will be clear in each case which 
functional form is being used. 
 
Next, break up the infinite sums in (5) into an infinite number of finite sums as follows: 
 


2 qn 2 qn 2 qn1 N 1 2N 1j j j
N N N


n N n 0 n N


G q e g n e g n e g n
t


π π π− − −− − −


=− = =
≅ + + + +


∆ ∑ ∑ ∑( ) ( ) ( ) ( )   


(6) 
2 qn 2 qn 2 qn1 N 1 2N 1j j j


N N N


q N q 0 q N


g n e G q e G q e G q
f


π π π− − −+ + +


=− = =
≅ + + + +


∆ ∑ ∑ ∑( ) ( ) ( ) ( )   


 
In each finite sum, except for those with indices running from 0 to N-1, make a change in the 
dummy index of summation and then rename back to the original.  For example, substitute 
n m N= − in the first finite sum that appears in (6) above: 
 


 
2 qn 2 q m N 2 qn1 N 1 N 1j j j


N N N


n N m 0 n 0
e g n e g m N e g n N


π π − π− − −− − −


=− = =
= − = −∑ ∑ ∑


( )


( ) ( ) ( )  


 
where it has been recognized that j2 q 1π =exp( ) , for any integer q. 
 
The relationships (6) become: 


[ ]
2 qnN 1 j


N


n 0


G q e g n N g n g n N
t


π− −


=
≅ + − + + + +


∆ ∑( ) ( ) ( ) ( )   


(7) 


[ ]
2 qnN 1 j


N


q 0


g n e G q N G q G q N
f


π− +


=
≅ + − + + + +


∆ ∑( ) ( ) ( ) ( )   


 
Define gp and Gp, the periodic (aliased) versions of g and G, as: 


 p
k


g n g n kN
+∞


=−∞
= +∑( ) ( )  


(8) 
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 p
k


G q G q kN
+∞


=−∞
= +∑( ) ( )  


 
Substituting (8) into (7), yields: 
 


2 qnN 1 j
N


p
n 0


G q t e g n
π− −


=
≅ ∆ ∑( ) ( )  


(9) 
2 qnN 1 j


N
p


q 0
g n f e G q


π− +


=
≅ ∆ ∑( ) ( )  


 
It is clear that the representations of G and g in (9) are both periodic in their respective 
arguments with period N. 
 
At this point, some discussion is required.  While the original G and g are not periodic (if they 
were, then the periodic functions pG  and pg  in (8) would not be finite), their representations in 
(9) are periodic. 
 
In Equations (9), if the functions G and g on the left hand sides were the same as the functions 


pG  and pg  on the right hand sides respectively, and if the approximations could be replaced 


with equalities; then, one could show by substituting the second equation into the first, that pg  
and pG  are related by the transformations in (9). 
 
Now, go back to the beginning, start with the function g(t), (a parallel argument can be made 
starting with G(f)), define an interval of interest [0,T) where T N t= ∆ , and insist that g(t) = 0 
outside this interval.  If the function g(t) is in fact zero outside the interval [0,T), we proceed 
ahead and identify pg  as the periodic version of samples of g(t) as in (8).  Then, instead of g, we 
use pg  in the left-hand side of the second equation in (9).  We can do this because g = pg  for 
samples in the interval [0,T).  Replace the approximation with equality, thereby defining the 
transformation and establishing the inverse DFT, namely: 
 


2 qnN 1 j
N


p p
q 0


g n f e G q
π− +


=
= ∆ ∑( ) ( )  


 


Next, multiply this result by 
2 knj


Nt e
π


−
∆  and sum over n. 
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2 kn 2 kn 2 qnN 1 N 1 N 1j j j
N N N


p p
n 0 n 0 q 0


2 q k nN 1 N 1 j
N


p
q 0 n 0


p


t e g n t e f e G q


t f G q e


G k


π π π− − −− − +


= = =


π −− − +


= =


∆ = ∆ ∆


= ∆ ∆


=


∑ ∑ ∑


∑ ∑
( )


( ) ( )


( )


( )


 


 
where the last simplification follows by: 
• recognizing that the second sum is zero when q k≠  because the complex exponentials in the 


sum are distributed uniformly about the unit circle in the complex plane, and thus by 
geometry, their sum is zero.  Alternatively, by usual means, just add the geometric series. 


• recognizing that the second sum is N when q k= , and that t f 1 N∆ ∆ = / . 
 
Renaming the index k to q establishes the DFT which, together with its inverse, is written: 
 


2 qnN 1 j
N


p p
n 0


G q t e g n
π− −


=
= ∆ ∑( ) ( )  


(10) 
2 qnN 1 j


N
p p


q 0
g n f e G q


π− +


=
= ∆ ∑( ) ( )  


 
If g(t) is not zero outside the domain [0,T), it could be truncated so that it is, and a periodic 
version formed from the truncated result.  But, then, the Fourier Transform of the truncated 
function would not be the same as the FT of the original function.  Instead, an “aliasing” 
operation as in the first equation of (8) is required.  Repeatedly shift and add until nothing more 
is left to add in the interval [0,T), assuming either that the function vanishes outside a bounded 
interval or that the contributions can be summed.  Instead of sampling the original function g(t), 
define g(n) as samples of the aliased version, i.e. as samples of pg  as in (8) on the interval [0,T), 
that is, for n in the set 0 1 N 1−{ , , , } .  For n not in 0 1 N 1−{ , , , } , define g(n) = 0.  Then, 


pg n g n=( ) ( )  for n in 0 1 N 1−{ , , , } .  From this point onward, the arguments leading to 
Equations (10) are identical to the case where g(n) = 0 outside 0 1 N 1−{ , , , }  to begin with. 
 
The forms of Equations (10) where t∆  and f∆  appear, while useful in illustrating the symmetry 
of the DFT relationships, are not generally used.  A more common definition of the transform 
relationships may be obtained by grouping t∆  together with pg n( ) .  Making use of Equation (4), 
and returning to the original notation showing explicitly the sampled times and sampled 
frequencies, Equations (10) become: 
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2 qnN 1 j
N


p p
n 0


G q f e t g n t
π− −


=
∆ = ∆ ∆∑( ) ( )   Discrete Fourier Transform 


(11) 
2 qnN 1 j


N
p p


q 0


1t g n t e G q f
N


π− +


=
∆ ∆ = ∆∑( ) ( )  Inverse Discrete Fourier Transform 


 
Occasionally, one sees the factor 1/N appearing in the first of these equations instead of the 
second.  Multiplying both equations in (11) by ∆f and grouping ∆f with pG q f∆( )  results in: 
 


2 qnN 1 j
N


p p
n 0


1f G q f e g n t
N


π− −


=
∆ ∆ = ∆∑( ) ( )  


 
2 qnN 1 j


N
p p


q 0
g n t e f G q f


π− +


=
∆ = ∆ ∆∑( ) ( )  


 
Other forms of the DFT may be defined; but, that would be an unnecessary diversion of our 
objective.  We define the DFT and its inverse as in (11).  
 
Let’s interpret Equations (11) in terms of the referenced quotation by Cooley, Lewis and Welch.  
Identify the functions g and G as the two functions that are Fourier Transforms of one another, 
and the aliasing and sampling process as the process indicated in Equations (8).  Then Equations 
(11) show that pt g n t∆ ∆( )  and pG q f∆( ) are Discrete Fourier Transforms of one another 
(remember that the DFT is equivalent to C, L and W’s finite Fourier transform).  Note that it is 
the products of the sampling time increment t∆  and samples of the periodic function pg n t∆( )  


that are related to samples of the periodic function pG q f∆( )  by the DFT relationships as stated 
in (11). 
 
While aliasing is usually considered to be “bad”, the intent here is to make sure it is understood.  
It is bad only if it is unwanted.  There may be situations when aliasing is desirable.  At least it 
should be clear that aliasing in both time and frequency domains and resolution in both time and 
frequency domains along with the number N of samples of both time and frequency functions are 
intimately related.  A thorough understanding allows these parameters to be adjusted as desired 
for the problem at hand. 
 
The DFT relationships are linear transformations of samples of a periodic version of a signal on 
one domain (e.g. a function of time) to samples of a periodic version of a signal on the other 
domain (e.g. a function of frequency).  There can be aliasing or not in either or both of the 
domains in the periodic versions of the signals.  Strictly speaking, there must be aliasing in at 
least one of the domains because if a function is zero outside a limited interval on one domain, 
its transform cannot be zero outside a limited interval on the other domain. 
 
 
The resolution kernel t f 1 N∆ ∆ = /  is explicitly stated.  From this, the periods 
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 1T N t
f


= ∆ =
∆


    and   1F N f
t


= ∆ =
∆


 


as well as the resolutions 


 1t
N f


∆ =
∆


   and   1f
N t


∆ =
∆


 


in both time and frequency are easily obtained. 
 
The DFT may be thought of as an invertible linear transformation from a vector in N-
dimensional vector space onto a vector in N-dimensional vector space.  That is, a list of N 
numbers is transformed into another list of N numbers by the operation defined in the first 
equation of (11).  The first list of numbers is regained from the second list by the second 
equation of (11). 
 
The matrix description of the DFT, the first equation in (11) is: 
 


 


p p
2 2 N 1j j


p pN N


2 N 1 2 N 1 N 1j jp pN N


1 1 1G 0 f t g 0 t


G 1 f t g 1 t1 e e


G N 1 f t g N 1 t1 e e


π π −
− −


π − π − −
− −


 ∆ ∆ ∆   
    
 ∆ ∆ ∆   =     
    
    − ∆ ∆ − ∆     


( )


( ) ( )( )


( ) ( )


( ) ( )


(( ) ) (( ) )








   


 





 


 
Similarly, the matrix description of the inverse DFT, i.e. the second equation in (11) is: 
 


p p
2 2 N 1j j


p pN N


2 N 1 2 N 1 N 1j jp pN N


1 1 1t g 0 t G 0 f


t g 1 t G 1 f11 e e
N


t g N 1 t G N 1 f1 e e


π π −
+ +


π − π − −
+ +


 ∆ ∆ ∆   
    
 ∆ ∆ ∆   =     
    
    ∆ − ∆ − ∆     


( )


( ) ( )( )


( ) ( )


( ) ( )


(( ) ) (( ) )








   


 





 


 
Fast Fourier Transform (FFT) algorithms, Rabiner and Rader (1972), take advantage of 
symmetry and periodicity relationships in these matrices to reduce the number of computations 
from order of N2 to order of N log N.  For large N, the computational advantage of using an FFT 
algorithm is significant. 
 
Example 
 
Consider the triangular function illustrated in Fig 1 and the absolute value of its FT given by: 
 
  


 
2sin(2 f10)G(f ) 20


2 f10
π =  π 


 


 
and illustrated in Fig 2.  
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We use absolute value of G(f) because absolute values of the FT and the DFT’s of this example 
illustrate the points to be made.  Also, note that had the function g(t) been shifted by 20 seconds 
to give it symmetry about t=0, the phase would have been zero.  A short cut was used to obtain 
|G(f)| by recognizing g(t) as the convolution of a rectangular pulse with itself, the rectangular 
pulse having amplitude 1 volt / sec  and duration 20 seconds.  Hence, by the convolution 
theorem of the Fourier Transform, the FT of the convolution is the square of the FT of the 
rectangular pulse. 
 
The data for Fig. 2 were generated by evaluating |G(f)| in the above formula for increments in f 
of 1/256 Hz.  A total of 129 data points between 0 and 0.5 Hz inclusive were connected and used 
to obtain the plot in Fig. 2. 
 
Fig. 3 is the absolute value of the DFT using the first equation in (11) on 64 samples of g(t).  
These are the samples obtained at 1-sec increments from 0 to 63 seconds in Fig.1.  Because the 
function g(t) is zero outside the interval from 0 to 63 seconds, g is the same as gp for a period of 
64 seconds.  Thus, the data in Fig. 3 are samples of the periodic version of the FT of g(t).  The 
data in Fig. 3 have been joined by a line to make the plot easier to read, and it is evident that the 
data are samples of the aliased (periodic) version of Fig. 2.  On the scale of the plots, it is 


Fig. 1  Example Function 
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Fig. 2  Magnitude of Fourier Transform
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difficult to see the effect of aliasing even near sample point 32 where it is the greatest.  However, 
we can illustrate the aliasing by truncating Fig. 3 at both ends thus allowing a change of vertical 
scale to obtain Fig. 4.  About half of the result near frequency sample number 32 is due to 
aliasing. 
 


 
 


Fig. 5 illustrates the same 64 point DFT as in Fig. 3, but sample numbers q have been converted 
to frequency f by the relationship f=q/T=q/64, and the plot has been truncated on the right to 0.5 
Hz, corresponding to q=32.  These changes in presentation allow easier comparison of Fig. 5 
with Fig. 2. 
 


Fig. 3    64 point DFT
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Fig. 4    64 point DFT truncated at both ends
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Now suppose that we were limited to 32 samples of the function g(t).  We could space the 
samples further apart, say at 2 second intervals so that the entire pulse in Fig. 1 could be covered.  
But, that would increase aliasing in the frequency domain; that is, the period of the frequency 
representation in Fig. 3 (and Fig. 4) would be reduced by a factor of 2.  Alternatively, we could 
just sample as far as we could and obtain the sampled data as in Fig. 6. As we might expect, the 
32 point DFT in Fig. 7 of the function in Fig. 6 is not comparable to either Fig. 2 or Fig. 5. 
 


 


Fig. 6   Samples of g(t) limited to 32
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Fig. 5    64 point DFT truncated on the right
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So, we follow the procedure and form the periodic version gp(t) of g(t) as in Fig. 8.  Fig. 8 is the 
result of repeatedly shifting the function of Fig. 1 by a period (32 seconds) and adding.  Actually, 
for this simple example, only one shift and addition would have been necessary because no 
others contribute to the periodic function in the sampled interval from 0 to 32 seconds. 
 
 


 
Sampling gp(t) over one period yields the result of Fig. 9.  The ordinate is labeled with units (volt 
sec) because it is the product ∆t gp(n∆t) that is the input to the DFT.  In the present case ∆t = 1 
second, so the numerical result is the same as using just gp(n∆t).  The absolute values of the 32 
point DFT of the data in Fig. 9 are illustrated in Fig. 10, where the sample numbers have been 
related to frequency, and only the part below 0.5 Hz is retained. 
 
 


Fig. 8   Periodic version of g(t)
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Fig. 7    Truncated 32 point DFT of Fig. 6
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Careful observation will reveal that the data of Fig. 10 are identical with alternate data points of 
Fig. 5; because the frequency resolution in Fig. 10 is 1/32 Hz versus 1/64 Hz in Fig. 5.  The data 
in both Figs. 5 and 10 are samples of the periodic version of Fig. 2.  By limiting the period of the 
sampled function in one domain (time) to 32 seconds, we have limited the resolution in the other 
domain (frequency) to 1/32 Hz.  By allowing aliasing in time, we have reduced the number N of 
samples without increasing frequency aliasing. 
 
Discussion 
 
The concept of aliasing in the frequency domain has been well covered in the literature and is 
generally understood.  The parallel concept of aliasing in the time domain has not been covered 
as well.  That the ideas apply equally well in either domain is helpful in understanding how the 
FT and the DFT are related.  
 
The development and the example illustrate how the DFT relates samples of a periodic version 
of a function to samples of a periodic version of the FT of that function.  The period in the 
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Fig. 10    Truncated 32 point DFT of Fig. 9


0


100


200


300


400


0 0.1 0.2 0.3 0.4 0.5
Frequency  f  (Hz)


G
p(


n)
   


(v
ol


t s
ec


)


Fig. 9   32 samples over one period of gp.
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frequency domain is the reciprocal of the sampling increment in the time domain, and the period 
in the time domain is the reciprocal of the sampling increment in the frequency domain.  In each 
domain, the period is equal to the product of the sampling increment in that domain and the 
common number N of samples. 
 
We conclude that higher resolution (smaller sampling increment) in either domain can be 
obtained by using a larger period in the other domain.  Conversely, reduced aliasing (increased 
period) in either domain can be obtained by increasing resolution in the other domain.  If we 
want both high resolution and small aliasing, we must allow the number N of samples to become 
large. 
 
It is clear that there are many functions of time that would lead to the periodic function of Fig. 8 
and still more that would agree with the sampled values illustrated in Fig. 9.  For example, 
besides the function of Fig. 1 that we used, we could have used the piecewise linear function 
connecting the data as illustrated in Fig. 9, but truncated to zero outside the interval [0,32).  The 
FT of this function is not the same as the FT of Fig. 1 illustrated in Fig. 2.  However, the periodic 
versions of these two FT’s are identical at the sample points. 
 
Thus, it is possible to begin with two different functions of time, having two different FT’s and 
hence functions of frequency.  And yet, the periodic versions of these two different functions can 
be identical at the sample points in both the time and the frequency domains.  It is the samples of 
the periodic versions that are related by the DFT. 
 
In some cases, we may want to take advantage of aliasing and lump all members of a class of 
functions, e.g. all functions whose periodic versions have identical samples, into the same 
category. 
 
However, usually, it is desirable to eliminate aliasing to the extent possible.  In that case, samples 
of a time function are considered to represent a unique function on the period sampled, and not 
be the result of sampling a periodic version with aliasing of some other function.  The time 
sampling increments are taken small enough to make effects due to aliasing in the frequency 
domain negligible.  The number of samples of the time function, and hence period in time, is 
taken large enough so that resolution in the frequency domain is sufficient (i.e., so that the 
frequency sampling increment is as small as required).  
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TRUS JOIST MSR TENSION TEST REPORT 
PREPARED FOR THE TECHN1CAL ADVISORY COMMITT!E 


OF THE MSR PRODUCERS COUNCIL 


Donald J. Sharp, P.E. 
July 1988 


INTRODUCTION 


Yor approximately the paet year, True Joist Corporation has been conducting 
tension tests on western species MSR lumber. In part, these teats were 
stiJDUlated by tests of our trusses (mainly TJ?-fM truss and T.nf"' truss) where 
we obsef"'/ed what aeemed too high a frequency of tension chord failures, 
often in the chord grO$$ section. 


True Joist Corporation has a long-time and continuing vested interest in 
MSR lumber and its reliability. our concerns, and I believe that of most 
users, are chiefly with stiffness and tensile strength. But the industry 
has always done all qualifying and Q.C. tests in bending. 


·
; 


For years, I have had the growins conviction, often e,c;pressed to any 


Iavailable ear, that there is far too little knowledge of MSR tension 
strength and that ex:isting MSR standards may be inadequate to assure 
tenaion strength. 


So we tested. The results were not unexpected. 
Others have had. similar experience and a !ormal 
might bring forth corroborating data. 


Defic·iencies were observed. 
request from the Council 


We have discussed. this data with some 0£ the producers, but not with 
others. In this report, producers are identified only aa a number and we 
do not intend to divulge na�es unless all agreed. 


It is hoped this report will stimulate action. 


SAMPLING 


All the -specimens tested were taken from material purchased with Trus Joist 
specit'icatione:. Our specifications differ from 11industry11 rules in some 
important ways; for the most part t we are somewhat more restrictive. We do 
allow slightly larger edge knots in s01tte grades but define an edge knot 
S0111ewhat differently than the grading associations and the net effect 
(difference in strength effect) is unknown. �e limit wide face knots and 
the industry does not, Moat of our added restrictions relate to our use. 
(Wane• check. ahake. stump break, wdrp). We achieve our desired grades by 
aelective buying from mills which we work with individually and which te�d 
to have stumpage, manufacturing practices, grading, etc. which lend 
themsqlves to our needs, In the long run, ic is hard to know bow these 
tests rl!:late to material simply pulled to "industry" standa-rds: Hy 


I 







judgement is that our material should have somewhat higher strength but I 
can't quantify the degree. Therefore, these effects are ignored in 
analyses. 


It was not judged pr�tical to obtain a random representative sample from 
any given source. Our approach was to take multiple small samples from 
most of our suppliers so that taken as a whole, the results can be assmned 
reasonably representative of supply. Usually each sample was about 30 
pieces (minimum length 12 feet - usually 14 or 16) taken from the top of 
one package of lumber. The results of tests of any particular sample are 
probably only representative of that pack.age_, -though perhaps sOtDe inference 
as to the characteristics ·of that truck load m.ight be valid. This does not 
however, mean that tests of any satnple are meaningless: We, nor anyone 
else, use lumber randomly. Lumber is used on a "lot" basis and a package 
of lumber produces enough trusses to cover a 3000-6000 squaie foot area. 


The sample si%e was aelected as the minim.um size required to permit the 
determination of a non-parametric fifth percentile with 75% confi.dence. In 
a sample of this size� the minimum test result is the desired statistic� 
Reference ASTM D2915: The actual requirement is (N • 28). 


TESTING 


All testing was conducted at 'l'rus Joist R & D* MOE was determined f"I'Ot!I a 
single _center-of-piece "Pelster" test (flat bending, 48 inch span, 1/3 
point load, 150 lb. ·total load. deflection to nearest 0�001 inch). M�C. 
was measured with a resistance meter. Specimens then tested to ultimate in 
tension with 8-10 ft. between grips. Loading rate to produce failure in 
approximately 3 minutes. Ultimate load and type of failure were rec9rded 
(brash, splintering. edge knot, etc.) and visually "out-of-g-rade" .pieces 
noted. 


ANALYSIS 


The first analysis was on each sample using the non-parametric procedure 
discussed a.hove. Table 1 gives a sample number, supplier code� grade and . 
size (e.g. 2400-4 is 2.0E 2 x 4), species. sample size (N), number of 
out-of-grade pieces (n), average MOE, and the ratios of the minilnmn test 
result of on-grade (R1) and off-grade (R


1
) divided by 2.1 tiroes the design 


value. Here the design value used was 1925 psi for 2400f_, 1570 psi for 
;HOOf and 2300 psi for 2850£ � The last two columns (F 1 and 'F 2) are the. 
number of sp�cime:ns failing below the target for visually on and off-grade, 
respectively. 
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TABLE I 


Ave, Saa,ple Supplier Grade/Size Species N n HOE R
l 


R
2 '1 F


2 


I 2400-6 SPF JO J 2.05 l, I 0 0,64 0 I 2 l 2400--6 SPF 28 I 2 .. 04 0,96 1.09 2 .o J l 2400-6 SPF 27 4 1.99 0.99 0,76 l 2 4 J 2400--6 DF-1. 28 l 2.64 1,05 2.58 0 0 5 4 2400-6 DF-L 28 0 2.09 o. 70 I 0 6 5 2400-6 1!-F 28 l 2,12 0,76 0,57 4 1 l 6 2400-6 SPF 28 0 2.08 0,.98 l 0 8 7 2400-6 DF-L 28 3 2,H 0,87 0.81 2 2 9 a 2100-6 SPP 28 2 1.75 1.04 LIS 0 0 10 a 2400-6 SPF 28 2 2.02 1.15 I • 1 9 0 0 I! 9-1 2400-6 DP-L 28 l 2.24 1,07 o. 79 0 l 


12 1 2400-4 SPP 30 2 1.97 0,81 1,06 2 0 IJ l 2400-4 SPF 27 0 l.99 0,97 I 0 14 l 2400-4 SPF 27 J 2, JO 1.08 1.36 0 0 15 2-1 2400-4 llF-L 28 2 2, 12 0,90 o. 7l l I 16 2-2 2400-.4 DF-L 28 5 2.04 0. 74 o.s1 4 I 17 2-1 2400..J; ESLP 28 l 2,07 0.88 l, I 9 2 0 18 2-2 2850-4 EST.P 28 0 2.33 1.01 0 0 19 9-2 2400-4 SPF 28 I 2.39 1.04 2.02 0 0 20 6 2400-4 SPF 28 1 2.11 0.96 I .22 I 0 21 10 2400--4 ESLP 28 3 2.28 l .06 0,79 0 l 


22 I 210o--6 SPF 21 6 I ,78 0,81 o.as l l 
2l l 2100-6 SPF. 30 6 1.69 0,86 0,75 3 2 
24 10 2850-4 ESLP 30 2 2,41 0.95 1.12 I 0 25 11 2400-4 SPF 31 3 1 ,.81 0.71 0.79 11 2 26 II 2400-4 SPF 30 2 2. l 2 o.aa l. 1 2 1 0 27 11 2400-4 SPF 30 3 2. 19 o. 78 0.92 2 I 


R
I 


• 
R


1 
or R2 '1 F1 and F2 


Kean 0.93 0.86 1.6 2.2 
S.D. 0.13 0.15 


�e less&r of R
1 


and R
2 


used. 
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·The data has been evaluated in several .ways. Samples 1-21 were combined in 
various ways ro produce a 0population° estimate. To combine data� each 
specimen �alue was first divided by 2.1 times present design value for the 
grade. Considering only those specimens judged on-grade visually, the 2 x 
4 and 2 x 6 data fitt&d with a Weibull distribution have 5% values which 
are 0.96 and 0.98 of 2.i times desigil. When out-<Jf-grade specimens are 
included. these ratios drop to 0.91 and 0.94 for 2 x 4 and 2 h 6 s 


respectively. The non-parametric 5% tolerance limit with 75% confidence 
for combined data (ASTM D2915) ratios are Oa96 and 0.99 for on-grade 2 x 4 
and 2 x 6; ,.;hen out-of-grade is included, the ratios drop to 0.90 and 0.92. 
Combining 2 x 4 _and 2 A 6 data produced approxima.tely average results. 
(Note: This analysis was done prior to the tests of samples 22 - 27.) 


Averaging the ratio (R ) from Table 1 gives appToxim.ately the same result 
as noted in the preceding paragraph for on-grade material. (The a�erage 
given with the table (0.93) is lower becal18e of the later samples.) Using 
for e_ach sample the lesser of, the two ratios, R1 and R2 in Table l gives au 
average of 0.86. 


The distribution of the ratios of all 27 samples are plotted on Figures 1 
and 2. A two-parameter Weibull fit of the t'atios agrees closely at the 
mean with the above average ratios. 


Of interest is the number of specimens in any sample which are below the 
assumed target \talue; Le. the number of specimens · failing below .a "5% 
exclusion limit"� whi-ch is taken as 2.1 times present design. If it is 
assumed that all samples were taken fr01n a population which has exactly the 
assumed 5% exclusion limit. the probability that smne number (x) of a 
sample will fail below the target� can be predicted using the biru:mtial 
distribution. Table 2 compares the binomial prediction (_expected) to the 
frequency of the number of these 27 samples which had at least (x) failures 
below the target 5% exclusion. In constructing the table, I assumed a 
constant sample. size of 21 speei,nens because usuaily, i n  a sample, one or 
two specimens failed at the grips and these were ignored. Visually 
out-of-grade specimens were i�eluded when they failed belOW target • 


• 


Number of Specimen 
Failures (x) 


1 
2 
3 


4 
5 


'tABLE 2 


Number of Samples (Y) 
With at Least (x) 
Failures 


2 1  
12 
8 


6 
4 


4 


(Y:/27) 
Sample 
Frequency 


0.778 
0.444 
0.296 
0.222 
0.148 


Binomial 
Expected 


0.394 
0.151 
0.044 
0.010 
0.002 
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DISCUSSION AND OBSE_RVATIONS 


From Table 1, it is seen th.at only n:ine (33%) of the sample passed using 
on-grade specimens and including out-of-grade six (22%) of the twenty-seven 
aamples passed. MoreoV'er, on the average, there is approximately two 


-specimens per sample below the target minimum. 


There is no doubt that the data shows that overall, for the gradea and 
spe_cies tested, existing design values are too high. The question is, how 
fflUCh too high? There are a numbe_r of considerations: 


In my opinion, the out-of-grade specimens must be included in any 
evalru1tion, because the material will be used by most customers. Then on 
this basts, considering the average, the values should be dropped 14%. (If 
we could get rid of sample 25 - more on which later - the decrease would be 
ahout 10%.) 


Often, it is considered desirable to use some kind of statistical 
statement to adjust downward from an average, but the issue becomes more 
complicated, A conservative approach would be to decide some acceptable 
percentage below grade and base the design value on the ratios of Figure 2 
associated with that percentage. Doing this may have merit if we want to 
consider some kind of low-line "lot ot � But this would imply that any given 
sample represents a "lotu that would be used say, in an entire structure. 


Unfortunately• we probably don t t -really know how to define a "lot" .. na-r do 
we have any standards which belp define what the statistics of Fisure 2 
really means. Nor do we have, to my knowledge, comparable data on otheT 
material for comparison. Furthet100re, this type of approach (using lowest 
value ill small samples) is bound to produce erratic results and each sample 
size is too small to assign a. numeric value to a 5% tolerance limit. 


Still I do not think we s'hould ignore Figure 2, though it may be too 
conservative for some kind of statistical analysis of "lot" design values,. 
For example, think'of it like this: Look at a bunch of trusses in a 
building with Figure 2 in hand a.nd try to decide what the probability is of 
having a piece of lumber somewhere in there that's 20-30% below the 
strength assumed to set the design. I don't think you can really do this 
with Figure 2, b-ut it's still not a nice feeling. To co.fort yourself, 
realize that the minimum data point in Figure 2 (0.57) actually is the 
minimum value in a total of 767 tests. But on the other hand, scanning 
Table 1 shaws that we have some fair chance of hsving these particular 
trusses manufactured with one of the "bad acting" samples or- lots. As I 
said, it gets complicated. 


Table 2 clearly shows that we are observing numbers of specimen failures 
which just couldn't happen if the auples were ' being taken from. an on-grade 
(strength) population. The sample failure frequency is much greater than 
expected and the difference tends to increase with greater (x). The 
binomial evaluation doesn't tell what an allowable stTength should be, but 
a little exper:bnenting with the computations (Find P > .05 which agree$ 
with sample failure frequency) indicates our target value is a little 
greater than a 10% frequency instead of the 5% assumed. 







In my opinion, the greatest value in this data is some -insight i.nto the 
present performance of the MSR industry relativa to tension strength. 
Disturbing to me is that in only 27 small smnples (N == 30) there is one 
(Sample 25) that had 14 specimens below target and six others (3. 6, s. is. 


16, 23) with 3 or moTe below� I can't believe the industry can't do. better 
than this! 


I can shed a little light on a few of these worst samples: Sample 25 was 
from a package of lumber that just never should have been in a 2400F 
shipmenc. !n the sample> there were 8 pieces at or below MOE of 1.6 and 
-several of these resulted in very low strength. Sample 23 also had a lot 
of relatively low stiffness� Samples 15 and 16 were� in  the words of the 
test technicians, "just plain junkn , main1y meaning a low quality visual 
grade with very high frequency of borderline defecta. 


I looked at the · data in terms of dis.
covering some miscellaneous 


relationships: 


Moisture content typically averaged 11-14% with low variability and I could 
see no relationship with low teSt values. 


There is no significant difference between 2x4 and 2x6. 


I could see no part1eular relationship between strength and species though 
it's not a very well balanced mix� Maybe the DF-L tends low unless MOE is 
up. 


There may be so-me trend between sample average MOE and the strength: 
Samples with average MOE significantly above the grade USually look pretty 
good, 1'mile those at or below the grade, tend to be poorer performers� 
Very low MOE individual specimens often had low strength. I made no 
attempt at correlation, because in general. there isn't enough range of MOE 
to expect reasonable results. The relationship_ appears to be there looking 
at the few samples of grades other tban 2400f. Of cQUrse, we made no 
attempt to identify low point MOE or to put maximum defects in the MOE test 
span. 


In low-line pieces, probabiy the most common defect in the fracture was 
, knot combinations> followed closely by edge knots and associated grain 
deviation. A few were wide face knots and general slop-e of grain. 


Is there a relationship with $Upplier or mill? At face valUe, the data 
says yes. The two -mills (same supplier) of Samples 15-18 are a little 
contradictory; maybe the DF-L is a tempo'Cary stumpage p'Coblem. Is there 
any reason to believe that a sample like 25 couldn't be produced by any 
:mill? It's all the same standard, isn't it? 


We have some other data not reflected in this report.which deserves some 
mention. We do some spot checks of MOE on incoming supply of MSR, just 15 
pieces, 5 each from three packages. vte find an alarming frequency of 
pieces which shouldn't be there; e.g. in a package of 2400£ SPF (maybe 
ES-LP) we found 7 pieces of true fir all machine sprayed and hand stamped 
2400£ but their average MOE was about 1.0. These pieces were randomly 
mix-ad in the package, the rest of which seemed perfectly normal; no one 
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could ever explain this. We also find occasional packages like Sample 25 
(that wasn't selected deliberately, by the way. it waa just there), with 
the rest of the shipment normal. Usually w� can get no explanation of 
this, though one package was traced to a shift that remembered a splinter 
jammed ·1n the CL! for a while·J but s:till no explanation of why it was 
shipped. 


You might be wondering why there is no Southern Pine in this report • .  There 
are a couple .of reasons: First, we don't use a lot of Southern Pine MSR 
except in ripped I flanges, which are a vary special visual grade and some 
of this grade gets into shipments for our tf'tlsses. Second, our suppliers 
are W11ually giving us material with average MOE 15-30% higher than the 
specified gra_de and we just are-n' t worried about the stuff. 


If you've detected some skepticism in this report, you're absolutely 
correct. I'm a firm believer in MSR but think the industry has to do some 
cleanup regarding tension. t have essentially no experience in the mill 
environment, so you will get only one firm recommendation from :me: 


Some of these things that shouldn't happen have to be an attitude pToblem. 
At least in high grades these "junk'* packages and ridiculously low MOE 
pieces have to be eliminated. I suspect the production attitude is often 
that anything can be tossed 1n aS long; as it's lesa than 5% of· the 
shipment� It has to be emphasized that any system which permits a 
separation by strength (MSR does this� however imperfectly}. also creates 
opportunities for monumental mist:akest 


So what else .is wrong and what should be done? 
of is that what's going on now isn't Tight and 
troubler 
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You tell me! All I'm sure 
the industry is headed for 
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BEAM STIFFNESS AS A FUNCTION OF POINTWISE E WITH APPLICATION 
TO MACHINE STRESS RATING 


F. K. BECHTEL 


B.s.E.E. Iowa State u, M.S.E.E, u of New Mexico, Ph.c.E.E. Purdue U 


Director of Research, Metriguard Inc., P.O. Box 399, Pullman WA 99163 USA 


Production-line measurements of lumber modulus of elasticity, E, are 
currently performed at many locations throughout the world. The question 
of how the measurements for a particular piece of lumber are affected 
by the E values at different points in the piece is often asked. In 


particular, one question is: how much does material near the ends of 
the piece contribute to the measurement? This paper derives the- effective 


E value for a center-loaded, simply-supported beam as a function of the 
pointwise longitudinal E values of the beam. With reasonable assumptions, 
the contributions within any cross-section of the beam are uniformly 
weighted in the direction perpendicular to the direction of bending and 
quadratically weighted UP"'ard from zero at the neutral surface in the 
direction of bending. The longitudinal weighting is quadratically upward 
from zero at the span ends to a maximum at the span center. Answers 
for other loading conditions can be obtained with similar analysis 
techniques. Using the Continuous Lumber Tester (CLT) as an example of 
production-line machinery, the longitudinal weightin·g function is used 
to show how the CLT low-point E and average E measurements are affected 
by the longitudinal Eat each point in a piece of lumber. The convolution­
like integral obtained by expressing the effective E for a bending span 
in terms of the cross-section values along the span suggests a method 
for reversing the operation; that is, for obtaining the cross-section E 
values in terms of the effective E of bending spans along a beam. The 
method utilizes deconvolution techniques which have proved useful for 
improving measurement resolution in other applications. Successful 
implementation of this method will allow one to obtain, from bending 
measurements, the cross-section E values along the piece. 
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I. INTRODUCTION: 


1 


This work was initated in an effort to answer the often asked question 
about the effect of the ends of a piece of lumber on bending measurements 
of modulus of elasticity, E, in machine stress rated lumber production. 


The more general question considered is how the longitudinal E of each 
differential element of a beam affects the E value of the beam obtained 
with a force/deflection measurement. 


The bending characteristics of 
as illustrated in Figure 1 are 


6(L/2) = 
48EI 


a center-loaded, simply-supported beam 
known to be described by the equation: 


where A(L/2) is the center-span deflection of the beam 
P is the load applied at the beam center 
L is the bending span length 
E is the beam's longitudinal modulus of elasticity 


( 1 ) 


I is the beam cross-section's moment of inertia about the neutral 
axis. 


Throughout this work it is assumed that the beam deflection due to 
shearing stresses is negligible, and that the moment of inertia, I, is 
the same for each cross-section of the beam. 


In the case where the beam does not have uniform JtLOdulus of elasticity, 
as is the case for structural lumber, an effective value Ee££ can be 
used in place of E in Equation (1). Eeff is the value obtained by 
solving Equation (1) for E with known or measured values for �, P, L, 
and I. One can ask how the E for each differential element of the beam 
contributes to the measured effective value Eeff• This question is a 
practical one·because its answer is useful in the evaluation of the 
effect of knots and other characteristics of lumber- In particular, 
for production-line equipment used in the grading of machine stress 
rated lumber, the answer shows how E-reducing characteristics near the 
ends of a piece of lumber affect the measurement of bending E. The 
analysis can be used also to address the effect of component E variation 
in reconstituted products such as laminated veneer lumber. 


Several researchers (1-71 have studied the E variability of structural 
lumber. The relationship between the lowest bending E value of a piece 
of lumber and its bending strength has been investigated by Corder [11, 
Orosz [21, and Gerhards and Ethington [3}. E variability along a column 
has been considered in a study of column strength by Suddarth and Woeste 
[4]. Data illustrating the variability of E in structural lumber was 


presented by Corder [1], Kass [5], and Pellerin [6]. The correlation 
of E values for different segments along the same piece of lumber was 
evaluated by Kline, Woeste, and Bendtsen [7]. Kass [5] graphed bending 
E values for various bending measurement spans down to 203 mm long, As 
one would expect, his results showed that higher spatial resolution of 
E is obtainable with the shorter testing spans. 
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More closely related to the present work, Kass [5] derives a relation­
ship giving the effective E of a bending span having regions of two 
distinct E values in t�rms of those two E values. Foschi and Barrett 
[B] suggest using finite element analysis methods for obtaining an 
effective E in terms of the E values in the span. 


The result of the present work stating Eeff in terms of the E values in 
the span is more general than Kass•s, and because it is written as an 
explicit function of the pointwise longitudinal E values in the span, 
more insight can be gained from this method than from a finite element 
approach. 


The first question considered in Section II of this paper is how the E 
representative of each beam cross-section in a bending span influences 
the value Eeff obtained from a force/deflection measurement. A weighting 
function is derived showing the relative influence of each cross-section 
E on Eeff• Then, in Section III, using the CLT* as an example, this 
result is used to derive weighting functions showing the importance of 
each cross-section E to production-line measurements of bending E. The 
question of how the E of each point within a cross-section influences 
the cross-section E is also important; consequently, in Section IV, 
weighting functions illustrating this relationship are derived. In 
Section V, the.weighting functions derived in Sections II and IV are 
used to state the general result showing how the pointwise E for each 
differential element in a bending span affects the bending E measurement 
for the span. 


The integral expressing Eeff in terms of cross-section E values and the 
derived weighting function is very similar to a convoluti�n integral. 
The idea of using deconvolution techniques to improve the spatial 
resolution of Eeff measured by production-line equipment is introduced 
in Section VI. Because the ma.in objective of the present paper is to 
describe the effect of pointwise E values on bending E measurements, 
details of handling the inverse question, namely that of using bending 
E measurements to obtain more detailed E information, is r�served for a 
future publication. 


II. CONTRIBUTION OF CROSS-SECTION E VALUES TO Eeff 


Referring to Figure 1 again, the slope S(x) of the beam at any point x 
along the beam is known (see e,g. Reference [9]) to be given by: 


S(x) = .! }
x M(u) du + S(O) 


I O E(u) 


where the slope s, applied bending moment M, and modulus of elasticity 
E are functions of position along the beam. 


*The CLT (Continuous LUJl1ber Tester) is a fast (400 meters/minute} 
production-line machine for the bending E measurement of lumber. In a 
typical North American installation, the CLT is located directly down-
stream of the planer and provides an E identification mark on each 
piece of lumber. Knowledge of the E category allows the lumber to be 
sorted into machine stress rated lumber grades. 
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From the standard method of integrating slope to obtain deflection and 
using the boundary confil.tions of zero deflection at the supports 
(at x=O and x=L), the deflection l!.(x) at position x is: 


A(x} = .! t t M(v) dv du -
I O O E(v) 


X }
L t M(v) dv 


LI O O E(v) 
du 


In this equation, an interchange in the order of integration allows a 
reduction from double to single integration. This interchange is 
accomplished most easily with the help of Figure 2. The result is: 


.l!.Cx) = .l 
I 


= 1 
I 


J
x M(v) }


x 
du dv 


0 E(v} v 


X 
(x-v)M(v) 


}o dv -
E(v) 


At span center: 


L 
- �I f 0 


L 
X 


}o LI 


ML/2) =-'­
I 


}
L/2 (L/2-v)M(v) dv 
0 E(v) 


L M(v) f du 
E(v) v 


dv 


(L-v)M(v) dv 
E(v) 


1 
J


L _(L-v)M(v) dv 
2I O E(v) 


( 2) 


For the case of center loading �ith simple supports, the rooment is given 
by: 


M(v) = -Pv/2 0<:.v<L/2 


= -PL/2 + Pv/2 , L/2<v<L 


which, when substituted into (2), yields: 


L/2 
ML/2) = l'l} 0 


v2 


E(v) 
dv (L - v)


2 


E(v) 


Th.is can be written: 


where Eeff, the effective E of the span, is 


Eeff "" 
L3 /12 


L/2 v2 L (L - v)2 
}


o E(v) 
dv + }L/2 


dv 
E(v) 


dvj/(4I) 
( 3) 


( 4) 


given by: 


(5) 


Equation (5) shows how the cross-section E values al9ng the bending span 
influence the effective E obtained from a force/deflection measurement. 


There is 
than E. 
span is: 


some advantage in looking at the compliance (reciprocal E) rather 
From Equation (5), the effective compliance Ceff of the bending 


( 6) 
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where Ceff=1/Eeff• and C (v)=1/E(v}. A weighting function w can be 
defined by: 


0 < V ( L/2 


= 12(L-v) 2/t3, L/2 < v < L I 7 l 


The function w is graphed in Figure 3, and it is easily checked that: 


L w(v) dv = 1 
J 0 


In terms of w, Equation (6) can be written: 


= L w(v)C(v)dv 
,o 


The weighting function w illustrates how the E values at each cross­
section along the span, or rather the compliance values, affect the 
bending-characteristics of the span. There is no contribution to 


(8) 


Ceff• and hence none to Eeff• from material at the span ends, and 
maximum contribution occurs at thP. span c�nter. Ft�rther, the weighting 
function increases quadratically from span ends to span center so that 
the values C(L/4) and C(3L/4) each influence Ceff only one fourth as 
much as does the value C(L/2). 


Equation (8) can be generalized to apply to any span of length L along 
a piece of lumber starting at the general position x and ending at x+L. 
Thus: 


x+L 
Ceff(x) =} w(v-x) C(v)dv 


X 


where Ceff(x)=1/Eeff(X) is the effective compliance for the span 
starting at x and ending at x+L. 


III. APPLICATION TO THE CLT 


Equation (9) can be used to learn something about how cross-section E 
values along a piece of lumber influence E measurements for lumber as 
determined by production-line equipment, Befqre proceeding, it is 
necessary to provide a brief description of the sequence of events as 
lumber passes through the E measuring machinery. The specific machine 
described here is the CLT; for our purposes it can be considered as an 
example of a high speed machine for production-line E measurement of 
lwnber. 


I 9 l 


The CLT consists of two bending sections which are identical in function 
except that the second section bends .the lumber in a direction opposite 
to that of the first_. Measured E values from the two bending sections 
are averaged 
the lumber. 


to compensate for any naturally occurring bow or 
For analyzing how the cross-section E values are 


kink in 
weighted 
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into the measurement, the first test section can be ignored. In 
operation, delayed E measurements from the first test section are 
essential for accurate compensation of lumber bow and kink. 


Figure 4 shows the CLT mechanical schematic for th� second bending test 
section. The locations of the first and second photosensors just out­
side the test span are important. The measurement sequence begins when 
the leading end of the lumber first blocks the second photosensor and 
ends when the trailing end uncovers the first photosensor. The 
intervening interval is the measurement period. 


The clamp roll assemblies at the ends of the test span are tilted 
slightly (1.12  degrees) so that when a specified constant center 
deflection (7, 94 mm) is forced by the load roll, no moment is caused by 
the clamp rolls. Then, analysis of the test section can proceed as 
though lumber in the span were simply supported* with a center load. 
In the CLT, the test span length is 1219 mm with �est span ends �efined 
by the first large clamp rolls encountered looking in both directions 
away from span center. The two photosensors are located immediately 
(76 mm) outside the span ends. 


Figure 5 illustrates a piece of lumber and i-dentifies points along it 
that are important for discussion of the CLT measurement. In Figure 5, 
T1 is the distance between the second photosensor and the end of 
the second test span. The leadin9 end of the lumber travels a distance 
•1 past the end of the second test span before it encounters the 
second photosensor at which time the measurement interval begins. The 
measurement interval ends when the trailing end of the lwnber is a 
distance T2 upstream from the beginning of the second test span which 
is where the first photosensor is located. On modern CLT's, T1 
and T2 are each 76 mm; hence for a length 76 mm from each end of the 
piece, cross-section E values contribute nothing to the machine grade. 


During the measurement interval as the lumber rolls through the CLT, 
one can think of the test span as moving from the lumber span 
(T1, T1+L) to the span (i-T2-L, !-T2) where L is 
the test span length (1219 mm in the CLT), and t is the lumber length. 


The presen� CLT sorting algorithm utilizes two numbers to determine 
the E cate9ory spray mark applied to the lumber. These are low-point E 
and average E. Low-point E is the smallest effective E measured for 
any 1219 mm bending span along the piece of lumber. Average E is the 
average of the effective E measurements for all 1219 mm spans along the 
lumber. Conseqnently, to determine how the cross-section E values 
affect the CLT E measurement, it is sufficient to determine how the 
cross-section E values affect low-point E and average E. 


CLT Low-Point E 


The CLT low-point E, E1p, is the minimum Eeff value measured as the 
lumber moves through the test span. Each measured Eeff value is from a 
lumber span whose starting point is between T1 and !-T2-L and 


*The simply supported approximation is strictly valid only if the 
lumber being tested has uniform E. 
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hence whose span center is between -r1+L/2 and t-i:2-L/2 as 
measured from the leading end of the lumber. The effect of the E (or 
its reciprocal the compliance) for every cross-section in this span 
center range is weighted equally and maximally because each of these 
cross-sections is at span center for one span in the range. outside 
this span center range, the weighting is quadratically down at both 
ends until at T1 from the leading end or at -r2 from the trailing 
end, the weighting is zero. The CLT low-point weighting function wlp 
giving the relative contribution to CLT low-point E for each cross­
section along the lumber is graphed in Figure 6 and given explicitly by: 


Wlp(X) = 0 ' 0 < X < <1 


= 12(x--r1) 2 /L3 
'1 ( X ( -r1+L/2 


= 3/L ' i:1+L/2 < X < t--r2-L/2 


= 12( t--r2-x)2/L3 ' !-T2-L/2 < X ( t-T2 


0 !-1"2 < X < t 


CLT Average E 


The CLT average E measurement is the_average of all Eeff values measured 
as the lumber moves through the test span. Determination of the cross­
section E contributions to average Ei s more complicated than for 
low-point E. The CLT implements the following defini�ion of average E: 


where Eeff(X) is the effective E for the lumber span from x to x+L 
measured from the leading end of the piece of lumber. From Equation 
(9), noting that Eeff(x):1/Ceff(X), write: 


1 dx 
x+L 


fx w(v-x)C(v}dv 


( 10) 


( 11 l 


Unfortunately, Equation ( 1 1 )  does not lend itself to simplification 
unless the compliance function C or its reciprocal E is known. Some 
insight can be gained by solving a different problem. Instead of 
averaging the effective E values to obtain average E, let us instead 
average the effective compliance values to obtain average compliance Ca 
and then take the reciprocal. That is, instead of Ea according to 
Equation ( 11), let us instead compute Ea defined by: 


Now, Ea is the harmonic mean of Eeff(x); whereas, Ea is the mean. 
It is known [101 that: 


( 12) 
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with equality holding if Eeff and hence Ceff is a constant function. 
If the behavior of Ceff is not too wild, the functions !'a and Ea 
will be reasonably close to one another. Because :fa can be 
handled mathematically and because it is not too much different from 
Ea' the effect on :fa of the compliance at each cross-section is 
investigated. Substitute Ca = 1/fa into Equation (12 ) to obtain: 


x+L 
J w(v-x)C(v)dv dx 


or, using the Equation (7) definition of w; 


.t-T2-L x+L/2 


- } l} (v-x) 2c(v)dv + 
T1 X 


x+L 
f (L-v+x)2C{v)dvjdx 


x+L/2 
( 1 3) 


Figure 7 illustrates the two-dimensional domain of integration for this 
integral. The double integral can he reduced to a single integral by 
first interchanging the order of integration. There are three cases to 
consider depending on the length of the lumber. In the usual case, 
Case 1, the lumber length minus the- unmeasured increments at each end 
is greater than twice the bending span length, i. e. ,  2L<t-T1-T2; 
in Case 2, this 1-ength is between 1. s and 2 times j:he span length, 
i.e. , 1. SL<1-T1-T2 <2L; and in Case 3, it is between 1 and 
1. s times the span length, i. e. , L<t-T,-T2 <1. SL. 


(in the CLT example, 1>2591 nan) 


With the aid of Figure 8a, the order of integration in Equation (13) 
can be interchanged, and the integral can be written as the sum of six 
integrals, each identified with part of the domain as illustrated in 
the figure. 


( 1-T1-T2 -L)CaL3 /12 


T1+L/2 V 
= } C(vl l} (v-x)2 axjav + 


R.-T2 -L/2 1-T2-L 
+ } C(v) lf (v-x) 2 ax Jav + 


t-TrL v-L/2 


t-T2-L/2 v-L/2 


+ f C(vllf (x+L-v)2dxjdv 
T1+L v-L 


J.-T2 -L V 


} C(v) l} (v-x) 2ax jdv 
T1+L/2 v-L/2 


T1+L v-L/2 


f C(v) l} (x+L-v)2dxjdv 
T1+L/2 T1 


1-T2 1--r2-L 
+ f C(vll} (x+L-v)2dxjdv 


t--r2-L/2 v-L 
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Carrying out the integration on x yields: 


-r1+L/2 
= } C(v) ( v--r1 )


3 /3 dv + 
<1 


.t--r2-L 
[ C(v) (L/2)3 /3 dv 


-r1+L/2 


1-T2-L/2 


+} C(v)[(L/2)3-cv-l+T2+L)3 ]/3 dv + 
-r1+L 


} C(v)[(L/2)3 -c,1+L-v)3j/3 


t--r2-L -r1+L/2 


.t--rrL/2 
+ } C(v)(L/2)3 /3 


t--r2 
9-v + } C(v)(.t--r2-v) 3/3 dv 


T1+L t--r2-L/2 


After solving for Ca and rearranging the integrals to systematically 
cover the domain of integration from r1 to t--r2 in five 
segments, the result is: 


-r1+L/2 


} C(v)(v--r1)3 dv 
<1 


-r1+L 
+ [ C(v)[(L3/4)-(T1+L-v)3 J 


.t-T2-L 
dv + } C(v)(L3/4) dv 


-r1+L/2 -r1+L 


( 15) 


t--r2-L/2 
+ f C(v) l (L3 /4)-(v-t+,2+L) 3 J 


.t--r2 
dv + } C(v) ( t--r2-v) 3 dv l 


.t--r2-L .t--r2-L/2 


( 16) 


From Equation (16), a weighting function wa showing the contribu�ion to 
average compliance from each cross-section is identified. In terms of 
Wa, the average compliance is written: 


t 


Ca "" f C(v)wa(v)dv 
0 


( 17) 


where the function wa, graphed in Figure 9a, can be explicitly stated as: 


Wa(X) = Q 


= (4/L3) (x-T,) 3 


'1 ( X ( T 1 +L/2 
( l.-T 1-T2-L) 


= (4/L3 ) [CL3/4)-(T1+L-x)3 j , T 1+L/2 ( X ( T 1+L 
( l.-T 1-T2-L) 


1 
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= (4/L3) ltL3/4) -(x-t+,2+L) 3 J 
( 1-T1-T2-L) 


"' ( 4/L3} ( t-T2-x) J 
( .t-T1-T2-L) 


= 0 


A straightforward integration of Wa shows that: 


} wa(x)dx = 1 
0 


(18) 


( 19 l 


(in the CLT example, 1981 mm <  .t < 2591 mm) 


Here, the integration indicated in Equation (13) is split into the six 
regions shown in Figure ab. Equation ( 17) still holds, but the 
weighting function applicable for Case 2, graphed'in Figure 9b, is 
explicitly written: 


wa(x) = O , O < x < T1 


= ( 4/LJ ) (x-'t'1 )
J , T1 ( X < T 1+L/2 


( 1-T,-T2-L) 


= (4/L3 ) ltL3/4)-(,1+L-xl 3 ] 
( .t-T1-TrL) 


= (4/L3) l<L3/4)-(x-t+-r2+L)3-c-r1+L-x)3 J, t-T2-L < x < T1+L 
( 1-T,-Ta-L) 


= (4/L3) l<L3/4)-(x-.t+T2.+L)3 j , -r1+L < x < .t--r2-L/2 
( 1--r,-TrL) 


(4/L3} ( t-Tz-x)3 , t-Tz-L/2 < x < t-T2 


It can be shown that Wa of Equation (20 ) satisfies Equation (19). 


,:,'U•M �'T'TFFNF.�!:: ns A Ji'TlNr.TinN OF POINTWISE E WITH APPLICATION TO MSR 


(20 I 
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(in the CLT example, 1372 mm <  t < 1981 mm) 


For this case, Figure Be illustrates the six regions of integration. 
The weighting function to be used in Equation (17) is graphed in 
Figure 9c and written explicitly as: 


= { 4/L3) (x-T1 )
3 , -r1 < X < .t-T2-L 


( t-T1 -T2-L) 


= (4/L3) t cx-T1 ) 3-(x-t+-r2+L) 3 J , !--r2-L < x < -r1+L/2 
( .t--r,--r2-L) 


= (4/L3) l<L3/4)-(x-t+-r2+L) 3- c -r1 +L-x) 3 J , -r1+L/2 <: x < .t--r2-L/2 
( t--r1-1"2-L) 


= (4/L3) l < t-,2-x) 3- c ,1 +L-x) 3 j 
( .t-T1--r2-L) 


= (4/LJ) ( t--r2-x) 3 , T1 +L < X < .t-T2 
( .t-T1 -T2-L) 


This weighting function also sat isfies Equat ion (19). 


IV. CONTRIBUTION OF E VALUES WITHIN A CROSS -SECTION TO THE CROSS­
SECTION E 


( 21) 


This section investigates the question of how the pointwise E values 
within a cross-section affect the cross-section E value. A three axis 
coordinate system is first defined on a beam as illustrated in Figure 
10. The beam is assumed to have a uniform rectangular cross-section b 
units wide and h units deep. The origin of the coordinate system is on 
the neutral surface. The modulus of elasticity E(x,y,z) is treated as 
a general function of the coordinates x, y, and z except that the 
neutral surface is constrained to be at the beam center (the xz plane 
when the beam is unloaded). One way to achieve this is to make E(x,y,z) 
an even function of the y coordinate. The E considered here is the 
ratio of longitudinal stress to longitudinal strain at the point in 
question. 


From Figure 1 1 ,  which is an exaggerated illustration of the strain at a 
particular x cross-section, the extreme fiber strain Be(x) is computed 
as: 


e (x) = (h/2 + r)d8 - d8 = h 
e rd8 � 


where r is the radius of curvature. For small slope dt(x)/dx, it 
is known that: 


'Cl'l:'AM c,"'n;•,:,1,1,;-�� n..c: A FTTN'r.TION OF POINTWISE E WITH APPLICATION TO MSR 


(22) 


( 23) 
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where d2�(x}/ (dx2) is the second derivative of the beam deflection 
evaluated at cross-section x. Combining E quations (22) and (23} yields: 


The extreme fiber strain Be< x) occurs at position y=h/2. It is 
assumed that the strain S(x, y ,z )  for general y and z is independent 
of z but linearly related to Be(X) with zero strain qn the neutral 
surface. Then: 


B(x,y,z)  = { 2y/h) Be(X) 


(24) 


The stress o(x,y,z) at a point {x ,y, z )  can be written in terms of the 
strain and the modulus of elasticity at that point, 


CJ(x,y,z) == B{x,y, z ) E(x,y,z)  


= (2y/h) 8e{ x ) E (x, y,z)  


The moment at x in terms of the stress o(x, y,z) over the cross­
section can be written: 


b h/2 
M(x) = f y 


-h/2 
} CJ(x,y,z)dzdy 


0 


b h/2 
= f y 


-h/2 
} (2 y/h)Be (x)E (x, y,z) dzdy 


0 


After rearranging: 


h/2 
f y2 


-h/2 


b 
J E(x,y,z)dzdy 


0 


28e(x) M{x) = --�--�=�-- -
h h/2 b 


} y2 } E(x, y , z ) dzdy 
-h/2 0 


(25) 


The function E(x,y) is defined as the average of E(x, y,z)  over the beam width. 
Then, in terms of a width weighting function wz: 


b 
E(x, y) = f Wz(z) E(x, y, z ) dz 


0 
where: 


Wz ( Z )  = 1/b , 0 ( Z ( b 


= 0 otherwise 


BEAM STIFFNESS AS A FUNCTION OF POINTWISE E WITH APPLICATION TO MSR 


(26) 


(27) 







Equation ( 25) becomes: 


2 Se ( x) = -,--,-
,--'M�(�x�)


'---
-


h h/2 
bf y2E(x, y)dy 


-h/2 
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The cross-section E value E(x} is written in terms of E(x,y) and a 
depth weighting function Wy according to: 


h/2 
E(x) =} Wy(y) E(x, y ) dy 


-h/2 


where: 


= O , otherwise 


The function Wy weights the values E(x,y) quadratically upward from 
zero at the neutral surface, and it is easily shown that: 


h/2 
} Wy(Y) dy = 1 
-h/2 


In terms of E(x), Equation (28) is written: 


(28) 


( 29) 


(30)  


( 3 1  ) 


where it is recognized that I=bh3/12 is the cross-section moment of 
inertia about the z axis. Equations (24) and (31) are combined to give: 


M(x) 


IE(x) 


V. POINTWISE E CONTRIBUTIONS TO MEASUREMENT OF BENDING E 


( 3 2) 


E(x) defined• in Equation (29) is the cross-section E that serves as the 
starting point in Section II. From Equation (9), the effective E, for 
a center-loaded, simply-supported span on a piece of lumber from x to 
x+L is given by: 


1 
x+L 


} w(v-x)C(v)dv 
X 


= 1 
x+L 


} (w(v-x)/E(v) ) dv 
X 


or, in terms of the width and depth weighting functions defined in the 
previous section, 


�RAM STIFFNESS AS A FUNCTION OF POINTWISE E WITH APPLICATION TO MSR 
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Eeff(x) = --=----
1
'--�-�--------x+L ��-- �w�(�v_-�x�J ______ _ 


J h/2 b 
X '} Wy(Y) } Wz( Z)E(v,y,z}dz dy 


-h/2 0 


dv (33) 


where the weighting functions w, Wy, and wz are defined in Equations 
( 7 ) ,  ( 27 ) ,  and ( 30 ) .  It can be seen from Equations ( 7 ) ,  ( 27 ) ,  ( 30 ) ,  


and (33), that pointwise E contributions are weighted uniformly by Wz 
over the beam width, and quadratically upward from zero at the neutral 
surface by Wy over the beam depth to give a representative E value for 
each cross-section of the beam. The cross-section E values, or rather 
their reciprocals, are weighted by w over the length of the bending 
span to yield· a n  effective compliance whose reciprocal ls the effective 
E for the span. 


Equation (33) shows how the pointwise E values E(v, y , z )  for v, y, and z 
in the domain defined by x < v < x+L, -h/2 < y < h/2, and O < z < b, 
are used to derive the effective bending E for a very specific case, 
namely that of a center-loaded, simply-supported span of lu.mber with 
uniform cross-section. It was assumed in the develoPment that the 
neutral surface is in the center of the beam. The same a nalysis 
procedure can be used for other loading conditions and assumptions. 


VI. EFFECT_IVE COMPLIANCE AS A CONVOLUTION INTEGRAL 


Equation (9) expresses the effective compliance of a bending span as a 
w:eigh-ted sum of cross-section compliances. 


x+L 
Ceff(x.) = f w(v-x)C(v)dv 


X 
(9) 


The weighting function w as given in Equation (7) was derived from 
analysis of a center-loaded simply-supported bending span. The result 
in Equation (9) resembles a convolution integral, and as a result the 
Fourier Transform of the integral reduces to a product of Fourier 
Transforms. Using the notation F( ) to denote the Fourier Transform of 
the function enclosed in ( ), one can write: 


• 
F (Ceff (x} ) = F (w(x) )F(C(x)) 


where F"' (w(x)) 
possibility of 


is the complex conjugate of F(w(x)), This . . 
dividing F(Ceff(x)) by F (w(x)) to obtain: 


• 
F(C(x)) = F(Ceff(x))/F (w(x)) 


(34) 


suggests the 


(35) 


Then, the Inverse Fourier Transform can be taken to obtain C(x) which 
is the reciprocal of E(x), Successful implementati on of these steps 
would be the first time that the E values for specific cross-sections 
were obtainable from bending E measurements. Details of this procedure 
will be contained in a future publication. 
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An explicit relationship stating the effective E of a beam in bending 
is derived as a function of the pointwise longitudinal E values within 
the bending span. A center-loaded, simply-supported beam is assumed 
although similar analysis techniques could be employed with other 
loading conditions. Additional assumptions are that beam deflection 
due to shearing stresses is negligible, that the neutral surface is in 
the center of the beam, and that the moment of inertia is the same for 
each cross-section of the beam. 


The result is stated in terms of three weighting functions, one for 
each of three coordinate directions; along the beam, across the beam in 
a direction perpendicular to the bending plane, and across the beam in 
the bending direction. These weighting functions show the contribution 
of each differential element of the beam within the bending span to the 
effective E for the span as obtained from force/deflection measurements. 
The weighting functions are explicitly stated and are graphed. They 
show that the contribution is uniformly weighted in the cross-beam 
d.irection perpendicular to the bending plane, quadratically -weighted 
upward from zero at the neutral surface in the cross-beam direction of 
bending, and quadratically weighted upward from zero at the span ends 
to a maximum at span center in the direction along the beam. 


The two cross-beam direction weighting functions are used to define a 
cross-section E for each cross�section along the beam. The weighting 
function along the beam is used together with the cross-section E 
values to show how variation of E along the length of lumber affects 
the grading in production-line machine stre·ss rating equipment. 
Specifically, the importance of each cross-section in the determination 
of low-point E and average E as measured by the CLT is derived. 
Weighting functions showing the relative contribution to both low-point 
E and average E from each cross-section are explicitly stated and 
graphed. The results answ,er the often asked question about the effect 
of the ends of a piece of lumber on the machine determined E category. 


The question of how pointwise E values. contribute to effective E is 
answered by the present work. The inverse question of how to obtain 
cross-section E values from effective E measurements for a continuum of 
spans along the length of a beam is also addressed. Practical implemen­
tation of this method for obtaining better spatial resolution of E 
along the length of a beam will be useful to those interested in 
strength prediction. Details of this research will be contained in a 
future publication. 
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Figure 1.  Simply-supported, center-loaded beam. 


u u 


P/2. 


t 
?<=L 


a----�-..... --.� 
?( L 0 


Figure 2 .  Interchange of order of integration. 
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Figure 3 .  Weighting function for simply-supported, center- loaded bending 
span of length L. Illustrates the importance of each cross-section in the 
bending span to the measurement of E. 
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Figure 4. 
the CLT. 


Mechanical schematic of the second bending test section in 
Note the position of the photosensors j ust outside the bending 


In the CLT, Tl= -r2 =76 mm and. L=l219 nun. span. 
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Figure 5.  A piece of lumber with positions of first and last bending 
spans identified. 
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Figure 6 .  Low-Point E weighting function w • Illustrates the relative 
effect each cross-section in a piece o f  1mJgr has on the determination 
of the CLT Low-Point E measurement. 
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Figure 8 .  Division of the two-dimensional domain of integration. 
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Figure 9. Average E weighting function. Illustrates the relative effect 
each cross-section in a piece of lumber has on the determination of the 
CLT Average E measurement. 
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Figure 10. Coordinate system used in evaluation of the cross-section 
E from values within the cross-section. 
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Figur e 11. Strain at a specified cross-section. 
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THE GENESIS OF MACHINE STRESS GRADING 


by 


Robert J. Hoyle, Professor 


Civil and Environmental Engineering, WSU 


During the late 1950's and the 1960's many of the forest product 


company managers• became seriously interested in examining opportunities 


for raising the value of the product of the log. To much of the 


log h.ad to be sold at less than the cost of production to suit them. 


So many of us became interested in products that were not simple 


commodities. The upshot of that thinking was a variety of products 


and processes which enlarged the product line of the lumber industry. 


An interesting result of this development work was the fact that, 


not only did the firms directly involved enjoy the fruits of the work, 


but many others eventually fell heir to these advancements. 


It is, in fact, difficult to successfully capture an exclusive 


market for a new wood product, and it may not even be desirable to do 


so. The same may be said for a new process. Machine stress grading 


is an outstanding example of such a case. This process had to be 


shared. No one organization was capable of supplying the demand that 


such a development would create if it was at all successful. And 


without supply it would have been impossible to generate consumer 


interest. This very fact has been a problem to the growth of MSR. 


Machine stress grading was born out of a perceived threat to the 


competitive position of structural lumber. It has played a role in 


meeting that threat, but it has also made possible the growth of 


some advanced systems of wood building construction that are 







responsible for the sales of not only lumber. but vast amounts of 


plywood as well. 


I recollect the situation surrounding the concept of machine 


stress grading very vividly. In the late 1950's the industry was being 


pressured by the building code agencies and the Federal Housing Administration 


to define and grade softwood lumber in more specific engineering 


terms. Some agencies had arbitarily reduced all lumber properties by 


10% and others were talking in that vein, as an indication of their 


dissatisfaction. 


Stress rated grades were not unknown, but much structural lumber 


was not replete with a set of stresses needed by designers, which 


of course, they now have. The reliability of lumber was under scrutiny 


and questions were being raised about the justification of the published 


properties. Some of these issues were valid. Other were not. After 


all, wood had served the building business pretty well for a long time 


and was clearly a good and well-established building material. The 


problems seemed to be internal in the sense that there was plenty of 


good useful lumber if it could be separated from the 1
1chaff 11 which 


was occasionally causing trouble. Now structural failures always get 


the attention and concern of the engineers who design buildings and the 


attorneys who try to keep the lumbermen and engineers out of court as 


much as possible. 


In response to these allegations the various grading agencies 


made an intensive effort to review and rework the stress ratings of all 


their species and grades. The agencies did this using technical working 


groups made up of their staffs and the technical people of their member 


mills, which is how I became involved in the work. The U.S. and 







Canadian Forest Product Labs played a large roie in this work using 


taxpayers resources to share the cost of the studies and tests. Since 


both governments enjoy a large income from the sale of timber from their 


lands this was a proper investment on their part. 


As these wheels began to turn it beca�e evident that some timberlands 


produced better wood than others and the process of putting numbers on 


the lumber inevitably was going to enhance the position of some regions 


to the detriment of others. Lumbermen tend to try to present a solid 


front and to dislike internal disagreements. 


A good example, and a prime example, of this situation was the 


difference that arose between Douglas Fir from east and west of the 


Cascade - Sierra Nevada Range, two regions of distinctly different 


climatic character. 


In 1955 the West Coast material was accorded the highest strength 


and stiffness properties of all Douglas Fir. Material from east 


of the mountains was lower. Dividing the inland region into two parts, 


one north of a line roughly east and west through the middle of Oregon, 


and one south of this line and east of Idaho 1 s easternmost border. 


the deficiencies. of the Douglas Fir in these two regions were distinct. 


One region, the northern one, contained wood that was 16% lower in 


stiffness and 4% weaker in strength. The other inland region had wood 


that was 27% less stiff and 19% weaker than Coast Douglas Fir. 


This was based on fairly old data which would eventually be called 


into question. But it was official government data, supposedly quite 


sound. 


As these data were factored into the new assessment it became 


clear that coast Douglas Fir would enjoy some real advantages over 







its sister varieties to the east. Since the bulk of dimension lumber 


was used on joist and rafter applications. the span ability of the lower 


stiffness wood would require use of 1arger pieces as it appeared 


at this juncture. 


This posed some real economic and political problems because 


the growth of Inland production was positive and those mills carried 


some clout in agency circles. But lumbermen really were less interested 


in internal dissention than in resolving the differences as well as 


possible. 


Little testing had been done for a long time. Most of the 


data available was from old Forest Service work. Potlatch 


had done a considerable amount of recent testing and so had the 


Western Pine Association. Much of the old Forest Service data 


had been based on samples of relatively few selected trees. 


Recent large sampling by the industry had convinced them that the 


old data ought to be supplemented. So a large new study was proposed, 


under Forest Service direction. which was more systematic and more 


thorough, on several of the most widely cut species. 


This study took a couple of years and it showed that Coast 


Douglas Fir was as good or better than the previous assessment, but 


it identified a large part of the Inland Douglas Fir to be stronger 


than the Coast variety and only 8% less stiff. Rocky Mountain Douglas 


Fir came out better than before but still 24% less stiff, than the coast 


material, but only 4% less strong. 


This was good news and it eventually became the basis for the visual 


stress rated grades now manufactured. It allowed a large part of the 


Inland Douglas Fir to be compititive to coast Douglas Fir. 







This study was expensive. A persuasive factor in doing it had 


been the industries own research data on the timber resource. This 


work spawned Machine Stress Rating. 


Potlatch, in its studies, had constructed a simp1e portable 


machine which could be taken from mill to mill to make very rapid 


tests on lumber in inventory and in �reduction and had used it 


extensively in the Inland region. It had seen service under 1oan to 


Oregon State and Colorado State technologists, and students in the 


Rocky mountain region. It was purely a stiffness testing program because 


that was the key property to joist and rafter performance. 


Out of this experience came several interesting facts. First 


it was seen that lumber was distinctly different in stiffness according 


to its grade, something not heretofore recognized as significant. The 


strength had always been understood to be variable according to grade, 


that is higher for the higher grades. 


It didn 1 t stretch the imagination much to see that if stiffness 


varied according to grade and strength had the same relationship, 


one might be used to predict the other. Stiffness could easily be 


measured very rapidly without damaging the wood in any way, so a 


grading concept seemed possible. Jim Snodgrass at Oregon State 


and Lyman Wood at the USFPL both dug out old data on beam tests 


to also confirm this relationship. So when we presented our story at 


the Wood Products Clinic in Spokane in 1960 we placed some emphasis 


on this idea. Meanwhile we had decided to push the research on this 


notion within the Company. 


It is always difficult to claim credit for an invention and this 







was no expection. T. K. May of WCLA and Lyman Wood of the USFPL had long 


had a vision of some mechanical method of lumber grading. Stan Suddarth 


of Purdue had made an interesting study of this possibility but had not 


yet published the work at the time. But Potlatch had became excited 


enough about the prospects of the concept to really fund an intensive 


program to move it out of the lab and into practice. In the process a 


great effort had to be made to muster support and in that process 


we discovered all kinds of similar ideas and enthusiasm among wood 


products industry people. 


Several other organizations got their gears into mesh at about this 


time. The WWPA lab had been developing a finger joist testing machine 


which could be readily adapted to measure lumber stiffness, although it 


was really a proof loader. They eventually produced this as a prototype 


to the Stress O Matic machine grader. 


The Princes Risborough Laboratory in England came out with a 


prototype grading machine much like the CLT-1 and they must have started 


an this about the same time we did. The Australian laboratory of the 


New South Wales Fo.restry Commission came out with a machine and brought 


-- it to a production reality in Australia soon after, and the- British, 


d .iscontinued their development in recognition of the fact that the 


Aussies- had done what they themselves had intended to do. They continued 


their work with machines purchased in Australia. These:machines 


have enjoyed widespread acceptance in Northern Europe but are too 


slow for use in American mills. 


Britain imports much ungraded lumber and grades it after- it is 


received from overseas. Britain and the northern European countries 


had very limited visual grading technology and adopting MSR was very 
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logical for them. 


The CLT-1 was designed after a prototype produced in the Potlatch 


laboratory and went into production in 1961, or December 1960. 


The present CLT-1 is structurally very similar to that one but with an 


immensely improved electronics package. 


After the machines were available the task of writing reasonable 


grade descriptions, establishing agency procedures for certifying 


that machines were in proper calibration, and providing quality cont�ol 


services and grade stamps were paramount issues, which required broad 


collaboration among lumbermen. 


Considerable controversy developed within the industry, especially 


between south and west, with the south only accepting the technique when 


the issue was forced by consumers in their territory. I can recall some­


rather heated interviews on this matter, but good humor eventually 


prevailed. The southern pine industry has some of the best timber 


·anywhere, but it also has some that is pretty mediocre, siace it 


encompasses a huge geographic region. MSR was bound to produce some 


dislocations in that industry if it came into widespread use; Mills 


in-some regions of the south would suffer from the actual measarement 


of their wood properties. although most would receive large benefits. 


But· this would be true in the Douglas Fir region, also: 


I know some people expected MSR to replace visual grading. That 


was probably an extreme view. Technically it could do this for structural 


dimension but practically it couldn't. Most of us soon came to realize 


its virtues were more specialized, in an industry as diverse·and with 


such a well established visual grading tradition as the North American 


lumber industry • 







There were all sorts of responses to the MSR idea: 


It threatened the visual grading establishment. 


The bidding of timber sales would require the evaluation of 
the structural quality of the stand. 


It would allow some mills to sell a part of their lumber at 
prices justified by the better quality. 


It would force some mills to have a larger proportion of lower 
grade lumber, but 


It would require good seasoning to obtain the best yields. 


Some mills in regions of good lumber quality would have enlarged 
profit opportunities. 


It was too technical. Managers couldn 1 t understand it-. Salesmen 
couldn't understand it. It required a shift in the knowledge base� 
a reeducation of the sales force. 


It would require a technical operating staff. Equipment failures 
could stop production. 


All of these things had answers and all of them are now, 20 years later, 


more clearly understood and dealt with. 


After the shakedown of birth and adolescence MSR has enjoyed 


steady growth. In Europe it is even more widely used and in Australia 


and South Africa it is almost the norm. 


I am sure Jim Logan and his associates are more up to date 


and better able to list the pros and cons than I am, but I see 


a few clear values of the MSR system. 


First, it identifies the 
yields than ever before. 
with this system. 


better grades more clearly and in higher 
If you have good lumber you can find it 


Second, it doesn 1 t replace the human grader, it is a tool he can 
use to extend his perception and his speed. It elevates the technology 
of grading and most mills have men who can handle the technical 
job. 


Third, it reduces the cost and improves the effectiveness of high 
-production grading. For high speed miJls it leviates a bottleneck. 







Fourth. i t  improves lumber uniformity and opens up the market into 
better structural wood systems. 


Fifth, engineers and building officals and a large part of the 
wood structural product manufacturers acknowlege its superiority 
and will pay for the higher performance of the better grades. 
It needs little selling anymore, in terms of iS credibility. 


I am sure I haven't mentioned all the deserving contributors 


to this technological advance although I can picture their faces 


and recall their names. There is a large fraternity of hard workers 


who have lent their energy and their reputations to this development. 


MSR is clearly- in place.,its use is growing and conditions faced 


in the years ahead will favor its use to an increasing degree� 


Everyone who has agressively employed the system has been rewarded 


for doing so. It has raised the stature of wood in general as a 


structural building material. 


_I.have not been actively working in the promotion of MSR for over-


12 years. It is a great pleasure to be able to look out and. see what 


has happened to that idea that sprang from the work of0 eveY1yone 


-who ever published their research on wood properties, and-from the vision 


of a few managers who came up with the money to let us-work on iL_ - It 


-has found a useful place in reducing the waste of a resource, at 


:a pref1t to those who opened their doors to it. And in this age,-where 


resource management is under such broad public inspection i this- is a 


contribution for which the industry may .enjoy some public credit. 







