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Abstract
This paper discusses contributions developed at the Forest 
Products Laboratory that have advanced utilization of the 
Weibull distribution in wood engineering. The increased use 
of the Weibull distribution in wood engineering primarily 
occurred since 1975. The goals of this paper are to (1) unite, 
clarify, and simplify information published in several 
sources into a cohesive summary, (2) advance the use of 
this research through corrections of misinterpretations 
and errors of some earlier publications, and (3) introduce 
some potential new concerns about the use of the Weibull 
distribution in some ASTM standards that present an 
opportunity for further research.

Keywords: Weibull distribution, goodness-of-fit, proof-
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1. Introduction
This paper discusses contributions developed at the USDA 
Forest Service (FS) Forest Products Laboratory (FPL) 
that have advanced utilization of the Weibull distribution 
in wood engineering. The increased use of the Weibull 
distribution in wood engineering primarily occurred around 
1975 and continues today. As a national research center 
with the assignment to increase the effective utilization 
of wood, FPL plays a dominant role in wood utilization 
research, including the development of allowable properties 
values (design values) used to design wood structures. In 
collaboration with wood industry partners, academicians, 
and other interested parties, FPL scientists, including 
mathematical statisticians, have been and are actively 
involved in developing and advocating for improvements 
to consensus standards published by organizations such as 
the American Society for Testing Materials (ASTM) and 
in providing support to government agencies, such as the 
American Lumber Standards Committee’s (ALSC) Board of 
Review (BOR) and the National Grading Rule Committee.

When a redwood cooling tower collapsed in 1978, which 
resulted in a person’s death, it became a responsibility of 
the FPL to help understand the problem. This tragedy was 
followed by claims that the current design procedure led 
to overestimating design values. A consensus developed 
that a new testing program was needed, one that should 
be directed by a steering committee whose members 
were associated with national research laboratories, 
grading agencies, industry representatives, and university 
researchers working in wood property research from both 
the United States and Canada. The FPL staff and individuals 
from U.S. grading agencies formed a technical committee 
that would design and conduct tests in a new multistage 
program. After the first stage, Canadian representatives 
joined the technical committee. All procedures developed 
were to be incorporated in consensus standards. Using some 
other consensus standards as models to begin designing the 
study, it was decided that it would be appropriate to produce 
estimates using the normal distribution, using nonparametric 
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estimates, and using estimates based on another parametric 
distribution. The normal distribution was a logical choice 
because it had been shown in several studies to be useful 
for wood stiffness measured by modulus of elasticity 
(MOE) values. A nonparametric approach was already 
coded in several standards. This left the need to determine 
which additional parametric distribution to use for strength 
properties, such as modulus of rupture (MOR). The 
concept of weakest link, often associated with the Weibull 
distribution, seemed to be a logical choice. However, wood 
strength design value properties are typically lower-tail 
estimates of the distribution, such as 5th percentile estimates 
or tolerance limits for 5th percentile estimates, and the 
Weibull distribution’s use is typically not for lower-tail 
properties. It was not clear if these properties had been 
developed for the Weibull distribution or could easily be 
developed. In addition, all procedures needed to be easily 
explained and sold to the wood-based consensus, steering, 
and technical committees.

The research team needed to determine if the Weibull-based 
design value that the whole committee had identified as a 
candidate distribution would serve as well as the normal-
distribution-based design value and the nonparametric-based 
design values. At this time, the technical committee had 
a statistician from the FPL who worked with Dr. Richard 
A. Johnson, a Ph.D. statistician from The University of 
Wisconsin. The results of this collaborative research were 
published in two statistics journals. This initiated a research 
program aimed at developing information about the Weibull 
that might be useful in wood engineering. This program 
has proceeded with several FPL mathematical statisticians 
and other researchers contributing to the effort. This paper 
discusses some of the accomplishments and explains the 
motivation that led to the research. The goals of this paper 
are to (1) unite information published in several sources into 
a cohesive summary, (2) correct misinterpretations of some 
earlier publications by further discussion, and (3) introduce 
some potential concerns about the use of the Weibull 
distribution in some ASTM standards.
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2. Weibull Distribution and  
U.S. In-Grade Program 
Motivation for the Research
In 1978, the FPL, in cooperation with the lumber industry, 
initiated the In-Grade Testing Program (FPRS 1989). The 
objectives of this program were to evaluate the mechanical 
properties of nominal 2-in. (standard 38-mm) dimension 
lumber sold in the United States and to develop analytical 
models to predict the performance of light-frame structures 
constructed with this lumber. More than 70,000 specimens 
were tested in the In-Grade Program, the largest single 
research effort ever undertaken in forest products research. 
It was evident from the start of this 10-year, $7 million 
effort that critical statistical issues would need to be 
addressed for the program to succeed. Central among these 
were several issues dealing with the Weibull distribution. 
Current design practices for wood and related material, 
known as allowable stress design (ASD), are based on an 
estimate of the 5th percentile of the strength distribution. 
From the inception of the In-Grade Program, considerable 
interest was voiced in using the two- or three-parameter 
Weibull distribution to form the basis of these estimates. 
Three critical questions were identified at that time:

•	 If the population has a Weibull distribution, is the 
maximum likelihood estimate of the 5th percentile a  
good estimator of the population parameter for the  
desired sample size?

•	 If we want a more conservative estimate for design of 
wood structures, how do we calculate tolerance limits  
and confidence limits for percentile estimates based on 
the Weibull distribution?

•	 How do we know if the Weibull distribution fits the  
data we are going to collect? 

Statistical research programs were initiated to answer 
each of these questions. During the In-Grade Program, the 
research team included at least one mathematical statistician 
as a member. 
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with c set to zero, so that the family of two-parameter 
Weibull distributions follows (that is, when c = 0). 

For the three-parameter family, if we let ξα denote the 
population 100αth percentile, the maximum likelihood 
estimate of ξα is
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and our random sample is such that xi > c for  
i = 1, . . . , n. If values of a < 1 are allowed, the likelihood 
will be unbounded. Johnson and Haskell (1983) showed 
that the estimated percentile converges to the population 
percentile with probability one. Harter and Moore (1967) 
claimed that for shape parameter a > 2,
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and (w1, w2, w3) = (a, b, c). Johnson and Haskell (1983) 
used a computer simulation to investigate the idea that the 
joint distribution of the maximum likelihood estimators 
for the shape, scale, and location parameters is normally 
distributed. They looked at shape parameter values from 
a = 1.2 to 4.0 and sample size n = 70 and 200. These 
researchers concluded that a sample size of 70 was still 
too small to obtain adequate estimation results using the 
large-sample normal approximation and that the maximum-
likelihood 5th-percentile estimator had a strong tendency to 
overestimate the population percentile.

Their second conclusion generated a second question of 
interest. If the point estimate has a tendency to overestimate 
the population 5th percentile, how do we calculate a 
tolerance limit for the 5th percentile? Johnson and Haskell 
(1984) noted that if Harter and Moore’s (1967) claim of 
asymptotic normality holds, then the earlier equation of 
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Johnson and Haskell (1984) proposed the following procedure to obtain a tolerance limit for the 100αth  
percentile with probability 1 – γ: 
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where X(1) is the first-order statistic. The second case uses a modified maximum likelihood solution for the 
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where X(1) is the first-order statistic. The second case uses a modified maximum likelihood solution for the 
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probability. 
 
The results of this simulation also suggested that for sufficiently large sample sizes, confidence intervals 
for percentiles of the population can be obtained using the same asymptotic normality for sample percentile 
estimators. The simulation also showed that the assumption of asymptotic normality improved as 
percentiles approached the median. 
 

where X(1) is the first-order statistic. The second case 
uses a modified maximum likelihood solution for the 
two-parameter exponential distribution. Johnson and 
Haskell (1984) evaluated this procedure through computer 
simulation and concluded that a sample size of 70 was not 
large enough in general for the asymptotic results to hold; 
results for n = 200 were much better, but still slightly low in 
coverage probability.

The results of this simulation also suggested that for 
sufficiently large sample sizes, confidence intervals for 
percentiles of the population can be obtained using the same 
asymptotic normality for sample percentile estimators. The 
simulation also showed that the assumption of asymptotic 
normality improved as percentiles approached the median.

In the In-Grade Program, 360 or more specimens were taken 
for every size and grade cell tested on major species. Based 
on the improvement in this tolerance limit from n = 70 to 
n = 200, the sample sizes were thought to be sufficient to 
allow use of this procedure to estimate tolerance limits of 
the 5th percentile.

In the In-grade Program, shape parameters for various size 
and grade cells covered an expanse of values. For Hem–
Fir values for 13 grade–size combinations of specimens 
with sample sizes ranging from 20 to 428 at 15% moisture 
content, the shape parameter estimate for the three-
parameter Weibull distribution ranged in values from 1.38 
to 4.15 (Evans and Green 1988b). The smallest sample sizes 
were of some grades and sizes not in the basic sampling 
plan, which was devised to achieve 360 or more specimens.

Goodness-of-Fit Tests
The next question was how would we know if a two- or 
three-parameter Weibull distribution fit the data? The 
answer to this question was important to determining 
(1) if the tolerance limit should be used based on using the 
distribution to estimate allowable engineering properties and 
(2) if the distribution could be used in simulations of lumber 
performance in structures, such as floor and wall systems.

Goodness-of-fit tests for the two-parameter Weibull 
distribution have received considerable attention in 
statistical literature. Mann and others (1973), Smith and 
Bain (1976), Stephens (1977), Littell and others (1979), 



General Technical Report FPL–GTR–271

4

Chandra and others (1981), Tiku and Singh (1981), and 
Wozniak and Warren (1984) all discussed aspects of this 
problem. The three-parameter Weibull distribution has 
received considerably less attention, probably because 
critical values depend on the unknown shape parameter. 
Woodruff and others (1983) produced tables of critical 
values when the shape parameter is known. A study 
of goodness-of-fit tests for two- and three-parameter 
Weibull distributions was initiated on the basis of apparent 
inconsistencies in published critical values for some 
statistics for the two-parameter Weibull, the lack of two-
parameter Weibull critical values for sample sizes of 80 
to 400 expected in the U.S. In-Grade Program, and the 
almost complete absence of any goodness-of-fit tests for the 
three-parameter Weibull distribution. Results of this study 
are published in Evans and others (1989, 1997). We correct 
a minor error in Evans and others (1997) in the following 
section on critical value approximations for the three-
parameter distribution.

Evans and others (1989) considered four goodness-of-fit 
statistics. The first two were Shapiro–Wilk-type correlation 
statistics with scores suggested by Filliben (1975). If we let 
X(1),. . . , X(n) denote an ordered sample of size n from the 
population of interest, a test statistic considered is R2

w, where

In the In-Grade Program, 360 or more specimens were taken for every size and grade cell tested on major 
species. Based on the improvement in this tolerance limit from n = 70 to n = 200, the sample sizes were 
thought to be sufficient to allow use of this procedure to estimate tolerance limits of the 5th percentile.  
 
In the In-grade Program, shape parameters for various size and grade cells covered an expanse of values. 
For Hem–Fir values for 13 grade–size combinations of specimens with sample sizes ranging from 20 to 
428 at 15% moisture content, the shape parameter estimate for the three-parameter Weibull distribution 
ranged in values from 1.38 to 4.15 (Evans and Green 1988b). The smallest sample sizes were of some 
grades and sizes not in the basic sampling plan, which was devised to achieve 360 or more specimens.  
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where U(i) = F(X(i),a,b,c) and X(i)is the ith order statistic. Evans and others (1989) showed that the statistics 
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H3 Critical Value Approximations for Two-Parameter Distribution 
 
For a sample of size n, with the Kolmogorov–Smirnov D statistics at the 0.10, 0.05, and 0.01 levels of 
significance, critical value approximations are given by 
 

D0.10 = 0.82645983 – (0.199103/n1/2) 
 

D0.05 = 0.89820336 – (0.221577/n1/2) 
 

where U(i) = F(X(i),a,b,c) and X(i) is the ith order statistic. 
Evans and others (1989) showed that the statistics D and 
A2 are the same if calculated on the original scale or the log 
scale. In the two-parameter case, they showed that Rwe, D, 
and A2 do not depend on the shape and scale parameters. For 
the three-parameter case, they showed that Rw, D, and A2 
depend only on the shape parameter. Computer simulation 
was used to develop critical values for the test statistics. For 
the two-parameter Weibull distribution, Evans and others 
(1989) provided critical values for sample sizes of 10, 15, 
20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 
160, 180, 200, 240, 280, 320, 360, and 400. For the three-
parameter Weibull distribution where the shape parameter 
affects the critical values, shape parameters of 2.0, 2.8, 
3.6, 4.4, and 5.2 (typical range for Weibull fits of structural 
lumber) were used and tables provided for n = 20, 40, 60, 
80, 100, 120, 140, 160, 180, and 200. These critical values 
were then modeled to develop curves that can be used for 
any sample size, n, in this range.

Critical Value Approximations for  
Two-Parameter Distribution

For a sample of size n, with the Kolmogorov–Smirnov D 
statistics at the 0.10, 0.05, and 0.01 levels of significance, 
critical value approximations are given by

D0.10 = 0.82645983 – (0.199103/n1/2)

D0.05 = 0.89820336 – (0.221577/n1/2)

D0.01 = 1.04550210 – (0.282595/n1/2)

For the Anderson–Darling A2 statistic, Stephens’s (1977) 
modification of the asymptotic critical values is very good. 
This requires multiplying the value found by the test statistic 
by (1 + 0.2/n1/2) and comparing the result to the asymptotic 
critical values of 0.637, 0.757, and 1.038 for significance 
levels of 0.10, 0.05, and 0.01, respectively.

For the correlation statistic R2
we, approximate critical values 

come from

RWE
0.10

 = 0.99550280 – (3.46422/n) + (61.17125245/n2)
	 – (706.629/n3) + (3047.57446/n4)

RWE
0.05

 = 0.99373844 – (4.69737/n) + (91.36608058/n2)
	 – (1093.48/n3) + (4804.52152/n4)

RWE
0.01

 = 0.98826584 – (8.82798/n) + (205.65876975/n2)
	 – (2548.8/n3) + (11329.68065/n4)
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Critical Value Approximations for  
Three-Parameter Distribution

Because the critical values of each test statistic for the 
three-parameter Weibull distribution depend on the shape 
parameter, two versions of critical values were produced for 
each statistic. One version ignores the effect of the shape 
parameter and expresses just the general trend. A second 
model takes into account the slightly quadratic effect of the 
critical values for each sample size when plotted against the 
shape parameter.

For the Kolmogorov–Smirnov D statistics at the 0.10, 
0.05, and 0.01 levels of significance, the first set of critical 
value models that do not incorporate an effect for the shape 
parameter are

D0.10 = 0.77946799 – (0.199103/ n1/2)

D0.05= 0.84427004 – (0.221577/ n1/2)

D0.01 = 0.97673771 – (0.282595/ n1/2)

and the second set that does incorporate an adjustment for a 
shape effect a are

D0.10 = 0.83249052 – (0.199103/ n1/2) 
	 – (0.02551 a) + (0.00272591 a2)

D0.05 = 0.90395920 – (0.221577/ n1/2) 
	 – (0.028543 a) + (0.0030243 a2)

D0.01 = 1.06649581 – (0.282595/n1/2) 
	 – (0.0443486 a) + (0.004908494 a2)

Notation in Evans and others (1989) caused some problems 
for some readers in the past and has been updated here. 
To include the effect of the shape parameter, we start with 
the first step critical values and adjust them by adding a 
quadratic adjustment that changes the intercept and adds a 
linear and quadratic term of the shape parameter. In practice, 
substitute an estimated shape, 

Notation in Evans and others (1989) caused some problems for some readers in the past and has been 
updated here. To include the effect of the shape parameter, we start with the first step critical values and 
adjust them by adding a quadratic adjustment that changes the intercept and adds a linear and quadratic 
term of the shape parameter. In practice, substitute an estimated shape, â  for a in the equation.  
 
For the Anderson–Darling A2 statistic, multiply the value found by the test statistic by (1 + 0.2/n1/2), but 
now compare the result to the following values when not taking an adjustment for shape, 
 
 AD0.10 = 0.55138780 
 
 AD0.05 = 0.6513147 
 
 AD0.01 = 0.88711011 
 
and the following when taking into account the shape effect, 
 

AD0.10 = 0.66187219 – (0.0535362 a)  
              + (0.005775685 a2) 

 
AD0.05 = 0. 77169857 – (0.0575924 a)  
              + (0.006105963 a2) 

 
AD0.01 = 1.07062855 – (0.0880853 a)  
              + (0.009381216 a2). 

 
For the correlation statistic 2

wR , approximate critical values are derived from 
 

RW0.10 = 0.99885011 – (1.45389/n)  
               + (7.25250378/n2)  

 
RW0.05 = 0.99877755 – (1.77495/n)  
               + (8.67291150/n2)  

 
RW0.01 = 0.99910494 – (2.66292/n)  
               + (12.86169089/n2)  

 
and 
 

RW0.10 = 0.98340421 – (1.45389/n) + (7.25250378/n2)  
               + (0.008294643 a) – (0.00101228 a2) 

 
RW0.05 = 0.97726385 – (1.77495/n) + (8.67291150/n2)  
               + (0.01150321 a) – (0.00139732 a2) 

 
RW0.01 = 0.95877564 – (2.66292/n) + (12.86169089/n2)  
               + (0.02112679 a) – (0.00250893 a2). 

 for a in the equation. 

For the Anderson–Darling A2 statistic, multiply the value 
found by the test statistic by (1 + 0.2/n1/2), but now compare 
the result to the following values when not taking an 
adjustment for shape,

AD0.10 = 0.55138780

AD0.05 = 0.6513147

AD0.01 = 0.88711011

and the following when taking into account the shape effect,

AD0.10 = 0.66187219 – (0.0535362 a) 
	 + (0.005775685 a2)

AD0.05 = 0. 77169857 – (0.0575924 a) 
	 + (0.006105963 a2)

AD0.01 = 1.07062855 – (0.0880853 a) 
	 + (0.009381216 a2).

For the correlation statistic R2
w, approximate critical values 

are derived from

RW0.10 = 0.99885011 – (1.45389/n)
	 + (7.25250378/n2) 

RW0.05 = 0.99877755 – (1.77495/n)
	 + (8.67291150/n2) 

RW0.01 = 0.99910494 – (2.66292/n)
	 + (12.86169089/n2) 

and

RW0.10 = 0.98340421 – (1.45389/n) + (7.25250378/n2)
	 + (0.008294643 a) – (0.00101228 a2)

RW0.05 = 0.97726385 – (1.77495/n) + (8.67291150/n2)
	 + (0.01150321 a) – (0.00139732 a2)

RW0.01 = 0.95877564 – (2.66292/n) + (12.86169089/n2)
	 + (0.02112679 a) – (0.00250893 a2).

For the correlation statistic R2
we, approximate critical values 

are derived from

RWE0.10 = 0.99411418 – (1.81407/n) + (12.38547217/n2)

RWE0.05 = 0.99229032 – (2.24194/n) + (16.33414042/n2)

RWE0.01 = 0.98757887 – (3.37283/n) + (26.99680370/n2)

and

RWE0.10 = 0.98706289 – (1.81407/n) + (12.38547217/n2)
	 + (0.003971786 α) – (0.000508929 α2)

RWE0.05 = 0.98677107 – (2.24194/n) + (16.33414042/n2)
	 + (0.00348 α – (0.000492187 α2)

RWE0.01 = 0.989386299 – (3.37283/n) + (26.99680370/n2)
	 + (0.0006810714 α) – (0.000299107 α2).

Note that the models for the critical values of the three-
parameter Kolmogorov–Smirnov and Anderson–Darling 
tests are incorrect in Evans and others (1997).

Conclusions from Goodness-of-Fit Tests

After completing power studies on both the two- and three-
parameter Weibull goodness-of-fit tests, Evans and others 
(1989, 1997) concluded the following:

•	For the two-parameter Weibull, the Anderson–Darling A2 
statistic appeared best.

•	For the three-parameter Weibull, R2
we and R2

w appear best.

•	The approximating equations for critical values appear 
good; the equations using the shape parameters are only 
slightly better.

•	The power of the tests is very dependent on the true 
distributional form of the data.

•	Goodness-of-fit tests are often used to help decide 
distribution selection.
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In-Grade Program Use
With the methodology available to fit the Weibull 
distribution to data sets, to evaluate the fit with goodness-
of-fit tests, and to develop tolerance limits and confidence 
intervals for percentiles from a Weibull distribution, the 
Weibull distribution was ready to play a significant role in 
the U.S. In-Grade Program. Seventeen commercial species 
of wood commonly used in structural applications were 
tested in the In-Grade Program. For each species, data were 
collected for several sizes and grades, typically at least 
three sizes for each of two grades. Mechanical properties 
included MOE; MOR; the product of MOE and the moment 
of inertia (EI), often denoted as MOEEI; the product of 
MOR and section modulus (RZ), denoted as MORRZ; and 
for major species, ultimate tensile stress (UTS) and ultimate 
compressive stress (UCS). Sample sizes were at least 360 
per size–grade cell for major species and 60 per size–grade 
cell for species that would later be combined into species 
groups. The data were adjusted to three different standard 
moisture content conditions. Two- and three-parameter 
Weibull fits to each data cell for each property and moisture 
content value were provided along with goodness-of-fit tests 
and estimates of 50th and 5th percentiles with 95% and 75% 
confidence limits and lower tolerance limits. The results of 
this effort are contained in nine volumes of tables (Green 
and Evans 1988a–d, 1989; Evans and Green 1988a–d). 
The information in these volumes has been extremely 
useful to researchers and others. The distributional fits 
allow simulations of wood-based structures under different 
moisture conditions.

The statistical methodology has also been the basis of 
computer programs now available on the Internet. A draft 
program that will fit two- and three-parameter Weibull 
distributions to data, evaluate goodness-of-fit for the 
distributions, and produce point estimates, confidence 
limits, and tolerance limits for percentiles of the population 
is available from the Forest Products Laboratory at http://
www1.fpl.fs.fed.us. An improved version of this program 
is under development, and a user manual for the program is 
expected shortly.

3. Use of Bivariate Distributions to 
Model Lumber Properties
Motivation for the Research
The problem began with the question of estimating the 
correlation between two measures of wood strength, such as 
bending and tension strength, that each must be measured 
with destructive testing; or, how do we break the same 
board twice? This problem was solved using a bivariate 
normal distribution by Green and Evans (1983), Evans 
and others (1984), and de Amorim and Johnson (1986). 

This encouraged researchers to examine more complicated 
problems, such as using other bivariate distributions to 
model lumber properties. 

Use of Bivariate Weibull Distribution to  
Model Lumber Properties
The U.S. In-Grade Program provided useful two- and three-
parameter Weibull fits to structural lumber data. However, 
to realistically determine reliability-based safety factors 
for wood structures, it is necessary to accurately model the 
joint stochastic nature of two or more strength properties 
of single members. Johnson and others (1999) evaluated 
some bivariate distributions for modeling the strength 
properties of lumber. Chief among these were bivariate 
Weibull distributions. Several types of these distributions 
were investigated for possible use in modeling lumber 
properties. The most promising (see Gumbel (1958) and Lu 
and Bhattacharyya (1990)) has marginal distributions that 
are two-parameter Weibull distributions, and its survival 
function is given by

(UCS). Sample sizes were at least 360 per size–grade cell for major species and 60 per size–grade cell for 
species that would later be combined into species groups. The data were adjusted to three different 
standard moisture content conditions. Two- and three-parameter Weibull fits to each data cell for each 
property and moisture content value were provided along with goodness-of-fit tests and estimates of 50th 
and 5th percentiles with 95% and 75% confidence limits and lower tolerance limits. The results of this 
effort are contained in nine volumes of tables (Green and Evans 1988a–d, 1989; Evans and Green 1988a–
d). The information in these volumes has been extremely useful to researchers and others. The 
distributional fits allow simulations of wood-based structures under different moisture conditions.  
 
The statistical methodology has also been the basis of computer programs now available on the Internet. A 
draft program that will fit two- and three-parameter Weibull distributions to data, evaluate goodness-of-fit 
for the distributions, and produce point estimates, confidence limits, and tolerance limits for percentiles of 
the population is available from the Forest Products Laboratory at http://www1.fpl.fs.fed.us. An improved 
version of this program is under development, and a user manual for the program is expected shortly. 
 
H1 3. Use of Bivariate Distributions to Model Lumber Properties 
 
H2 Motivation for the Research 
 
The problem began with the question of estimating the correlation between two measures of wood strength, 
such as bending and tension strength, that each must be measured with destructive testing; or, how do we 
break the same board twice? This problem was solved using a bivariate normal distribution by Green and 
Evans (1983), Evans and others (1984), and de Amorim and Johnson (1986). This encouraged researchers 
to examine more complicated problems, such as using other bivariate distributions to model lumber 
properties.  
 
H2 Use of Bivariate Weibull Distribution to Model Lumber Properties 
 
The U.S. In-Grade Program provided useful two- and three-parameter Weibull fits to structural lumber 
data. However, to realistically determine reliability-based safety factors for wood structures, it is necessary 
to accurately model the joint stochastic nature of two or more strength properties of single members. 
Johnson and others (1999) evaluated some bivariate distributions for modeling the strength properties of 
lumber. Chief among these were bivariate Weibull distributions. Several types of these distributions were 
investigated for possible use in modeling lumber properties. The most promising (see Gumbel (1958) and 
Lu and Bhattacharyya (1990)) has marginal distributions that are two-parameter Weibull distributions, and 
its survival function is given by  
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The probability density function (pdf) for this bivariate Weibull is  
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Thus, the log of the likelihood is
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Johnson and others (1999) developed a computer program to provide maximum likelihood estimates of 
parameters for the bivariate Weibull distribution. Looking at sample sizes of 20 and 100 for combinations 
of parameters believed to be representative of the range of values one might encounter for the strength 
properties of lumber, these researchers showed that all the parameters could generally be estimated with 
reasonable accuracy when given a sample size of 100. However, a sample size of 20 resulted in far less 
satisfactory estimates. Using a cell of In-Grade data consisting of 412 specimens of visually graded No. 2 
Southern Pine 2 by 10 lumber, Johnson and others (1999) showed that a bivariate Weibull distribution fit 
the lower tail of the joint MOR and MOE data better than did a bivariate normal distribution. For reliability 
calculations, this suggests that a bivariate Weibull distribution may give more realistic results in wood 
engineering simulations than a bivariate normal distribution. In a study to illustrate this, Hamon and others 
(1985) simulated roof truss performance using two regression equations to predict MOR and UTS strength 
properties from MOE values generated from a three-parameter Weibull distribution and regression 
residuals generated from a bivariate normal distribution. The simulation showed that roof trusses with a 
high ratio of snow to dead load, such as large agricultural trusses, may be quite sensitive to the correlation 
between lumber strength properties (Fig. 1). Use of a bivariate Weibull distribution to estimate the 
bivariate nature of MOR and UTS should provide a more realistic distributional assumption that could 
better assess this potential risk. 
 
Johnson and others (1999) recognized that measuring strength properties often requires a destructive test. It 
is therefore often impossible to measure two different strength properties on the same specimen. Following 
an initial paper (Galligan and others 1980), Evans and others (1984), Green and others (1984), and Green 
and Evans (1983) wrote a series of papers in which they developed methods of estimating the parameters 
of a bivariate normal distribution using a proof-loading scheme (see also de Amorim and Johnson 1986). 
The scheme involves loading specimens in strength mode 1 up to a specified load L. If a specimen fails, its 
mode-1 strength is recorded. Otherwise, the specimen is loaded in strength mode 2 until failure. Estimation 
of all five parameters in a bivariate normal distribution worked best (Green and Evans 1983) when using a 
symmetric version of the procedure in which the specimens were randomly split in half. Half the specimens 
were first loaded in strength mode 1, and the survivors were loaded to failure in strength mode 2. The other 
half were loaded first in strength mode 2, and the survivors were loaded to failure in strength mode 1.  
 

Johnson and others (1999) developed a computer program 
to provide maximum likelihood estimates of parameters for 
the bivariate Weibull distribution. Looking at sample sizes 
of 20 and 100 for combinations of parameters believed to be 
representative of the range of values one might encounter 
for the strength properties of lumber, these researchers 
showed that all the parameters could generally be estimated 
with reasonable accuracy when given a sample size of 100. 
However, a sample size of 20 resulted in far less satisfactory 
estimates. Using a cell of In-Grade data consisting of 412 
specimens of visually graded No. 2 Southern Pine 2 by 10 
lumber, Johnson and others (1999) showed that a bivariate 
Weibull distribution fit the lower tail of the joint MOR and 
MOE data better than did a bivariate normal distribution. 
For reliability calculations, this suggests that a bivariate 
Weibull distribution may give more realistic results in wood 
engineering simulations than a bivariate normal distribution. 

In a study to illustrate this, Hamon and others (1985) 
simulated roof truss performance using two regression 
equations to predict MOR and UTS strength properties from 
MOE values generated from a three-parameter Weibull 
distribution and regression residuals generated from a 
bivariate normal distribution. The simulation showed that 
roof trusses with a high ratio of snow to dead load, such 
as large agricultural trusses, may be quite sensitive to the 
correlation between lumber strength properties (Fig. 1). Use 
of a bivariate Weibull distribution to estimate the bivariate 
nature of MOR and UTS should provide a more realistic 
distributional assumption that could better assess this 
potential risk.

Johnson and others (1999) recognized that measuring 
strength properties often requires a destructive test. It is 
therefore often impossible to measure two different strength 
properties on the same specimen. Following an initial paper 
(Galligan and others 1980), Evans and others (1984), Green 
and others (1984), and Green and Evans (1983) wrote 
a series of papers in which they developed methods of 
estimating the parameters of a bivariate normal distribution 
using a proof-loading scheme (see also de Amorim and 
Johnson 1986). The scheme involves loading specimens in 
strength mode 1 up to a specified load L. If a specimen fails, 
its mode-1 strength is recorded. Otherwise, the specimen is 
loaded in strength mode 2 until failure. Estimation of all five 
parameters in a bivariate normal distribution worked best 
(Green and Evans 1983) when using a symmetric version 
of the procedure in which the specimens were randomly 
split in half. Half the specimens were first loaded in strength 
mode 1, and the survivors were loaded to failure in strength 
mode 2. The other half were loaded first in strength mode 2, 
and the survivors were loaded to failure in strength mode 1. 

Johnson and others (1999) showed that this form of the 
bivariate Weibull distribution is amenable to estimation 
under a proof-load scheme. They showed that if  
R = {i: Xi < L} denotes the index set of specimens that failed 
the proof-load at some load L on strength property X and if 

Figure 1. Effect of residual correlation between bending and 
tensile strength on the increase in truss failures.
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the survivors were loaded to failure on strength property Y, 
then the likelihood is

Johnson and others (1999) showed that this form of the bivariate Weibull distribution is amenable to 
estimation under a proof-load scheme. They showed that if R = {i: Xi < L} denotes the index set of 
specimens that failed the proof-load at some load L on strength property X and if the survivors were loaded 
to failure on strength property Y, then the likelihood is 
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Thus, the likelihood for the proof-load case can be expressed simply. Estimation of parameters should be 
possible with sufficient sample sizes. A symmetric approach is also easy to express through its likelihood 
and again offers the opportunity to simultaneously estimate all parameters. Further evaluation is in 
progress. 
 
The bivariate Weibull distribution offers opportunities in wood engineering to simulate the performance of 
wood members in structures more effectively and hence to better understand the reliability of those 
structures. For example, at the beginning stages of using more sophisticated distributions to model lumber 
strength properties, one might expect the bivariate Weibull distribution to play an increasingly important 
role. Again, a draft computer program is available on the FPL web site for researchers who wish to 
estimate the parameters of a bivariate Weibull distribution from complete data sets. 
 
H2 Use of a Bivariate Gaussian–Weibull Distribution to Model Lumber Properties 
 
Development of new ways to analyze and understand wood engineering data to model lumber properties 
has continued long after the end of the formal In-Grade Program. Work on bivariate distributions has 
covered more than just Weibull-related distributions as described above, such as the paper by Pearson 
(1980), “Potential of the SB and SBB distributions for describing mechanical properties of lumber.” 
Although the bivariate Weibull distribution had been used successfully to model two related lumber 
strength properties, other bivariate distributions can be considered, especially those that may have marginal 
distributions that may capture separate wood property behaviors. For example, knowing a Weibull 
distribution with a shape parameter of 3.6 is essentially a normal distribution is not intuitive to many 
people in wood engineering. Recent research has focused on a bivariate distribution that matches a normal 
distribution for one property to a Weibull distribution for a second property.  
 
Two important properties of wood are stiffness (MOE) and bending strength (MOR). Historically, wood 
engineers have used a normal (Gaussian) distribution to model MOE and a lognormal or Weibull 
distribution to model MOR. So using a bivariate distribution to model MOE and MOR suggests that we 
might want to consider a bivariate Gaussian–Weibull distribution as a possible bivariate distribution to 
model wood properties. Whereas the bivariate Weibull distribution has been investigated by many 
researchers, including Johnson and others (1999), the Gaussian–Weibull distribution is less well explored. 
Verrill and others (2012a,b) derives a Gaussian–Weibull distribution following methods in Johnson and 
Kotz (1972). This is not the only Gaussian–Weibull distribution possible, but it appears to be a useful step 
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distribution from complete data sets.
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Distribution to Model Lumber Properties
Development of new ways to analyze and understand wood 
engineering data to model lumber properties has continued 
long after the end of the formal In-Grade Program. Work 
on bivariate distributions has covered more than just 
Weibull-related distributions as described above, such 
as the paper by Pearson (1980), “Potential of the SB and 
SBB distributions for describing mechanical properties of 
lumber.” Although the bivariate Weibull distribution had 
been used successfully to model two related lumber strength 
properties, other bivariate distributions can be considered, 
especially those that may have marginal distributions 
that may capture separate wood property behaviors. For 
example, knowing a Weibull distribution with a shape 
parameter of 3.6 is essentially a normal distribution is 
not intuitive to many people in wood engineering. Recent 
research has focused on a bivariate distribution that 
matches a normal distribution for one property to a Weibull 
distribution for a second property.

Two important properties of wood are stiffness (MOE) 
and bending strength (MOR). Historically, wood engineers 
have used a normal (Gaussian) distribution to model 
MOE and a lognormal or Weibull distribution to model 
MOR. So using a bivariate distribution to model MOE 
and MOR suggests that we might want to consider a 

bivariate Gaussian–Weibull distribution as a possible 
bivariate distribution to model wood properties. Whereas 
the bivariate Weibull distribution has been investigated by 
many researchers, including Johnson and others (1999), 
the Gaussian–Weibull distribution is less well explored. 
Verrill and others (2012a,b) derives a Gaussian–Weibull 
distribution following methods in Johnson and Kotz (1972). 
This is not the only Gaussian–Weibull distribution possible, 
but it appears to be a useful step in the construction and 
evaluation of bivariate distributions because wood engineers 
often assume that MOE is normally distributed and MOR 
has a Weibull distribution. 

Summary
The bivariate Weibull distribution presented earlier 
offered opportunities in wood engineering to simulate 
the performance of wood members in structures more 
effectively and hence to better understand the reliability of 
those structures. The development of a bivariate Gaussian–
Weibull distribution by Verrill and others (2012a,b) is 
a new step in using more sophisticated distributions to 
model lumber strength properties. The bivariate Gaussian–
Weibull distribution will be judged on its ability to play 
an increasingly important role and its incorporation into 
consensus standards. Again, a draft computer program is 
available on the FPL web site for researchers who wish to 
estimate the parameters of a bivariate Gaussian–Weibull 
distribution from complete data sets.

4. Reliability-Based Design in  
Wood Engineering
Motivation for the Research
The U.S. In-Grade Program was begun over concerns for 
the reliability of design values that were being used for 
dimension lumber. During the time that the U.S. In-Grade 
Program was occurring, a probability-based procedure 
called reliability-based design was being introduced to 
the wood industry as an improvement to the load and 
resistance factor approach currently being used. As a 
possible reliability-based procedure was being developed, 
the Weibull distribution would play an important role. 
Unfortunately, the way the proposed reliability-based design 
procedure was written creates potential problems as this 
statistical review discusses.

Use of the Weibull Distribution in Reliability-
Based Design in Wood Engineering
In 1984, the American Society of Civil Engineers (ASCE) 
Committee on Wood formed a Task Committee on Load 
and Resistance Factor Design (LRFD) for Engineered Wood 
Construction. The intent was to develop a reliability-based 
approach to safety and to put wood practices in line with 
those being used for concrete and steel. This new LRFD 
approach is described in AF&PA/ASCE 16-95 (AF&PA/
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ASCE 1996). Calculation methods for the resistance part of 
the LRFD approach are described in ASTM D5457 (ASTM 
2009). This ASTM standard applies only to individual 
wood elements, not to assemblies. The two-parameter 
Weibull distribution is the mandated basis of ASTM D5457 
calculations. The standard does not use full reliability 
methods but is loosely based on the approach presented by 
Thoft-Christensen and Baker (1982). This design procedure 
starts with fitting a two-parameter Weibull distribution to 
either a complete data set or a set of data representing the 
lower tail of the distribution. The fit can be made using 
either maximum likelihood methods or a regression-based 
estimation procedure. A distribution percentile estimate 
Rp is calculated from the fitted two-parameter Weibull 
distribution. For many properties like strength properties of 
wood, this will be a 5th percentile estimate. A coefficient of 
variation (CV) is calculated from the fitted shape parameter 
α using the formula

in the construction and evaluation of bivariate distributions because wood engineers often assume that 
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parameter Weibull distribution is the mandated basis of ASTM D5457 calculations. The standard does not 
use full reliability methods but is loosely based on the approach presented by Thoft-Christensen and Baker 
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data set or a set of data representing the lower tail of the distribution. The fit can be made using either 
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estimate Rp is calculated from the fitted two-parameter Weibull distribution. For many properties like 
strength properties of wood, this will be a 5th percentile estimate. A coefficient of variation (CV) is 
calculated from the fitted shape parameter α using the formula 
 

0.92CV α−≅  
 From this value and the sample size, a data confidence 

factor Ω is calculated from a table in the standard. Generally 
this factor (≤1) goes up as sample size increases and down 
as the CV increases. Finally, a reliability normalization 
factor KR is also calculated from a table in the standard 
based on the CV and the mechanical property being 
considered. In general, this factor reaches its largest value 
at a CV of 12% and decreases as CV rises above 12%. The 
final LRFD resistance factor is a product of the three values:

From this value and the sample size, a data confidence factor Ω is calculated from a table in the standard. 
Generally this factor (≤1) goes up as sample size increases and down as the CV increases. Finally, a 
reliability normalization factor KR is also calculated from a table in the standard based on the CV and the 
mechanical property being considered. In general, this factor reaches its largest value at a CV of 12% and 
decreases as CV rises above 12%. The final LRFD resistance factor is a product of the three values: 
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The resulting value is used as the upper limit of the 50-year maximum load to which the element can be 
subjected. Fifty-year maximum loads are based on fitting various distributions to combinations of dead 
loads and wind, rain, snow, earthquake, and occupancy live loads. These distributions are codified in 
ASCE 7-88 (ASCE 1990). 
 
Because of the sensitivity of reliability calculations to distributional form and method of fit, the wood 
engineering community has been interested in evaluating the effect of using a three- versus a two-
parameter Weibull distribution in estimation method and use of censored data sets versus full data sets. 
Simulations (such as Durrans and others (1998)) addressed some of these issues. Further, the standard 
states that “Estimates of the distribution and its parameters give the most accurate reliability estimates 
when they represent a tail portion of the distribution rather than the full distribution” (ASTM D5457 
(ASTM 2009), appendix X1.1.2). Whereas most strength properties for lumber are based on lower tail 
properties, the use of the standard is not limited to lower tail properties.  
 
Using a Weibull distribution to represent various properties of wood is not a new concept. Verrill, and 
others (2012a, 2013, 2014) suggested theoretically and empirically that MOR values of lumber grades are 
not distributed as a two-parameter Weibull distribution. This may be due in some cases to a grading 
process where a grade may have a high grade removed in some part from it, or a lower bound on the size of 
defects allowed in the grade, or multiple sources producing the grade in different ways. However, in 
practice, the Weibull distribution is often used as a possibly conservative estimate of lower-tail percentile 
estimates. Data sets of randomly selected specimens drawn from a population to examine other properties, 
such as MOE, have commonly exhibited goodness-of-fit of the sample distribution for a normally shaped 
distribution. What is being proposed in the reliability-based design section in ASTM D5457 is slightly 
different than the usual procedure. Lumber properties can change over time due to changes in the 
population. For example, changes in the population can occur if the proportion of juvenile wood changes. 
With increased fertilization and periodic thinning of trees to allow more space between trees to promote 
faster growth, the result will often be an increase in the proportion of juvenile wood. Trees grown in this 
way are often referred to as plantation wood. Such changes in the population have led to mandatory 
monitoring of lumber properties. Under the current procedure, a random sample of the population is taken 
in the size and grade most likely to show a change earliest. Usually this is a 2 by 4 No. 2 size and grade. 
This grade cell is one with defects. With the size being small, any increase in juvenile wood would not be 
masked as much as in larger sized specimens with a larger cross section that may contain more mature 
wood. 
 
The current monitoring procedure for allowable properties for visually graded dimension lumber in ASTM 
D1990–07 (ASTM 2009) starts with a random sample of approximately 360 specimens that is 
representative of the population. This is done by dividing the growth region into sub-regions, which in past 
studies have been shown to be somewhat homogenous in wood properties. Because economic conditions 

The resulting value is used as the upper limit of the 50-year 
maximum load to which the element can be subjected. 
Fifty-year maximum loads are based on fitting various 
distributions to combinations of dead loads and wind, 
rain, snow, earthquake, and occupancy live loads. These 
distributions are codified in ASCE 7-88 (ASCE 1990).
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using a three- versus a two-parameter Weibull distribution 
in estimation method and use of censored data sets versus 
full data sets. Simulations (such as Durrans and others 
(1998)) addressed some of these issues. Further, the 
standard states that “Estimates of the distribution and its 
parameters give the most accurate reliability estimates 
when they represent a tail portion of the distribution rather 
than the full distribution” (ASTM D5457 (ASTM 2009), 
appendix X1.1.2). Whereas most strength properties for 
lumber are based on lower tail properties, the use of the 
standard is not limited to lower tail properties.

Using a Weibull distribution to represent various properties 
of wood is not a new concept. Verrill, and others (2012a, 
2013, 2014) suggested theoretically and empirically that 

MOR values of lumber grades are not distributed as a 
two-parameter Weibull distribution. This may be due in 
some cases to a grading process where a grade may have a 
high grade removed in some part from it, or a lower bound 
on the size of defects allowed in the grade, or multiple 
sources producing the grade in different ways. However, in 
practice, the Weibull distribution is often used as a possibly 
conservative estimate of lower-tail percentile estimates. 
Data sets of randomly selected specimens drawn from a 
population to examine other properties, such as MOE, 
have commonly exhibited goodness-of-fit of the sample 
distribution for a normally shaped distribution. What is 
being proposed in the reliability-based design section in 
ASTM D5457 is slightly different than the usual procedure. 
Lumber properties can change over time due to changes 
in the population. For example, changes in the population 
can occur if the proportion of juvenile wood changes. With 
increased fertilization and periodic thinning of trees to 
allow more space between trees to promote faster growth, 
the result will often be an increase in the proportion of 
juvenile wood. Trees grown in this way are often referred 
to as plantation wood. Such changes in the population have 
led to mandatory monitoring of lumber properties. Under 
the current procedure, a random sample of the population 
is taken in the size and grade most likely to show a change 
earliest. Usually this is a 2 by 4 No. 2 size and grade. This 
grade cell is one with defects. With the size being small, any 
increase in juvenile wood would not be masked as much 
as in larger sized specimens with a larger cross section that 
may contain more mature wood.

The current monitoring procedure for allowable properties 
for visually graded dimension lumber in ASTM D1990–07 
(ASTM 2009) starts with a random sample of approximately 
360 specimens that is representative of the population. This 
is done by dividing the growth region into sub-regions, 
which in past studies have been shown to be somewhat 
homogenous in wood properties. Because economic 
conditions have eliminated all commercial production of 
2 by 4 No. 2 data in some sub-regions, the total number 
available has been greatly reduced for some species. 
Each remaining sub-region is sampled in proportion to 
production. Mills in a sub-region are chosen at random, 
sampled with a limit of 20 specimens coming from any mill. 
The properties of the resulting sample can then be calculated 
and compared to the claimed properties to see if there is 
evidence of a change in properties, which would result 
in further sampling to better evaluate a potential change. 
ASTM D5457 is aimed at providing reliability estimates 
rather than allowable property values, like ASTM D1990. 
However, it is not unreasonable to use the same sample to 
evaluate the properties under each of these standards.

Because allowable design values for strength properties 
such as MOR in ASTM D1990 are lower tail properties, 
it has been suggested that methods can be used to reduce 
the number of specimens to be tested, thus saving money 
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and resources. Recalling that the ASTM D5457 standard 
suggests using a tail portion of the distribution rather than 
the full distribution leads to some ideas on how to single 
out the lower tail specimens. Because very few situations 
arise where someone knows in advance which specimens 
constitute the lower tail, researchers must employ some 
procedure to break the lower tail pieces without breaking 
all the specimens. The most common way of doing this 
has become known as the Warren–Glick method (Johnson 
1980). In this procedure, if you wanted the bottom 10% 
of a sample of 600 specimens, you would break the first 
60 pieces. You would load the next piece to the highest load 
level of the original 60 pieces tested. If it does not fail, the 
piece being tested is considered to have passed and loaded 
no more. The test sample and test load remain the same. If 
the specimen fails, it becomes part of a new test sample. The 
piece in the test sample with the highest load is removed 
from the test sample. The highest load remaining becomes 
the new test load. This continues until the test sample 
contains the 60 pieces that failed at the lowest load.

Other methods have been suggested to further lower the 
cost of a Warren–Glick sample. If there is a variable that 
is highly correlated with the test variable of interest, it 
can be used to estimate the lowest 60 pieces. With a high 
correlation, the number of specimens broken beyond the 
initial 60 pieces can be reduced to save money.

At this point under ASTM D5457, the random sample data 
can be used to create numbers that wood engineers call a 
reliability-based design procedure. The reliability-based 
design procedure does not use full reliability procedures but 
uses a procedure from Thoft-Christensen and Baker (1982) 
that is loosely based on it. The ASTM D5457 procedure 
starts with fitting a two-parameter Weibull distribution to 
either a complete data set or a set of data representing the 
lower tail of the distribution. The fit of the two-parameter 
Weibull can come from maximum likelihood estimates or 
regression-based estimates. A predicted percentile Rp is 
calculated. An estimated coefficient of variability (COV) 
is calculated from the estimated shape parameter using 
the equation above. Finally, a reliability normalization 
factor is calculated using ASTM D5457. The three factors 
can then be used to calculate reliability-based percentile 
estimate Rn based on the second equation above. For wood, 
the reliability-based percentile is the design value used for 
strength-based wood properties like MOR.

The random sample data and the procedures discussed 
have produced a design value using a reliability-based 
percentile. It would be nice at this point to conclude that 
the reliability-based design procedure is working well for 
wood engineering. Unfortunately, we have not created a 
unique design value. The standard allows the formation of 
multiple design values. Any design system that can create 
multiple design values is open to someone creating multiple 
values and then picking the one most favorable to them. 

This problem of creating multiple design values begins 
with the problem that there are multiple sample data sets 
that someone could argue should be used. For example, 
the standard states that “estimates of the distribution and 
its parameters give the most accurate reliability estimates 
when they represent a tail portion of the distribution rather 
than the full distribution” (ASTM 2009). So a data set that 
represents the tail portion of the distribution is a potential 
data set that could be used. It is easy to test every specimen 
and get a complete data set, so that a complete data set could 
be used. If a procedure like the Warren–Glick procedure is 
used to get a lower-tail distribution around the 5th percentile 
and any other specimens broken in the Warren–Glick added, 
we would be following a procedure recommended by many 
statistics books that teach reliability. This hybrid data set 
would appear to be another reasonable choice. 

With each data set created, the procedure allows two 
ways to estimate the Weibull distribution parameters. The 
parameters could use maximum likelihood estimates of 
the two parameters. Statistical studies claim that estimates 
from censored data sets should be the same as for the 
whole data set if maximum likelihood estimates are used. 
Regression-based estimates provide no such assurance that 
there will be similar estimates for the different data sets. 
In addition, the regression-based estimates can be very 
different from maximum-likelihood estimates for censored 
data sets, as shown by Genschel and Meeker (2010) who 
compared maximum-likelihood (ML) estimation of Weibull 
parameters and median-rank regression (MMR) methods 
through simulations with censored data sets. They point out 
that the two methods often give very different estimates and 
conclude that “under any reasonable criterion for comparing 
estimators, ML methods are better in almost all situations” 
(Genschel and Meeker 2010). With two or more allowed 
sample sizes (a complete sample, a fixed percentage of 
the lower tail specimens, and the bottom 60 specimens) 
as well as more than one regression method available for 
estimation, it is very possible that each regression-based 
estimate and maximum-likelihood estimate could produce a 
different design value.

In a series of recent articles, Gromala and others (2017a–d) 
look at reliability-based design and ASTM D5457. The 
editorial at the beginning of Wood Design Focus, vol. 27, 
no. 1, states the following: 

The four papers in this issue of Wood Design 
Focus examine the past, present, and potential 
future of reliability-based wood design. The first 
paper explores the relationship between early 
LRFD terms and discusses how today’s differing 
terminology interpretations can lead to confusion. 
The second paper discusses several assumptions 
underlying all reliability analyses, and clarifies how 
these assumptions lead to end-use simplification 
(rather than complication). The third paper provides 



Forest Products Laboratory Contributions to the Use of Weibull Distribution in Wood Engineering

11

step-by-step calculations for users to follow when 
developing input parameters for reliability analysis. 
Finally, the fourth paper traces the history of closed-
form reliability equations from the late 1960s to 
today’s ASCE 7 recommendations.

These are excellent papers to help begin the process of 
reevaluating ASTM D5457. The implication of the papers 
is that ASTM D5457 needs to be reevaluated. However, the 
issue of how you get the estimates of the Weibull shape and 
scale parameters is not discussed. This could be an issue. 
Any procedure that allows so many choices for design 
procedures is too subjective to be of any real use. Until the 
standard reduces its dependency on choices and settles on a 
specified procedure, reliability-based design may not really 
exist in wood engineering.

5. Ratios of Percentiles from  
Two Distributions
Motivation for the Research
When dealing with physical properties that can be 
modified by treatments, conditions of use, conditions of 
manufacturing, or other factors, differences in properties are 
often described in terms of ratios. When dealing with two 
properties that are both normally distributed or log-normally 
distributed, it is easy to talk about ratios of percentiles 
of the properties and confidence limits for these ratios. 
When it was decided that the Weibull distribution would be 
considered for properties, it became important to study ways 
of putting confidence limits on ratios of percentiles from 
Weibull distribution. 

Confidence Intervals on Ratios of Percentiles 
from Two Distributions
The ratio of two property estimates is commonly used 
in wood engineering design codes to establish allowable 
properties. For example, “dry–green” ratios are given in 
ASTM D2555 (ASTM 2009) for a number of timber species 
and may be used to calculate allowable properties. Also, 
an “E/G ratio” of 16 is assumed in ASTM D2915 (ASTM 
2009) for adjusting the flexural modulus MOE based on 
any span-to-depth ratio and several loading modes. As a 
third example, ASTM D245 specifies that “strength ratios 
in tension parallel to grain are 55% of the corresponding 
bending strength ratios” (ASTM 2009).

Ratios often are used when it is not practical or perhaps 
possible to conduct tests for all combinations of factors that 
may affect allowable properties, such as grades, sizes, test 
modes, and environmental conditions. The usual practice 
has been to conduct extensive tests for one combination 
of factors and to develop ratios for adjusting allowable 
properties for a different set of factors. For example, 
by 1935 extensive tests had been conducted on wood 
specimens with “green” moisture contents (Markwardt and 

Wilson 1935). To reduce sampling and other costs, only 
a limited amount of information was available on “dry” 
wood. By careful evaluation of the results where both dry 
and green data were obtained from the same trees, dry–
green ratios were developed, which could be used to adjust 
allowable green properties to 12% moisture content. Current 
values of green properties for clear wood and appropriate 
dry–green ratios for several properties are given in ASTM 
D2555 (ASTM 2009).

Most of these ratios were originally established by analysis 
of mean trends. However, the ratios are being applied 
without regard to position in the distribution. Recent studies 
have begun to focus on the ratio of properties at other 
percentile levels, especially the 5th percentile. These include 
studies of the effect of loading rate on tensile strength 
(Gerhards and others 1984), effect of moisture content on 
flexural strength (Aplin and others 1986, McLain and others 
1984), and effect of redrying on strength of CCA-treated 
lumber (Barnes and Mitchell 1983, 1984). However, fitting 
confidence intervals on ratios of percentiles, particularly 
when the ratio of percentile estimates was based on two 
different three-parameter Weibull distributions, was 
problematic.

Johnson and others (2003) suggest four possible solutions 
to the problem of confidence intervals for ratios. Two 
solutions, which we examine here, consider ratios of 
percentile estimates from three-parameter Weibull 
distributions. One solution investigates a confidence 
interval for the log of the ratio, and one is a nonparametric 
solution that does not assume a Weibull distribution. The 
first solution began as an extension of the problem of 
estimating confidence intervals for percentiles from Weibull 
distributions, as discussed earlier in this report. Recall that 
the Johnson and Haskell (1984) procedure for confidence 
intervals for the 100(1 – α) percentile with probability 1 – γ 
would be as follows:
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If we choose confidence levels for each of two percentile 
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Using a computer simulation, Johnson and others (2003) evaluated this approach for a variety of three-
parameter Weibull distributions with parameter values typical of lumber industry applications. A sample 
size of 100 for each distribution was chosen, and 250 replications of each combination of true parameter 
values were simulated. Both 90% and 95% confidence intervals were evaluated for ratios of nine 
percentiles: 2%, 5%, 10%, 30%, 50%, 70%, 90%, 95%, and 98%. For the 95% confidence intervals, 
coverage for the ratios of 10th through 98th percentiles was generally within 2% of the claimed confidence 
level, with average coverage very near the claimed confidence level. The 5th percentile ratio confidence 
intervals had an average coverage of 92.8%. Even the 2nd percentile ratio confidence interval had an 
average coverage of 91.1%. Results for the 90% confidence intervals were similar. Although the number of 
replications was small, the intervals are good for sample sizes considerably smaller than Johnson and 
Haskell (1984) found necessary. 
 
H1 6. Calculation of Volumetric Effects 
 
H2 Motivation for the Research 
 
It is quite appropriate to be discussing volumetric effects last because in a way it brings into full circle 
FPL’s role in the use of the Weibull distribution in wood engineering. Volume effects were needed in the 
In-Grade Program to estimate properties from samples of combinations of 2×4, 2×6 2×8, 2×10 and 
possibly 2×12 data into one number that designers of wood structures could use from the design books for 
wood species by grade of 2×8, 144 in. in length, and 15% moisture content. The theoretical model for 
calculation of volumetric effects that Bohannan (1966) derived still forms a basis for volumetric effects. 
Work done during the In-Grade Program has modified the overall volumetric effect into width, length, and 
thickness portions that maintain the overall effects. The circular nature of this work is also quite 
interesting. Bohannan (1966) acknowledges in his work two statisticians at FPL “for their assistance in the 
statistical formation and analysis” in the paper. When the In-Grade Program was begun, Bohannan was the 
Assistant Director with the responsibility for directing FPL efforts in solving the problem. He placed a 
Mathematical Statistician as key member of FPL’s research team.  
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H2 Calculation of Volumetric Effects 
 

Using a computer simulation, Johnson and others (2003) 
evaluated this approach for a variety of three-parameter 
Weibull distributions with parameter values typical of 
lumber industry applications. A sample size of 100 for 
each distribution was chosen, and 250 replications of each 
combination of true parameter values were simulated. Both 
90% and 95% confidence intervals were evaluated for 
ratios of nine percentiles: 2%, 5%, 10%, 30%, 50%, 70%, 
90%, 95%, and 98%. For the 95% confidence intervals, 
coverage for the ratios of 10th through 98th percentiles was 
generally within 2% of the claimed confidence level, with 
average coverage very near the claimed confidence level. 
The 5th percentile ratio confidence intervals had an average 
coverage of 92.8%. Even the 2nd percentile ratio confidence 
interval had an average coverage of 91.1%. Results for 
the 90% confidence intervals were similar. Although the 
number of replications was small, the intervals are good for 
sample sizes considerably smaller than Johnson and Haskell 
(1984) found necessary.

6. Calculation of Volumetric Effects
Motivation for the Research
It is quite appropriate to be discussing volumetric effects last 
because in a way it brings into full circle FPL’s role in the 
use of the Weibull distribution in wood engineering. Volume 
effects were needed in the In-Grade Program to estimate 
properties from samples of combinations of 2×4, 2×6 2×8, 
2×10 and possibly 2×12 data into one number that designers 
of wood structures could use from the design books for 
wood species by grade of 2×8, 144 in. in length, and 15% 
moisture content. The theoretical model for calculation of 
volumetric effects that Bohannan (1966) derived still forms 
a basis for volumetric effects. Work done during the In-
Grade Program has modified the overall volumetric effect 
into width, length, and thickness portions that maintain the 
overall effects. The circular nature of this work is also quite 
interesting. Bohannan (1966) acknowledges in his work 
two statisticians at FPL “for their assistance in the statistical 
formation and analysis” in the paper. When the In-Grade 
Program was begun, Bohannan was the Assistant Director 
with the responsibility for directing FPL efforts in solving 
the problem. He placed a Mathematical Statistician as key 
member of FPL’s research team.

Calculation of Volumetric Effects
Testing all combinations of factors that may affect allowable 
properties for wood members is often not possible. The 
Weibull distribution has played a major role in handling size 
differences of wood members. It has long been recognized 
that as a wood bending member is increased in size, its 
bending strength apparently decreases. Newlin and Trayer 
(1924) investigated this in 1924 and related the decrease 
to the depth of the bending member (see Tucker (1941)). 
Bohannan (1966) used the statistical strength theory of 
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Weibull (1939) to develop a theoretical model for strength 
loss related to increasing size of a wood member. The basis 
of the theory was that increasing size raises the probability 
of a region of low strength, and this region of low strength 
is assumed to cause the failure of the member. Using this 
“weakest link theory” of Weibull and the resulting two-
parameter Weibull distribution, Bohannan derived a model 
for predicting strength change resulting from a change in 
depth of the wood member. Specifically, the ratio of the 
strength of a beam having depth d1 to a beam having depth 
d2 is given by (d2/d1)

2/a, where a is the shape parameter of 
the Weibull distribution. For simply supported beams tested 
in bending with a center-point load, Bohannan used test data 
to estimate a = 18. Thus for bending, the size adjustment 
was (d2/d1)

1/9.

Adjustments for dimensional changes of this form are 
now found in several ASTM standards related to wood 
engineering. ASTM D245, which is used to establish 
properties of visually graded solid sawn structural lumber 
starting with property values from clear wood, uses the 
exact model of Bohannan for bending. 

ASTM D1990, which is used to establish properties of 
visually graded dimension lumber from In-Grade tests 
of full-size lumber, has the same theoretical basis behind 
adjustments for width, length, and thickness, but it uses 
different data to develop the Weibull shape parameter 
estimates. In this standard, property test values F1 can be 
adjusted using
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possible. The Weibull distribution has played a major role in handling size differences of wood members. 
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where 
 
F1  is property value at volume 1, lb/in2, 
F2   property value at volume 2, lb/in2, 
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L2   length at F2, in., 
T1   thickness at F1, in., 
T2   thickness at F2, in., 
w   0.29 for MOR and UTS, 
  0.13 for UCS parallel to grain, 
  0 for MOE, 
l  0.14 for MOR and UTS, 
  0 for UCS parallel to grain and MOE, and 
t   0 for MOR, UTS, UCS parallel to grain, and MOE. 
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ASTM D5456 (ASTM 2009), which is used for structural 
composite lumber intended as an engineering material, uses 
the same form of a volume adjustment. The multiplication 
factor for bending is given as
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where 
 
Kd  is factor applied to design stress of the member of unit volume, 
d1, L1 are depth and length of unit volume members, 
d, L  are depth and length of application member, and 
m is parameter determined in accordance with annex A1 of the standard. 
 
In ASTM D5456, the multiplication factor for axial tension is 
 

1/
1

m

L
LK
L

 =  
 

 

 
where 
 
KL is  adjustment factor,  
L1   base length between grips, 
L   end-use length, and 
m   parameter determined in accordance with annex A1 of the standard. 
 
Annex A1 of ASTM D5456 for bending and axial tension offers two ways of estimating m. If single-size 
(or length in the case of axial tension) testing is done, then 
 

m = CV–1.08 
 
where CV is the coefficient of variation of the data. If CV < 0.15, then set m = 8. For multiple-size (or 
length) testing, which requires at least four depths (or lengths), including a base depth (or length), the 
annex shows how to compute an “empirical” value and a “theoretical” value of m. The theoretical value 
requires fitting a two-parameter Weibull distribution to a data set generated through testing using either the 
full data set or the bottom-tail data if 75 or more data points are used and if the points include at least 10% 
of the distribution. Through references to other standards, it is implied that the Weibull fit should be done 
using a regression fit to data transformed to make it linear. The annex then shows how to reconcile the two 
estimates. 
 
Finally, annex A1 of ASTM D5456 shows how to adjust flexure stress based on different types of loading 
conditions (center-point, third-point, and uniform loading). Adjustment factors given in table A1.1 of the 
standard are said to be developed from weak-link theory and to account for variations in stress distribution 
along the length of the member (ASTM 2009). 
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