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Abstract 
The primary purpose of this publication is to provide an 
overview of the information in the statistical literature on 
the different methods developed for fitting a Weibull 
distribution to an uncensored set of data and on any 
comparisons between methods that have been studied in the 
statistics literature. This should help the person using a 
Weibull distribution to represent a data set realize some 
advantages and disadvantages of some basic methods. It 
should also help both in evaluating other studies using 
different methods of Weibull parameter estimation and in 
discussions on American Society for Testing and Materials 
Standard D5457, which appears to allow a choice for the 
method to estimate the parameters of a Weibull distribution 
from a data set. Because in D5457 the method to estimate 
parameters is to some extent optional, the resulting fitted 
distribution used to derive the reference resistance 
properties of wood-based materials and structural 
connections might result in different values developed under 
the standard. The maximum-likelihood method appears to 
be the method that should be used as the default, with other 
methods requiring some type of justification for their use in 
wood utilization research. 
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1 Introduction 
Two-parameter and three-parameter Weibull distributions 
are widely used to represent the strength distribution of 
structural lumber and engineering-designed wood 
subassemblies. Current design practices for wood and 
related material are based on an estimated fifth percentile of 
the strength distribution. This deterministic method of 
design is known as allowable stress design (ASD). Although 
the fifth percentile can be based on a distributional form, 
such as the Weibull distribution, the real interest in the 
Weibull distribution is occuring as wood construction 
practices in the United States and Canada are revised from 
deterministic procedures to reliability-based design (RBD) 
procedures. The two-parameter Weibull distribution is the 
underlying basis of the calculations in load and resistance 
factor design (LRFD), a subset of RBD that is discussed in 
American Society for Testing and Materials (ASTM) 
D5457–04a (ASTM 2009). This design procedure starts 
with fitting a two-parameter Weibull distribution to either a 
complete data set or a set of data representing the lower tail 
of the distribution. The fit can be made using either 
maximum-likelihood methods or a regression-based 
estimation procedure. Initially, the standard also considered 
a method of moments estimate, but this was dropped before 
the standard was approved. Because of the sensitivity of 
reliability calculations to the distributional form and, 
potentially, method of fit, the wood engineering community 
is interested in looking at (1) evaluating the effect of using a 
two-parameter instead of a three-parameter Weibull 
distribution, (2) the effect of estimation method, and (3) the 
effect of using censored data sets compared with using full 
data sets. Simulations such as those performed by Durrans 
and others (1998) encouraged the wood community to 
address some of these issues. Unfortunately, there is a 
general lack of knowledge in the wood community of the 
extensive work available in the statistics literature on these 
issues, which could lead to needless work in areas in which 
the information is already available. The primary purpose of 
this publication is to provide an overview of the basic 
information in the statistical literature on the different 
methods developed for fitting a Weibull distribution to an 
uncensored set of data and on any comparisons between 
methods that have been studied in the statistics literature. 
This report is not meant to be a complete summary of all the 

literature available on the Weibull distribution. It is intended 
to provide basic information on the more well-known 
methods for estimating Weibull parameters from data. We 
start by giving background on the Weibull distribution. 

2 Background 
The “Weibull” distributional form (Eq. (1)) was first derived 
through an extreme-value approach by Fisher and Tippett 
(1928). As noted by Mann (1968), it became known as the 
Fisher–Tippett Type III distribution of smallest values or as 
the third asymptotic distribution of smallest (extreme) 
values. In 1939, a Swedish scientist, Waloddi Weibull 
(1939a), derived the same distribution in an analysis of 
breaking strengths using only certain practical requirements. 
Several examples of its use were given by Weibull (1951). 
Two other papers by Weibull (1939b, 1952) also used the 
distribution. Use of the distribution became common in 
reliability analyses after World War II, and the name 
Weibull became firmly associated with the distribution. 

In its three-parameter form, the Weibull family is 
represented by the density function, 

 ( ) ( ){ } ( ){ }11 / exp /a af x ab x c b x c b−−  = − − −  
 ( ; , 0)x c a b> >  (1) 

where a is the shape parameter, b the scale parameter, and  
c the location parameter. A more common representation of 
the Weibull distribution in the wood community is to use the 
cumulative distribution function, 

 ( ) ( ){ }1 exp / aF x x c b = − − −  
 (2) 

The family of two-parameter Weibull distributions follows 
from Equation (1) when c = 0. 

3 Estimation Procedures 
Numerous methods of estimating Weibull parameters have 
been suggested by many authors. Estimation procedures are 
generally categorized into one of four major categories:  
(1) method of moment estimators, (2) linear estimators, such 
as least-squares-type estimators, (3) estimators based on few 
order statistics, and (4) maximum-likelihood estimators. 
There are also a few hybrid estimator systems that combine 
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estimators from more than one category. Zanakis (1979) 
considered more than 17 combinations of simple Weibull 
estimators in addition to the maximum-likelihood 
estimators. 

3.1 Method of Moments 
The method of moments method of estimation was 
introduced by Karl Pearson (1894, 1895). The procedure 
consists of equating as many population moments to sample 
moments as there are parameters to estimate. Mathematical 
support for this procedure comes from the principle of 
moments as discussed in detail in Kendall and Stuart (1969). 
In essence, this principle says that two distributions that 
have a finite number of lower moments in common will be 
approximations of one another. Thus, the distribution of the 
data is approximated by equating the moments of a 
distributional form to the data moments. 

To see how this could be done with the three-parameter 
Weibull distribution, and hence the two-parameter Weibull 
as a special case, let the population kth moments about the 
origin be given by 

 ( )k
kM x f x dx

+∞
= ∫
−∞

 (3) 

For k equal to 1, this is just the expected value or mean of X, 
denoted E(X). The kth moment about the mean for the 
population (also called the kth central moment (CMk)), can 
be denoted by 

 ( ) ( )1CM k
k x M f x dx

+∞
= −∫
−∞

 (4) 

For a three-parameter Weibull distribution, the first three 
central moments are 

 1CM 0=  (5) 

 ( )2 2
2 2 1CM b= Γ −Γ  (6) 

 ( )3 3
3 3 1 2 1CM 3 2b= Γ − Γ Γ + Γ  (7) 

where 

 ( ) 1  /j j aΓ =Γ +    (8) 

and Гj is the well-known gamma function. The first three 
moments about the origin are 

 1 1M c b= + Γ  (9) 

 2 2
2 2 12M c b cb= + Γ + Γ  (10) 

 3 3 2 2
3 3 2 1  Γ 3 Γ 3 ΓM c b cb c b= + + +  (11)

The corresponding sample moments are 

 ( )
1

k
i

k

n x
m

ni
= ∑

=
 

and 

 ( )1cm
1

k
i

k

n x m
ni

−
= ∑

=
 

where n is the number of observations. Note that m1 is the 
mean of the observations and cm2 is the variance of the 
observations. Johnson and Kotz (1970) and Talreja (1981) 
pointed out that Equations (6) and (7), along with their 
corresponding sample moments, are sufficient to estimate 
the shape and scale parameters of the Weibull distribution. 
This is done by equating the measure of population 
skewness given by 

 
( )

3
3/2

2

CM
CM

 

which is a function only of a (the shape parameter) to the 
corresponding sample skewness 

 
( )

3
3/2

2

cm
cm

 

Because the population skewness is a function of the shape 
parameter, finding the value of a that gives the sample 
skewness requires either a table of a values and the 
corresponding skewness as is given in Johnson and Kotz 
(1970) or a computer program that will search for a value of 
a that gives the sample skewness. Given a, equating CM2 to 
cm2 (the sample variance) gives an estimate of b (the scale 
parameter). Finally noting that  

 
1 1M c b= + Γ

 and equating this to m1 (the mean of the observations) gives 
an estimate of the location parameter for the three-parameter 
Weibull. These are sometimes called the method of 
moments estimates (Johnson and Kotz 1970). Note that it is 
possible for the estimate of the location parameter c to 
exceed the smallest observation. Dubey (1966b) proposed 
an alternative estimator: 

 ( )
( )1/

11 / ac X b n = − Γ 
 (12) 

For the two-parameter Weibull distribution, estimation of 
the shape and scale parameters could be done as before and 
the location parameter taken as zero. Saylor (1977) 
proposed an alternative. When c = 0 is known, Equations (6) 
and (8) are sufficient to estimate the shape and scale  
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parameters. Specifically, 

 
( )

1
1/2

2CM
M  

is a function of only the shape parameter. When equated to 
the sample moments 

 
( )

1
1/2

1

1 mean
COV standard deviationCM

M
= =  (13) 

an estimate of the shape parameter can be obtained. The 
scale parameter can come from equating the mean (m1) to 
the first moment about the origin (M1). 

Note that these choices of moment estimators are not 
unique. Other choices would also generate estimates of the 
parameters for either the two- or three-parameter Weibull 
distribution. However, in general, method of moment 
estimation has used the smallest moments to provide 
estimates. 

When only a two-parameter Weibull distribution is to be 
considered, a transformation to the extreme-value 
distribution is often used to generate moment estimators as 
follows: 

If X ~ Weibull(a,b), i.e., if X has a Weibull distribution 
given by 

 ( ) ( )1 exp / aF x x b = − − 
 

then the variable T = ln(X) will have an extreme-value 
distribution with cumulative distribution function 

 ( ) ( ){ }1 exp exp /F t t l s = − − −   (14) 

The parameters l and s are location and scale parameters that 
can be estimated by the first two moments m1 and cm2 of the 
data on this scale (i.e., a mean and variance of the ti = ln (xi) 
values). The estimation is generally done one of three ways: 

Method 1: 

 ( )1/2
2cm / ns S=  

and 

 ( )1 /nl m Y s= −  

where Sn and Yn are numerical constants depending upon the 
sample size n and are found in Gumbel (1960). 

Method 2: 

 ( ) [ ]2
2 2cm / 1 / ZMs n n= −    

and 

 1l m Zs= −  

where 

( ){ }ln ln 1/ 1i iZ p = −  , 

( )/ 1ip i n= + , 

2
2

2
1 1

ZM  / /
n n

i i
i i

Z Z n n
= =

  
 = −      

∑ ∑ , and 

Z  is the mean of the Zi values. 

Mann (1968) noted that a simplified form of method 2 can 
be derived from the fact that Z  and ZM2 are asymptotically 
equal to Euler’s constant h = 0.5772... and π / 6 , 
respectively. The resulting estimates are 

Method 3: 

 [ ]{ }1/2
2

6 cm / 1
π

s n n
 

= −  
 

 

and 

 ηil m s= −  

These simplified estimates were used in Menon (1963). 
Given estimates of l and s, estimates of the original Weibull 
parameters can be obtained from the relationships 

 1/s a=  
and 

 ( )lnl b=  

This approach is also often called the method of moments 
estimators for the Weibull distribution and will differ 
slightly in general from the earlier procedures. To help 
differentiate moment estimators on the extreme-value scale 
from those on the Weibull scale, some authors (Mann 1968) 
refer to them as modified moment estimators. 

3.2 Least Squares for Two-Parameter 
Weibull Distributions 
The origin of the method of least squares as an estimation 
technique for Weibull parameters is less clear than that for 
the method of moments. This is in part because of the fact 
that several variations of the least squares approach have 
been proposed for parameter estimation. The general theory 
of using least squares to obtain estimates of the parameters 
of a location- and scale-dependent distribution was given by 
Lloyd (1952, 1962). Although this is different from the 
approach in the current ASTM standard, it is important to 
look at the procedure to understand the proposed procedures 
better. This procedure can be called a weighted least squares 
procedure. 
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We will limit our discussion initially to a two-parameter 
Weibull distribution. Recall that if X has a Weibull 
distribution given by 

 ( ) ( )1 exp / aF x x b = − − 
 

then the variable T = ln(X) will have an extreme-value 
distribution with cumulative distribution function 

 ( ) ( ){ }1 exp exp /F t t l s = − − −   (15) 

where l and s are location and scale parameters, 
respectively. Lloyd noted that for any location scale 
distribution, if we transform the observations by 

 ( ) /r rV T l s= −  (16a) 

to get standardized variables, we get observations of a 
standardized variable whose distribution is parameter free 
and thus completely known. Let V(r) denote the rth order 
statistic from a sample of such standarized variables. Then, 
its expectation for mean, variance, and covariances can 
denoted by 

 ( )( ) ( )r rE V A=  

 ( ) ( )Var r rrV W  =   

and 

 ( ) ( ) ( )Cov ,i j ijV V W  =   

where i is row and j is column. Then using Equation (16a) 
and solving for our original order statistics, we can show 
that 

 ( ) ( )r rE T l sA  = +   (16b) 

Equation (16b) is in the format of our usual least squares 
regression model. If we let D be an n × 2 matrix with ones 
in the first column and the expected values of the order 
statistics, A(r), in the second column, then 

 ( )rE T DB  =   

where 

 l
B

s
 

=  
 

 

is a 2 × 1 vector of parameters to estimate. Note this is in the 
form E(Y) = XB, which is the usual form for our regression 
model. From the previous equations, we see 

 2
( )Var rT s W  =   

where W is the n × n variance–covariance matrix with terms 
W(rr) on the diagonal and W(rs) in the rth row and sth column 
of the off diagional. Then, the least squares estimate of our 
parameters B are 

 ( )
11 1

est  rB d W d d W T
−− − ′=  ′  

the ordinary weighted least squares regression. To use it for 
the extreme-value distribution and hence for the Weibull 
through transformation, we would take the ordered 
observations T(r), use the expected value of the order 
statistics to get the matrix D and, for the distribution in 
question, find the appropriate weights W. The resulting 
estimates will be best linear unbiased estimates and thus 
have very good properties. For example, the estimate of the 
center of a rectangular distribution from this method will 
have smaller variance than using the mean of the 
observations (Lloyd 1952, 1962). 

For the extreme-value distribution, and hence the Weibull 
distribution, however, the appropriate weights were only 
calculated for very limited sample sizes (generally less than 
n = 25). Some approximating methods existed for 
generating weights, but these procedures generally stop at  
n = 100 because of computational difficulties. 

Recently, several papers have extended this type of 
procedure. In a recent paper, van Zyl and Schall (2012) 
proposed using 

 

( )( )

( )( )

11 log

. .
 . .

. .

1 log n

x

X

x

 
 
 
 

= 
 
 
  
 

 

 ( )1diag  ,  .. . , nW w w=  

and 

 ' 1)θ̂ (X WX X Wy−= ′  
 

where 

 ( ) 2 1 1  log
1r

n n r n rw
r n
− +  − +  =   +  

 

for r = 1, . . . n. Then ( )1
ˆ ˆ / ˆθb a= −  and 2ˆ  θ̂a = . The paper 

includes simulations where a = 1.0 and b = 1.0 and then 
where a = 1.5 and b = 1.0. These are not typical values for 
lumber properties. But results for large sample sizes  
(n = 100 and n = 250) show very close estimates to the  
true values. 
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Several methods exist for obtaining other least-squares-type 
estimators. Using graphical plotting techniques, Kimball 
(1960) presented several possible estimators based on the 
extreme-value scale parameter, which is an inverse of the 
Weibull shape parameter, including a linear approximation 
to an unbiased version of the maximum-likelihood estimator 
of the inverse of the Weibull shape parameter. These 
methods are based on small complete samples. Other 
estimators include the “unbiased nearly best linear” 
estimators of Blom (1958, 1962), a weighted-least-squares 
estimator of White (1965), and for uncensored data sets 
only, the estimators of McCool (1965) and Downton (1966). 
Also similar in some ways to least squares estimates are 
nonlinear regression estimates, one of which is discussed in 
Berger and Lawrence (1974). 

The methods contained in the ASTM standard are another 
variation that has been proposed by several authors. That 
method essentially ignores the weights (i.e., W becomes the 
identity matrix, and the procedure reduces to ordinary 
unweighted least squares). This procedure (which we will 
call ordinary least squares (OLS)) is related to the concept 
of probability plotting, which is often used for visually 
assessing the goodness-of-fit of a distribution to a data set. 
If we plot the ordered observations versus the approximate 
expected value of the order statistics, the data should lie on a 
straight line. For the extreme-value distribution, we would 
plot T(i) versus ( )ln ln 1 ip − −  where ( ) / 1ip i n= + . Then 
the slope of the line would be s and the intercept l, which 
could then be transformed to the Weibull parameter 
estimates. Alternatively for the two-parameter Weibull, we 
could also plot ( )( )ln iX  versus ( )ln ln 1 ip − −  . The 

disagreement as to which variable should be considered the 
independent and which the dependent variable will be 
discussed later. The slope of this line would be (1/a), and 
the intercept would be ln(b). 

Using regression procedures to estimate Weibull parameters 
from this graphical approach is not a new procedure. Miller 
and Freund (1965) presented the procedure in their textbook 
without a reference. Gumbel (1954) used it for the extreme-
value distribution without a reference. Chernoff and 
Lieberman (1954), in looking at probability plots for the 
normal distribution, state the assumption “Let us assume 
that the visually fitted line is a very good approximation to 
the line that would be obtained by minimizing the sum of 
squared deviations (in the x direction) from the line.” This 
assumption is further pursued in Chernoff and Lieberman 
(1956). Kimball (1960) discusses these two earlier papers 
and then applies “least squares’ theory”, i.e., miminizing the 
sum of squared deviations, in getting estimates for the 
extreme-value distribution. 

Other variations to the basic regression technique include 
different choices for pi and the use of robust regression 
methods, such as L1 regression, also called absolute 

deviation regression because we minimize the sum of the 
absolute values of the deviations. Lawrence and Shier 
(1981) include L1 regression in their comparison of 
estimation techniques, and numerous papers have proposed 
and evaluated other choices for pi. 

3.3 Simple Percentile Estimators 
Zanakis (1979) in a paper doing a simulation study presents 
some simplified parameter estimates for the three-parameter 
distribution in a practical way for simulations and scientists. 
As discussed earlier, if we assume that data come from a 
Weibull distribution with the cumulative distribution 
function of Equation (2), then the population percentile xp 
given by p = F(xp) can be determined by 

 ( ) 1/ln 1 a
px c b p= + − −    (17) 

The paper uses in its simulation an estimate of the percentile 
of the ith ordered observation using 

 ( ) / 1ip i n= +  

and the corresponding 100pi percent sample percentile ti by 
the y[npi] where [ ] denotes rounding up (if npi is not an 
integer). In computer simulations, such rules are needed. 
There is no evidence to suggest other standard estimates of 
the percentile of the ith order statistic or different rules 
related to calculating ti values would make a difference. 

Given three such sample percentiles from the data, which 
we denote as ti, tj, and tk, which correspond to approximate 
cumulative probabilities pi, pj, and pk, it is possible to 
estimate the Weibull parameters by setting up three 
approximate equations from Equation (17) and then solving 
system of approximate equations for a, b, and c using 

 ( ) 1/ln 1 a
s st c b p = + − − 

 , ,s i j k=  (18) 

With a little algebra, it follows that for a 

 
( ) ( )
( ) ( )

1/1/

1/ 1/

ln 1 ln 1

ln 1 ln 1

aa
k jk j

a a
j i j i

p pt t
t t p p

  − − − − −−    =
−    − − − − −  

 

If we further choose pj such that 

 ( ) ( ) ( ){ }1/2
ln 1 ln 1 ln 1j i kp p p   − − = − − − −     (19) 

or 

 ( ) ( ){ }1/21 exp ln 1 ln 1j i kp p p = − − − −   (20) 
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the estimate of the shape parameter 𝑎𝑎� simplifies to 

 ( )
( )1

ˆ
ln 11  ln / ln

2 ln
k k j

j ii

p t t
a

t tp

    − − − =       − − −    
 (21) 

Then our estimated scale b̂  and location ĉ  parameters from 
Equation (18) are 

 ( ) ( ) ( ){ }1 ˆ/ˆ/ 1  /ˆ ln 1   ln 1  a a
s r s rb t t p p = − − − − − −     (22) 

where ( ) ( ), ,r s i j k< ∈ and 

 ( ){ }1 ˆ/   ln 1ˆ  ˆ a
s sc t b p= − − −  (23) 

Note, the estimate b̂  is simplified if c is known. Then  

 ( ) ( ) 1 ˆ/1ˆ /  ln a
s sb t c p = − − − 

 ( , , )s i j k∈  (24) 

As is the case with any location estimate, it must be less 
than or equal to the smallest observation, and as with other 
estimation procedures, there is a possibility that our estimate 
will not meet this requirement and have to be modified. 

Dubey (1967a) studied the two-parameter Weibull simple 
percentile estimators. When only two parameters need to be 
estimated, only two percentiles are needed. If we call them tk 
and ti, the equation for the shape parameter simplifies to 

 ( )
( )

ln 1
ln / ln

ln 1
k k

ii

p ta
tp

  − −   =      − −    
 (25) 

Dubey showed that the asymptotic variance of this estimator 
is minimized when pi = 0.16731 and pk = 0.97366. This 
means we should take the sample 17 and 97 percentiles. An 
estimate of the shape parameter based on these two sample 
percentiles was shown by Dubey to be 66% efficient 
compared with the maximum-likelihood estimate of the 
shape parameter. Normally, 66% efficient is not a good 
value. But it is simple to calculate when in a field situation 
and can be used to give an indication of the shape of the 
distribution. Using these two values of pi and pk in Equation 
(20) would give pj = 0.5578. 

Several other estimators based on simple percentiles have 
been proposed. For any three-parameter Weibull 
distribution, it is relatively simple to show that the 63rd 
population percentile is equal to c + b (the sum of the 
location and scale parameters), i.e., 

 63x c b= +  (26) 

Thus, for the two-parameter Weibull distribution, the scale 
parameter can be estimated by the 63rd sample percentile. 
For the three-parameter Weibull, an estimate of either the 
scale or location parameter can be inserted into this 
relationship to get an estimate of the other parameter. 

If the shape parameter is small (0 < a ≤ 2), Dubey (1966a) 
recommended estimating the location parameter with the 
smallest order statistic. Dubey (1967b) also proposed a 
simple estimate of the location parameter based on the first, 
second, and nth order statistic. This estimator 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )2
1 2 1 2/  2n nc X X X X X X= − + −  (27) 

is very close to the first order statistic. 

Under the assumption that a good location parameter 
estimate such as Equation (26) is available, Hassanein 
(1972) created some asymptotically unbiased shape and 
scale estimators for which Mann and Fertig (1977) obtained 
small sample unbiased corrections that were evaluated in 
Zanakis (1979). Using the fact that the parameters of the 
extreme-value distribution and the Weibull distribution are 
related, Bain (1972) proposed for censored samples a 
simple, unbiased estimator of the scale parameter that is 
equivalent to the inverse of the shape parameter of the 
Weibull distribution. These latter estimators had high 
efficiency for censored samples but zero asymptotic relative 
efficiency for complete samples. Examples of further use of 
these estimators with real data has been relatively difficult 
to find. Englehardt and Bain (1977) developed confidence 
bounds on Weibull reliability and inference procedures 
using simplified estimators. 

3.4 Maximum-Likelihood Estimation 
As pointed out in Harter (1970), the use of the method of 
maximum likelihood dates back to Gauss (1809), who 
employed it for some particular problems. However, its 
general use was first proposed by Fisher (1912). Fisher 
(1921) began the study of the properties of maximum-
likelihood estimators (MLE), which has been continued by 
numerous researchers. The major justification of maximum-
likelihood estimates is usually its large-sample efficiency. 
Under mild regularity conditions, the MLE of a single 
parameter from singly censored samples has been shown by 
Halperin (1952) to be consistent (i.e., converges to the true 
parameter value as sample size increases), to be 
asymptotically normally distributed, and to have minimum 
variance for large samples. Many of these properties can be 
extended to the case of several parameters and more general 
censoring. 

With all these advantages, one could well ask why not 
always use maximum-likelihood estimates for the 
parameters of a Weibull distribution. The problems appear 
to center around three areas of concern: (1) potential 
problems in calculating Weibull parameter estimates, (2) the 
bias of the estimates for small samples, and (3) the possible 
existence of more efficient and simpler estimates for small 
sample size. These problems are lessened in many lumber 
strength properties because the sample size is often quite 
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large. But, in lumber property studies, many issues can arise 
from the sampling procedure used. 

Efforts to derive MLEs of the parameters of a three-
parameter Weibull distribution have received considerable 
attention in statistical literature. Leone and others (1960) 
showed the MLE of the scale parameter was a function of 
the shape and location parameters and the sample values. 
MLEs for the shape and location were found through an 
iterative simultaneous solution of two equations involving a, 
c, and the sample values. Numerous advances followed, 
such as allowing various censoring situations (Harter and 
Moore 1965, 1967; Cohen 1965, 1973; Wingo 1972, 1973). 
Lemon (1975) discusses some of these earlier advances and 
then gives a procedure based on the simultaneous solution 
of two iterative equations that allow both single left and 
progressive censoring. In getting three-parameter estimates 
from two equations, Lemon gives two formulas for the 
location parameter depending if the shape parameter is less 
than 1 or greater than or equal to 1. Zanakis and Kyparisis 
(1986) discuss these advances and the computational 
procedures that have been used to try to solve some of the 
iteration problems that can develop. 

As previously mentioned, MLEs of Weibull parameters 
have been developed by several researchers. To understand 
these estimators, it is best to begin with the two-parameter 
Weibull distribution. In its two-parameter form, the Weibull 
family is represented by the density function 

 ( ) ( ) ( )( )11 / exp /a af x ab x b x b−−  = −  
  ( 0; 0; 0)x a b≥ > >  (28) 

where a is the shape parameter and b the scale parameter. 

Consider a random sample of n observations. The likelihood 
function of this sample is 
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If we take the logarithm of L and differentiate with respect 
to a and b and then set the derivatives equal to zero, we get 
two equations: 
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which then can be solved through iterative procedures to 
give an estimate of the shape parameter, denoted by â . 
With â  determined, then 

 ˆ

1
  /  ˆ

n
a

ib x n=∑  

where the symbol (^) denotes that this is an estimate. 

Computer routines to produce three-parameter Weibull 
estimates often show inconsistent convergence. Numerical 
problems exist, which can make difficult the direct 
calculation of maximum-likelihood estimates using 
optimization routines that maximize the likelihood. When 
the shape parameter is less than or equal to 2, the 
information matrix of the Weibull distribution has 
singularities, which means an iterative method that uses 
second derivatives is likely to be unstable. [This is discussed 
in Harter (1970) and further in Smith (1985, 1994) with 
references to Wingo (1973), Rockette and others (1974), 
Lemon (1975), and Cohen (1975)] In fact, Weibull MLEs 
are regular if, and only if, at least one of three conditions 
hold: 

(1) a > 2,  

(2) c is known, or 

(3) the sample is censored from below (Harter 1970). 

(Note: ASTM D5457 uses a two-parameter Weibull and 
thus meets criteria (2). This means computational problems 
and problems with asymptotic properties of MLE holding 
disappear.) For the shape parameter less than or equal to 1, 
the smallest observation becomes a hyper-efficient estimator 
of the location parameter (Dubey 1966b), but no true MLE 
for the location and scale exist. Usually in this case, the 
smallest observation or some other estimate of the location 
parameter is used and a pseudo MLE for the shape and scale 
is produced by assuming c is known and reducing the 
problem to a two-parameter Weibull estimation problem. 
For 1 < a < 2, MLEs exist but problems with the 
information matrix make computational problems possible 
and make the asymptotic variance–covariance matrix 
meaningless. For a = 2 (the Rayleigh distribution), the 
determinant of the information matrix is zero and 
computational problems are possible. 

Some concern is periodically expressed about the bias in the 
MLEs for small samples. It is well known that for small 
sample sizes, the MLE of the shape parameter can be quite 
biased. That may or may not be a problem for reliability 
calculations. For complete samples, Thoman and others 
(1969) present a table of unbiasing factors for the shape 
parameter for sample sizes from N = 5 to 120. The factors 
are multiplied by the MLE of the shape parameter to get an 
unbiased estimate. The following selected entries from the 
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tables give an indication of the amount of bias for different 
sample sizes (N): 

N 5 6 7 8 10 14 28 44 64 120 

Factor 0.669 0.752 0.792 0.820 0.859 0.901 0.951 0.970 0.980 0.990 

This bias means that you should multiply the shape 
parameter by the bias number. The biasing number 
approaching 1 shows that the estimate is asymptotically 
consistent (because MLEs are consistent, and for consistent 
estimators, the bias will approach zero as the sample size 
increases). Similar tables are given in Billmann and others 
(1972) in which either 25% or 50% of the largest 
observations were censored for sample sizes N = 40, 60, 80, 
100, 120. These results show that the greater the censoring, 
the greater the bias. 

In spite of the potential problem of bias of the shape 
parameter, two separate studies indicated that functions 
estimated using estimates of the shape and scale parameters 
often show little bias. Al-Baidhani and Sinclair (1987) 
compared several estimators of percentiles of the 
distribution. Using sample sizes N = 10, 25; shape parameter 
a = 0.5, 1.0, 2.0, 4.0; and scale parameter b = 0.1, 1.0, 10.0, 
100.0, they compared the estimation procedures on the 
parameter estimates and on their ability to predict the 95th 
percentile and the 99th percentile. In estimating percentiles, 
the authors concluded the “MLE is clearly the best method 
for all the values of (the shape parameter)”. Billman and 
others (1972) looked at the problem of estimating the 
reliability at time t, which for a two-parameter Weibull 
distribution is estimating 

 ( ) ( )exp
atR t b

 = − 
 

 

They concluded “It is fortunate that in spite of skewness, 
censoring and other difficulties, the MLE of ( )R t  for 

reasonable values of ( )R t  has negligible bias and its 
variance is very close to the Rao-Cramer lower bound for 
the variance of a regular unbiased estimator of ( )R t .” 

Because in LRFD we are estimating functions of the shape 
and scale parameters, three options appear possible. We can 
use the unbiasing factors, assume that the compensation the 
scale parameter makes to the shape parameter will negate 
any effect of the bias when estimating functions of both, or 
do simulations to check if there is a problem. 

The potential problem of the possible existence of more 
efficient and simpler estimates for small sample sizes is not 
so easily answered. There are certainly some more efficient 
estimators for small samples than the MLE, as has been 
shown in numerous studies. However, our evaluation of the 
literature indicates that they are not method of moment 
estimators or OLS estimators. More work needs to be done 

to identify which of these other estimation procedures works 
well as a set and produces efficient estimators for Weibull 
distribution characteristics such as the 5th percentile and the 
functions of the parameters needed in LRFD calculation 
procedures. 

Any discussion of maximum-likelihood estimation of 
Weibull parameters would be incomplete without at least 
mentioning the existence of some simple, closed form 
approximations for MLEs of the parameters of the Weibull 
distribution. Bain (1972) and Engelhardt and Bain (1973, 
1974) developed simple estimators for the parameters of the 
extreme-value distribution. These relatively efficient, 
unbiased estimates can easily be converted through the 
relationship between the extreme-value distribution and the 
Weibull distribution to provide estimates of the Weibull 
distribution parameters. Their work showed that the simple 
estimators were related to maximum-likelihood estimators. 

4 Historical Comparisons of 
Individual Estimator Types 
Dubey (1966a) looked at the asymptotic (large sample) 
efficiency of moment estimators for the Weibull location 
and scale parameters assuming the shape parameter was 
known. This efficiency (defined as a ratio of the MLE 
generalized variance to the moment estimator generalized 
variance) for shape parameters from a = 2.1 to a = 100  had 
values ranging from 12% to 93%. A few specific values are 
shown in Table 1. 

Talreja (1981) generated five random samples of size n = 10 
from each of two two-parameter Weibull distributions and 
used the method of moments described first to estimate 
three-parameter Weibull distribution estimates and two-
parameter Weibull distribution estimates. Talreja concluded 
that the method could not be relied on for estimating all 
three parameters, especially for his example where the shape 

Table 1—A few specific values for shape parameters 

Shape 
Efficiency of location and scale 

(%) 
2.1 11.98 
2.6 54.63 
3.1 76.60 
3.6 87.18 
4.1 91.75 
4.6 93.18 
5.1 92.96 
5.6 91.89 
6.1 90.39 
6.6 88.72 
7.1 87.00 
10.0 78.26 
20.0 63.96 
100.0 51.75 
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parameter was large (a = 10). He also noted that in fitting a 
two-parameter Weibull, if a three-parameter Weibull 
distribution was used to generate the data (i.e., the location 
parameter was not zero), errors in estimating the parameter 
increased linearly with the true value of the location 
parameter, to the point that errors were more than 100% 
when the true location parameter was equal to or greater 
than the true scale parameter. 

Saylor (1977) also used a very small simulation with shape 
parameters less than 2 to compare method of moment 
estimators with maximum-likelihood estimates for a three-
parameter Weibull. As an estimate of the location 
parameter, Saylor used Dubey’s estimate given in Equation 
(12) and the estimation procedure based on the mean and 
coefficient of variation previously described. This required 
iteration back and forth between the two methods until 
estimates remained constant. Saylor concluded that the 
location parameter estimate of Dubey was more efficient 
than the maximum-likelihood estimate of the location 
parameter and suggested use of Dubey’s estimate, 
iteratively, with the MLE for scale and shape. He also noted 
that the moment estimators appeared to be more efficient 
than MLEs for sample sizes of less than 50. However, he 
cautioned that further experimentation with other types of 
generators and larger Monte Carlo sample sizes was needed. 

Newby (1984) used the method of moment estimators for 
the three-parameter Weibull derived using the mean, 
variance, and skewness. He compared efficiency of the 
method of moment estimators to the MLEs as a function of 
the true shape alone. He could only look at shape parameters 
greater than 2 because the asymptotic information matrix of 
the maximum-likelihood estimators has singularites when 
the shape is less than 2 (note this is why the use of iterative 
methods to get MLEs that are based on second derivatives 
are often unstable). Newby’s results are summarized in the 
table he produced (Table 2). 

Mann (1968) looked at several estimators for the parameters 
of the two-parameter Weibull distribution including these 
modified moment estimators. Mann concluded that these 
estimators gave poor results for estimating s (and hence a) 

for small as well as large samples compared with other 
better estimation procedures including maximum likelihood. 

With such a computationally easy method of estimating 
parameters available, compared with maximum-likelihood 
procedures, a natural question is why is a regression 
procedure not more widely used. There are several reasons. 
A subtle reason deals with the loss of unbiasedness when 
unweighted estimates replace weighted estimates. Bias in 
estimates does not eliminate their use. Statistics is full of 
biased estimates being used in place of unbiased. The 
commonly used estimate of a standard deviation is one 
example. The argument for use of a biased estimate is 
usually that the bias is small and the variance so much 
smaller than the unbiased estimate that we will usually be 
closer to the true value than with the unbiased estimate. This 
argument is incorporated in the concept of mean square 
error (MSE) of an estimator. Mathematically, 

 MSE = Variance + Bias2 

The square root of the MSE of an estimator is similar to a 
standard deviation except it incorporates bias. Use of a 
biased estimator usually involves showing that the MSE or 
square root of the MSE is smaller for that estimator than for 
other estimators. Thus, in evaluating least squares estimates 
of Weibull parameters, we must look at their MSE. 

Kimball (1960) looked at the OLS estimator for small 
samples and different choices of pi for the extreme-value 
distribution. His results for s are shown in Table 3. 

Thus, the choice of pi appears important. In the current 
ASTM standard, pi = (i – 0.3)/(n + 0.4) is used. 

Properties of the OLS procedure for complete samples 
versus other estimation techniques have been studied by 
several researchers in addition to Kimball. Berger and 
Lawrence (1974) compared the OLS estimator with 

( )ln iX 
   considered as the fixed points (independent 

variables) and ( )( )( )ln ln 1 ip− −  as the random variables, as 

was done in Miller and Freund (1965) and as they said was 
“common industry practice”. This was compared with using 
nonlinear regression to fit the model on the original scale for 
sample size n = 50, shape parameters 0.5 to 4.0 by 0.5, and 
scale parameters 2, 4, 6, 8, and 10. 100 replications of each 
combination were simulated. Berger and Lawrence only 
considered pi = i/(n + 1). Their results showed that both 
procedures produced results with large MSE. They 
speculated that the reversal of the variables from 

Table 2—Joint asymptotic efficiency  
of estimators for the Weibull 
Shape  
parameter 

Efficiency of moment estimators 
(%) 

2.1 3 
3.0 41 
4.0 71 
5.0 85 
6.0 89 
7.0 89 
8.0 88 
9.0 86 
10.0 83 

 

Table 3—Kimball (1960) results for s 
Value of ip  Bias Mean square error 
1. i/(n + 1) 0.2284 0.3011 
2. [i – (3/8)]/[n + (1/4)] 0.0220 0.1754 
3. [i – (1/2)]/n –0.0547 0.1543 
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considering ( )ln iX 
   as the dependent variable and 

( )( )( )ln ln 1 ip− −  as the independent variable contributed to 

the large variability. 

Lawrence and Shier (1981) extended the earlier work of 
Berger and Lawrence (1974). Both the earlier OLS 
estimator with ( )ln iX 

   considered as the independent 

variable and ( )( )( )ln ln 1 ip− −  as the dependent variable and 

the OLS with the roles reversed (the ASTM procedure) were 
compared with least absolute deviation (L1) regression in 
which the sum of the absolute values of the deviates is 
minimized. The L1 regressions considered both roles for the 
variables as did the OLS estimators. The values of pi 
considered were 

(1) (i – 0.5)/n 

(2) (i – 0.375)/(n + 0.25) 

(3) (i – 0.3)/(n + 0.4) (ASTM procedure) 

Sample sizes N = 20, 30, 40, 50, 100; shape parameters of 
0.5, 1.0, 3.0, 5.0, 10.0; and a scale parameter of 1.0 were 
considered. Again, 100 replications of each combination 
were generated. Lawrence and Shier (1981) concluded that 
using ( )ln iX 

   as the independent variable and 

( )( )( )ln ln 1 ip− −  as the dependent variable produced more 

efficient estimates of the shape parameter. This is how the 
ASTM procedure is done. They also concluded that L1 
regression was 10% to 30% more efficient in estimating the 
shape than was the OLS estimator. Estimation results for the 
scale parameter were mixed with no apparent winner. They 
also concluded that the number 2 definition of pi was the 
most consistent performer. 

Engeman and Keefe (1982) compared the simple moment 
estimates of Menon, maximum-likelihood estimates, 
ordinary least squares estimates, and the “unbiased nearly 
best linear” estimates of Blom (1958, 1962) for the two-
parameter Weibull for sample size n = 25; true shape 
parameters 0.5, 1, 2, and 4; and true scale parameters 0.1, 1, 
10, and 100. They used ip  = i/(n + 1) for the OLS 
estimator. The number of replications of this simulation 
were not reported. To standardize the MSEs of the 
estimators for the different parameterizations, they reported 
the ratio of the Cramer–Rao lower bounds for the variance 
of unbiased estimates of the two-parameter Weibull to the 
observed MSE of the estimator. The Cramer–Rao lower 
bounds are calculated from 

 Var(a) = 0.608a2/n 

and 

 Var(b) = 1.109(b/a)2/n 

The average relative efficiencies they reported were as 
follows: 

Blom 

OLS 

Menon 

MLE 

Shape parameter a 0.8453
 0.6275
 0.4840
 0.6862 

Scale parameter b 1.0207
 0.9903
 1.0187
 1.0483 

These results show the relative efficiency of the simple 
moment estimators to be substantially below those of all 
other estimators of the shape parameter. For this sample 
size, the best estimate of shape was that of Blom and for 
scale the MLE. The MLE was slightly better than the OLS 
for both parameters. 

Shier and Lawrence (1984) compared the OLS estimator 
and the L1 estimator with a number of reweighting schemes 
based on the L1 residuals. Using pi = (i – 0.5)/n; sample 
sizes N = 20, 30, 40, 50, 60; shape parameters a = 0.5, 1.0, 
3.0, 5.0, 10.0; and scale parameter b = 1, they generated 100 
replications for each combination. They again considered 

( )ln iX 
   as the independent variable. Their results showed 

the OLS estimator to be “clearly inferior to all of these five 
L1-based procedures. ... On average, the five procedures are 
some 14% more efficient than the (OLS) procedure”. 

Al-Baidhani and Sinclair (1987) compared a generalized 
least squares (GLS) estimate that takes into account the 
variance–covariance matrix, the OLS estimator, the MLE, a 
method based on Hazard plotting position, and two mixed 
methods. Using pi = i/(n + 1); sample sizes n = 10, 25; shape 
parameter a = 0.5, 1.0, 2.0, 4.0; and scale parameter b = 0.1, 
1.0, 10.0, 100.0, they compared the estimation procedures 
on the parameter estimates and on their ability to predict the 
95th percentile and the 99th percentile. These percentiles 
were chosen to look at problems engineers might have in 
predicting the size of floods that occur only once in  
100 years. The number of replications was 1,000. Results 
showed that the highest average relative efficiency for the 
shape parameter was the GLS estimator, whereas the OLS 
estimator had the lowest average relative efficiency. For the 
scale parameter, the MLE was better than the OLS for every 
case considered and either best or second best in every case 
compared with all the estimators. In estimating percentiles, 
the authors concluded that “MLE is clearly the best method 
for all the values of (the shape parameter)”. Looking at 
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parameter and percentile estimation combined, they 
concluded “the worst of these methods in every situation 
was OLS”. 

Durrans and others (1997), using the two-parameter and 
three-parameter Weibull distribution on censored data, 
looked at several methods of estimating quantiles and 
parameters that would be used in quality control in 
describing structural lumber failure strengths. They 
investigated MLEs and regression estimators. On the basis 
of their simulations, they concluded that “the method of 
maximum likelihood is nearly universally superior to a 
regression method . . .”. The advantage of regression 
methods is that they will always lead to a solution, whereas 
maximum-likelihood methods may not converge in some 
cases. 

When the results of all these studies are taken together, the 
ASTM standard appears to have several weaknesses. It does 
not appear to use the most efficient choice of pi. They are 
less efficient than other regression type estimators that are 
easily calculated. The direct comparisons to MLEs showed 
superiority of the MLE for even a small sample size. 

5 Other Methods of Estimating 
Parameters of the Weibull 
Distribution 
Previously, the most common methods of estimation of 
Weibull parameters have been discussed. Each of the 
methods covered has had extensive discussion in statistical 
literature. There are a few other methods that have been 
raised that should be discussed. These methods might 
benefit from more study, but they help provide a broader 
view than just the most common methods. 

5.1 Idea of Mixing Types of Methods 
Initially, estimation of Weibull parameters was generally 
restricted to picking one method of estimation and then 
using that method to estimate all the parameters of the 
Weibull distribution. There are several sound reasons for 
considering this approach that will be covered next. It has 
already been mentioned that in some cases the estimate of 
the location parameter for a three-parameter Weibull 
distribution can be above the lowest order statistic. For some 
people who are dealing with strength properties of materials, 
this can be a problem. Many times, computer programs 
calculating maximum-likelihood estimates of Weibull 
parameters will substitute the lowest order statistic for the 
location parameter, which follows Dubey’s (1966a) 
recommendation when the shape parameter is small  
(0 < a ≤ 2). When the estimated shape parameter is greater 
than 2, Dubey’s (1967b) estimate in Equation (26) is 
sometimes used. 

The idea of mixing types of estimators was studied in 
Zanakis (1979). In a simulation study, Zanakis studied how 
various simple estimators for the shape, scale, and location 
parameters compared regarding their accuracy in a 
maximum-likelihood sense. He concludes that the best 
estimators are Equation (27) for location, Equation (26) for 
scale where ĉ  is put in c, and Equation (25) for shape where 
pi = 0.16731 and pk = 0.97366. He furthermore stated that 
these three estimates proved to be more accurate than 
maximum-likleihood estimates for all three parameters, 
especially when a < 2 (Zanakis 1977, 1978). 

Some programs used to calculate maximum-likelihood 
estimates benefit from an initial estimate of the parameters. 
When this is the case, an initial estimate of the parameters 
using Zanakis’ recommendations might prove useful. 

5.2 Minimum Chi-Square Estimation 
As an alternative to maximum-likelihood estimation, 
Berkson (1980) proposed using minimum chi-square 
estimation in response to a previous publication (Efron 
1975). Berkson (1980) suggested that minimum chi-square 
estimation “yields the same estimating equations as MLE”. 
A spirited discussion followed this paper. Recently, a paper 
by Barbiero (2016) looked at estimating the parameters of a 
two-parameter discrete Weibull distribution. Discrete 
Weibull distributions occur when observations can only be 
found in categories, such as when measurements must be 
rounded off into units or a range of units, perhaps because of 
the inability to get more accurate measurements. The paper 
looks at least-squares methods and minimum chi-square 
methods. Using a simulation, Barbiero (2016) concludes 
“The simulation results indicate that the performance of the 
three point estimators based on the least-square method  
is … overall better than that derived through the minimum 
chi-square method.” 

5.3 Generalized Least Squares Estimation 
Weighted regression and ordinary least squares regression, 
which were previously covered, are the most common 
methods of regression used to estimate the parameters of a 
Weibull distribution. Two other methods will be briefly 
mentioned in this section and the following section. They 
are GLS estimation and least absolute deviation estimation. 
GLS is a variation of regression that is sometimes used 
when a correlation is expected between the residuals of the 
model. It was first described by Aitken (1934). The GLS 
procedure is a more generalized version of a weighted least 
squares procedure in which the weights are not only on the 
diagonal of the weighting matrix. Engeman and Keefe 
(1982) described how to use GLS to estimate the parameters 
of the two-parameter Weibull distribution. Using a 
simulation study with very small sample sizes, they found 
that the GLS estimate of the shape parameter was better than 
ordinary least squares, maximum likelihood, and the 
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estimation procedure of Menon (1963). Maximum 
likelihood provided the best estimate of the scale parameter. 
Kantar (2015) compared GLS, weighted least squares, and 
maximum likelihood for the Weibull, log-logistic, and 
Pareto distributions. Again, a simulation found that GLS 
provided the best estimate of the shape parameter. Kantar 
(2015) also provided a review of some other papers using 
GLS and some real life examples. 

5.4 Least Absolute Deviation Estimation 
Once regression estimates of Weibull parameters became 
popular, the logical thing to do was to look at different 
regression techniques to see if they would solve some 
potential problems. The use of minimizing the sum of the 
least absolute deviations 
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This is one of several methods called robust regression 
because they have favorable properties when in the typical 
regression analysis, the residuals are not i.i.d. 
(independently and identically distributed) normally 
distributed with the same mean and standard deviation. As 
with GLS, this method is trying to handle a deviation from 
the assumption of independence of the residuals. This 
method of least absolute deviation regression, also 
sometimes called L1 regression, is trying to handle residuals 
that might have skewed distributions (i.e., not normally 
distributed). Lawrence and Shier (1981) compared least 
square estimates (sometimes called L2 regression) and least 
absolute deviation regression estimation of Weibull 
parameters. They concluded that in some cases L1 
regression can be superior to least squares. Again in 1984, 
Shier and Lawrence (1984) compared robust regression 
procedures on the estimation of Weibull parameters. In that 
paper, they also compared using simulations with several 
reweighting schemes based on L1 residuals. 

6 Discussion 
Initially, estimation of Weibull parameters was generally 
restricted to picking one method of estimation and then 
using that method to estimate all the parameters of the 
Weibull distribution. There are several sound reasons for 
considering the approach that will be covered next. But the 
general increase in simple percentile estimates might change 
this approach as methods become more numerous. You can 
now mix and match estimators. For example, a simple 
percentile estimator of the location parameter followed by 
maximum-likelihood estimates of the shape and scale 
parameters might sound like a good idea because the 
maximum-likelihood estimation of the location parameter 
would often cause nonconvergence of the shape and scale 
parameters, especially when the shape parameter was near 2 
or less than 2. For example, in the U.S. in-grade study of 

Hem-Fir maximum-likelihood shape parameter values for 
13 grade–size combinations of specimens with sample sizes 
ranging from 20 to 428 at 15% moisture content, the shape 
parameter estimates for the three-parameter Weibull 
distribution ranged in value from 1.38 to 4.15 (Evans and 
Green 1988). There is also the important question of how 
the estimation procedure might affect the estimate of 
properties such as the 75% tolerance limit of the fifth 
percentile of a strength distribution for modulus of rupture, 
which is used to quantify the strengths of various wood 
species used in wood construction. Therefore, the problem 
becomes not only which method of estimating Weibull 
parameters is best but also which method might provide the 
best estimate of distributional properties and possibly 
properties such as confidence limits on these property 
estimates or goodness-of-fit tests on the fitted distribution. 
Most earlier work looked at parameter estimation. But, it is 
time to consider all the benefits that different methods 
provide. 

Looking first at the benefits of using all estimators of the 
same kind, we consider the case for MLEs for all the 
parameters of a two-parameter Weibull distribution, which 
have most of the benefits that a method of estimation can 
provide. Thoman and others (1969) discussed four major 
properties that are important: 

(1) Exact confidence limits for the parameters are available. 

(2) A table of unbiasing factors is available for several 
sample sizes. 

(3) Tests of hypotheses about the parameters and the power 
of the tests are developed. 

(4) Guidelines of when sample sizes are large enough to 
assume large sample theory are available. 

Johnson and Haskell (1983) considered parameter estimates 
of the three-parameter Weibull and showed the consistency 
of the shape parameter estimate when the parameter was 
greater than 1. They also studied the joint distribution of the 
estimators and determined that estimates of the 5th 
percentile of the population from the sample 5th percentile 
required sample sizes of more than 70 to assume that 
asymptotic normality applied. Evans and others (1989) 
provided goodness-of-fit tests for both two- and three-
parameter fits of Weibull distributions to data. Johnson and 
others (2003) provided confidence intervals on ratio 
estimates of Weibull 5th percentiles that would be useful in 
evaluating dry–green ratios. 

Other major individual types of estimators have fewer 
properties that are discussed in statistical literature. Mixtures 
of parameter estimator types generally have even fewer 
known properties, and that can be a problem when trying to 
discuss what these types of sets of estimators show. That 
does not mean that they are useless because they can 
provide important insights into data. However, the lack of 
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major statistical properties can limit the usefulness of 
estimates with a mixture of methods for the different 
parameters when used on a data set. 

There are a few papers that have looked at properties that 
other estimation procedures might have in comparison with 
MLEs. They generally compare the estimators on issues 
such as bias, variation, ease of calculation, and other 
measures that do not include the major properties previously 
discussed here. It might be useful for people looking at tail 
properties of a distributional fit to have a study that 
compares various methods. In wood engineering, some data 
sets used for grades of visual lumber and machine-stress-
rated lumber may be from whole populations in which lower 
or higher grades were taken out in the process of creating 
multiple grades. 

MLEs, for some combinations of parameter values of the 
three-parameter Weibull distribution, do not satisfy the 
regularity conditions, which give estimates of the standard 
asymptotic properties, resulting in possible inconsistent 
estimates or even failure to exist. In these cases, some 
researchers such as Cohen and Whitten (1982) have 
suggested using some modified estimators. The conditions 
for which MLEs are regular were previously covered. In 
cases for which the conditions don’t apply, Cohen and 
Whitten note that the mean µx, variance σx

2, median Mex, 
and the skewness α3:x are  

 1µ  x c b= + Γ  

 2 2 2
2 1 2σ      CM  x b  = Γ −Γ =   

 ( ) 1/Me ln 2 a
x c b= +  

 
[ ]

3
3: 3/2

2

CM 
CM

xα =  

where Γk is defined in Equation (11) and the central 
moments are defined in Equations (6) and (7). Although the 
Weibull distribution is usually thought of as being positively 
skewed, it is really negatively skewed when a > 
3.6023494257197 (Cohen 1973). This is basically what was 
covered in the section on method of moments. Cohen 
suggests using modified moment estimators and shows 
through simulation under different conditions that the 
modified moment estimators may prove useful in some 
cases. Cohen concludes that for a ≥ 2.2156 (α3 < 0.5) MLEs 
perform well with respect to bias and variance. For a = 4.5, 
both MLE and moment estimators perform well with the 
MLEs taking considerably more time to calculate. (With 
modern increase in computer power, this is not the case 
anymore, but in the field, the moment estimators might be 
useful as initial estimates when computers are not 
available). When a < 2.2156, using modified moment 
estimators of a may prove useful with respect to bias and 

error. Cohen offers three different modifications and 
evaluates them through simulations and ease of calculation. 

Gross and Lurie (1977) compared two estimators from Bain 
and Antle (1967) of the shape parameter with the MLE of 
the shape for the two-parameter Weibull distribution when  
a < 1. The comparison was based on bias, standard 
deviation, and root mean square error. This simulation 
showed that the Bain and Antle estimators were better for 
small samples and the MLE was superior for larger samples. 
(For wood engineers, a < 1 is unlikely unless there are 
outliers that have extremely large values.) 

Verrill and others (2012) compared regression estimators 
and MLEs for the parameters of a two-parameter Weibull 
distribution. The four coefficients of variation considered 
were 0.1, 0.2, 0.3, and 0.4. The corresponding shape values 
were 12.154, 5.7974, 3.7138, and 2.6956. They concluded 
that regression estimators were competitive for sample sizes 
of 15. But for sample sizes of 30 and larger, the MLE 
estimates were superior, and they were even better for the 
shape parameter. 

7 Conclusion 
Procedures for estimating the parameters of a Weibull 
distribution from a data set have been widely studied in the 
statistical literature and are still a major source of study. 
Any review of such procedures is bound to be incomplete. 
There are many more studies of the aspects of this problem 
than can be summarized in a short overview such as this 
report. However, a general overview of the procedures and 
their properties as found in the statistical literature can form 
a background for a more specific comparison of the 
procedures with uncensored data, which is often 
encountered in wood utilization research. To summarize a 
general interpretation of the information presented, the 
authors would like to stress two points. There are a wide 
variety of procedures and adaptations of procedures that are 
available to estimate the parameters of a Weibull 
distribution. Any comparison of these methods for use on 
wood engineering has to assume that the data truly has a 
Weibull distribution, which may not be true for censored 
data sets such as machine-stress-rated data in which 
different grades that overlap machine-stress-rated data may 
have been removed before grading the remaining specimens. 
Recent research has suggested that these grades of lumber 
may not follow a Weibull distribution. The second possible 
conclusion is that, although there is no uniformly “best” 
method of parameter estimation, the use of maximum-
likelihood methods for data that wood scientists are likely to 
encounter appears to be the method that wood scientists 
should be using as a default. Other methods should require 
some type of justification for use in wood utilization 
research. 
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Based on this conclusion of the advantage of maximum-
likelihood estimates for Weibull data and the distinct 
possibility that lumber grade data might be a truncated data 
set, ASTM D5457 appears to have several potential 
weaknesses that should be studied further. Because the 
choice for estimating parameters of a Weibull distribution 
from a data set is optional in D5457 and the resulting fitted 
distribution is used to derive the reference resistance of 
wood-based materials and structural connections, there 
might be an issue in determining the properties of the values 
developed. This could be an important research topic to 
further explore. Also, for small sample sizes for tests of 
glulam beams or wood timbers, other methods that don’t 
have the bias that MLEs can have with small sample sizes 
may be useful to check on the estimates prescribed in D5457 
using plots of the data verses predicted measurements from 
the distributional estimates. 
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