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Abstract 

Instrumented indentation is a commonly used technique to determine the mechanical properties of bulk materials and thin 
films by measuring the load and displacement during indentation into a specimen.  However, in traditional indentation 
measurements, it can often be difficult to determine the true deformation of the specimen due to the machine compliance and 
drift in the system.  The issue of drift is particularly problematic in tests that occur over extended time scales, such as creep 
tests on soft materials.  In the present work, a new method, in which the full-field deformation of the sample material around 
the indenter is measured, is presented to overcome these challenges.  Specifically, the deformation of specimens during 
cylindrical flat punch indentation tests is monitored by tracking discrete particles, such as microbeads, near the surface of the 
sample.  This method allows for direct measurement of the specimen surface as it is deformed.  In the current 
implementation, it is applicable to transparent materials, including many polymers, gels, and biological materials.  An inverse 
method was developed to extract mechanical properties of the specimen from the measured displacement fields.  A numerical 
model parametric study was performed to quantify the effect of changes in Poisson’s ratio, magnification, particle density, 
and experimental noise on the elastic properties calculated using the inverse method.   
 
Introduction 

Instrumented indentation is a common method for characterizing the mechanical properties of bulk materials.  This technique 
is capable of testing small volumes of material at low loads and small displacements and allows for simple sample 
preparation compared to traditional compression tests.  Oliver and Pharr [1] proposed a widely accepted method based on 
Sneddon’s [2] solution for axisymmetric indentation of an elastic halfspace for determining a specimen’s effective modulus, 
Eeff, for bulk materials from the measured applied load and displacement of the indenter.  However, Young’s modulus, E, and 
Poisson’s ratio, , which are commonly used in engineering applications, cannot be independently measured using traditional 
indentation analysis.  To find E, it is necessary to estimate , which is often difficult to measure directly for small volumes of 
material.   

The Oliver-Pharr method is also affected by the sensitivity of measured stiffness to errors in the measurement of the true 
deformation of a specimen.  These errors are commonly due to machine compliance and thermal drift.  Machine compliance 
is commonly calculated by indenting a material with known elastic properties, such as fused silica, and subtracting the 
theoretical compliance of the material from the experimentally measured compliance [3].  While this method provides an 
estimate for the machine compliance, it relies on an accurate measurement of the contact area and the ability to accurately 
detect the specimen surface.  Thermal drift, or the change in measured indenter location due to small changes in temperature, 
is often minimized by either conducting indentation tests in a closed environment in which the temperature is stable, or 
performing indentation tests quickly [4]. 
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In the present work, a new method is introduced in which full-field displacement of the surface of a transparent specimen, 
including materials such as polymers, gels, and biological materials, is measured independently of the indenter.  This method 
tracks the motion of discrete particles, such as microbeads, near the surface of the specimen during an indentation test.  The 
motion of particles may be tracked using optical techniques, such as fluorescence microscopy or laser confocal microscopy.  
Measuring full-field displacement of the specimen surface in the vicinity of the indenter allows mechanics models that relate 
both the in-plane displacements and out-of-plane displacements to the applied load to be used to extract elastic properties.  
The use of both in-plane and out-of-plane displacement permits both E and  to be obtained.  In addition, separating the 
displacement measurements from the indenter allows the deformation to be measured independently of machine compliance 
and thermal drift. 

The purpose of the present work is to use numerical modeling to assess the effect of measurement error on the ability to 
extract elastic modulus and Poisson’s ratio from experiments.  A parametric study was conducted in which , particle density, 
and optical magnification, were systematically varied.  For each case, 1000 simulations, with different random noise added in 
each, were completed.  Coefficients of variation for calculated E and  for each case were calculated and then mapped to 
determine combinations of particle density and magnification that are suitable for indentation experiments.  The level of 
experimental noise applied was varied for one case to determine the effect of noise level on the coefficients of variation of E 
and . 

Background 

Instrumented indentation has become a popular technique for evaluating mechanical properties of soft materials, including 
polymers and biological tissues [5].  Cylindrical flat punch indentation was chosen because of the availability of indenters 
with large contact areas which are constant as a function of depth.  Many soft materials of interest are porous or have a 
heterogeneous microstructure. Using an indenter with a contact area larger than the material’s microstructure allows the 
average material properties to be measured.  Constant contact radius with respect to indentation depth also simplifies the 
analysis and does not require indenter geometry to be known as a function of depth.  For cylindrical flat punch indentation, as 
shown in Figure 1, effective modulus, which is a function of elastic modulus, E, and Poisson’s ratio, , relates to the stiffness 
measured during an indentation test as follows: 
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where a is the indenter contact radius, and k is the stiffness 

evaluated at maximum applied load. 

The in-plane and out-of-plane displacements of a point on the 
surface of an elastic halfspace that is being indented with a flat 
punch are defined  as a function of E, , a, radial position, r, 
applied load, P [6].  Inside the contact area (r<a), the 
displacements are 
 

a

P

Ezu

a

r

r

P

Eru

2

21

2
11

2

)1)(21(



































.

 (2)
 

 
Outside of the contact area (r>a), the displacements are 
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Fig. 1 Schematic of cylindrical flat punch indentation, 
showing applied force, P, contact radius, a, indenting 
an elastic halfspace with elastic modulus, E, and 
Poisson’s ratio,  
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These can be rewritten in Cartesian coordinates as follows: 
 for r<a, 
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and for r>a,  
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Numerical Model Methods 

A simple numerical model based on equations 4 and 5 was developed to create simulated experimental displacement data 
with noise for a given E, , P, and a.  This model assumes that the displacements are measured by tracking the movement of 
discrete particles near the surface of the specimen.  The field of view represents an 8.576 mm by 6.912 mm CMOS sensor 
with a resolution of 1280 pixels by 1024 pixels.  The field of view was aligned so one corner of the field corresponds with the 
center of the indenter and a quarter of the 500 m radius indenter was in view.  The dimensions of the field of view were 
assumed to be inversely proportional to the magnification. To simulate an experiment, Gaussian white noise with 0 mean was 
added to the displacement data.  For in-plane displacement, the standard deviation of the noise was conservatively assumed to 
be 1 pixel.  For out-of-plane displacement, the resolution stated for the defocused imaging technique for full-field 
displacement measurement reported in Wu, et al. [7] was used as an estimate of the standard deviation of the uz noise.  
Similar to the dimensions of the field of view, the noise was assumed to be inversely proportional to magnification.  Table 1 
contains a summary of the field of view dimensions and ux, uy, and uz noise. 

An optimization routine was developed to extract E and  from simulated displacement data with added noise.  This routine 
assumed that the full field displacements near the specimen surface were measured experimentally in which the indenter 

radius and applied load were known.  E and  were found 
using a nonlinear least square algorithm, which varied E and 
 to minimize error between simulated experimental data 
and theoretical displacements calculated from equations 4 
and 5. 

A parametric study was conducted to investigate the effect , 
magnification, and particle density on the ability to extract E 
and  from simulated displacement data.  In all cases, 
maximum applied load was 10 mN, elastic modulus was 2 
MPa, and contact radius was 500 m.  Using these 
parameters with a Poisson’s ratio of 0.3, the maximum in-
plane deflection is 0.57 m toward the center of the indenter 
and occurs at a radius of 360 m from the center of the 

Table 1  Parameters for Numerical Simulations 
Fixed 

Parameters 
Parameters Varied 

a = 500 m 

P = 10 mN 

E = 2 MPa 

 = 0.1 – 0.5 

magnification = 5x – 40x 

particle density = 100 mm-2 – 500 mm-2 

ux noise = uy noise = 6.7 m/magnification 

uz noise = 10 m/magnification 

Field of view = 8.576 mm/magnification by 

6.912mm/magnification 
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indenter.  The maximum out-of-plane displacement is 2.90 m and is uniform under the indenter.  To account for variations 
in simulations due to added random noise, 1000 simulations were run for each set of parameters, allowing the effect of the 
parameters on the coefficients of variation of calculated elastic properties to be investigated. 

Numerical Model Results 

The results in this section are presented in terms of coefficient of variations.  For each condition (i.e., combination of 
magnification, particle density, and Poisson’s ratio), 1000 simulations are run and E and  values are extracted for each case.  
The coefficient of variation values represent how much the extracted E and values vary over the 1000 simulations with 
different noise levels and thus are related to the probability of determining the actual E and  value in a single experiment.  In 
general, a lower coefficient of variation indicates more desirable test conditions. 

Results for the numerical simulations over the range of parameters in Table 1 are summarized in Figures 2 – 4.  Figure 2 
shows the coefficients of variation for E and  with respect to  and the magnification with a fixed particle density of 300 
mm-2.  Figure 2a shows that, initially, as magnification increases, the coefficient of variation decreases until it reaches a 

(a) (b) 
Fig. 2 (a) Coefficients of variation of E and (b)  as a function of  and magnification when the particle density is 300 
mm-2 
 

(a) (b) 
Fig. 3 (a) Coefficients of variation of E and (b)  as a function of  and particle density when the magnification is 20x 
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minimum value between 10x and 20x.  As magnification continues to increase, the coefficient of variation also increases.  
The coefficient of variation for E is largest when the magnification is 40x and  is between 0.3 and 0.5.  Similarly, Figure 2b 
shows that, for a given , the variation of  initially decreases as magnification increases, reaching a minimum between 10x 
and 20x.  The largest variation in  occurs when the magnification is 40x and Poisson’s ratio is 0.1.  These results suggest 
that the pixel resolution is too coarse to measure the displacements when the magnification is below 10x.  For magnifications 
above 20x, there may be too few particles in the field of view for accurate measurements.  

Figure 3 shows the relationship between the coefficients of variation of E and  as a function of  and particle density when 
the magnification is fixed at 20x.  For a constant , the coefficients of variation for E and  decrease as the particle density 
increases.  This occurs because increasing the particle density increases the number of points the algorithm uses to extract E 
and , thereby reducing the error.  For the cases examined, the variation of E is largest when the particle density is 100 mm-2 
and Poisson’s ratio is about 0.4.  Variation of  (Figure 3b) is largest when the particle density is 100 mm-2 and Poisson’s 
ratio is about 0.1.  

The coefficients of variation of E and  are shown as a function of magnification and bead density for a Poisson’s ratio of 
0.45 in Figure 4.  Similar to the results shown in Figures 
2 and 3, Figure 4 shows that the variation of E and  
decreases as particle density increases and the variation is 
smallest for magnifications between 10x and 20x.  Figure 
5 shows regions in which the coefficients of variation of 
E and  are greater than 0.05, between 0.03 and 0.05, and 
less than 0.03.  These results show that, for a given 
material, an appropriate combination of particle density 
and magnification can be chosen to achieve an acceptable 
coefficient of variation. 

 Because the exact noise of the proposed experiment will 
depend on the particular system configuration and is thus 
unknown, a case study was completed in which the added 
noise was varied.  For this case study,  was 0.45, particle 
density was 300 mm-2, and magnification was 20x; 1000 
simulations were run at each noise level.  The noise was 
varied by proportional scaling so that the noise given in 
Table 1 is the maximum noise and corresponds to a noise 
level of 1 and no noise corresponds to a noise level of 0.  
As shown in Figure 6, the coefficients of variation for E 

 
(a) (b) 

Fig. 4 (a) Coefficients of variation of E and (b)  as a function of magnification and particle density when  is 0.45 
 

Fig. 5 Contours showing regions in which the coefficients of 
variation are both greater than 0.05, between 0.03 and 0.05 and 
less than 0.03 
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and  scale linearly with the noise level.  Linear fit lines for the 
coefficients of variation of E and  as a function of noise level 
are also shown in Figure 6.  The increase in scatter as the noise 
level increases suggests that 1000 simulations may not be 
sufficient to characterize the variations as noise level increases. 

The magnitudes of the displacements scale with the applied 
load.  Since the random noise is assumed to not vary with the 
applied load, as the displacements increase relative to random 
noise, the effect of the noise on the measured results will be 
less significant.  Conversely, when the measured displacements 
are smaller, noise may have a larger influence on the variation 
of the calculated E and  values. 

Conclusion 

A numerical study was conducted to determine the effect , 
particle density and magnification have on E and  extracted 
from simulated full-field displacement measurements.  For the 
range of parameters investigated, it was determined that for a 
given particle density and Poisson’s ratio, the coefficient of 
variation is smallest when the magnification is between 10x 
and 20x.  The coefficients of variation also decrease as particle 

density increases.  By examining the variation as a function of particle density and magnification, it was demonstrated that, 
for a given material, an appropriate combination of particle density and magnification can be selected to achieve an 
acceptable level of variation.  

For a material where  is 0.45, the bead density is 300 mm-2, and the magnification is 20x, the coefficients of variation were 
examined as a function of noise level.  Variation was shown to scale linearly with noise level.  For all noise levels examined, 
the variation of  was larger than the variation of E.  Linear fit lines were applied to the coefficients of variation to determine 
the relationship of the true coefficients of variation for E and .  As the magnitudes of the displacements scale with applied 
load, it may be beneficial to use larger applied loads to decrease the variation in the measurements, assuming that large loads 
do not alter the constitutive response.  The accuracy of the proposed technique has not been considered in the current work, 
but it will be evaluated in the future. 
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