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ABSTRACT: Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of 
cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. 
However, model predictions are difficult to interpret because of the significant dependence of predicted properties 
on model details. The goal of this study is to begin to understand these dependencies. We focus on the investigation 
on model cellulose chains with different lengths and having both periodic and nonperiodic boundary conditions, and 
predict elasticity in the axial (chain) direction with three commonly used calculation methods. We find that chain 
length, boundary conditions, and calculation method affect the magnitude of the predicted axial modulus and the 
uncertainty associated with that value. Further, the axial modulus is affected by the degree to which the molecule is 
strained. This result is interpreted in terms of the bonded and nonbonded contributions to potential energy, with a 
focus on the breaking of hydrogen bonds during deformation. 

transition their use from an investigative method to a predictive tool useful for cellulose-based application design. 
Application: This study lays the groundwork for understanding the predictions of atomistic models and to help 

tomistic modeling of cellulose has been used toA complement experimental measurements of cel-
lulose nanocrystals by providing the atomic level detail 
necessary to predict structural, energetic, and mechanical 
characteristics, and to gain a fundamental understanding 
of the atomic-scale origins of these characteristics. Such 
models frequently are used to predict elastic properties 
because the simulation methods are relatively simple and 
results can be compared to experimental data. Predictions 
of elasticity in the axial (chain) direction for the la or Iß 
polymorphs of crystalline cellulose have been reported 
from atomistic model-based studies for more than 20 years 
[l]. Unfortunately, quantitative comparison of elasticity 
results from model-to-model or to experimental measure-
ments has been difficult because of the significant effect 
of variations in the simulation methods, atomic interaction 
models, and configuration of the modeled structures. For 
example, the axial modulus predicted using a model of 
1x1x10 Iß unit cells was ~11% smaller than that predicted 
using a model of 4x4x10 Iß unit cells [2]. In another study, 
a difference in the initial equilibrium unit cell length of 
0.1% caused a 22% variation in the axial modulus predic-
tion [3]. 

The goal of this paper is to clearly illustrate some of these 
effects such that the meaning of predictions made using at-
omistic models can be understood more fully. We report re-
sults of a molecular dynamics- and molecular mechanics-
based study focusing on the most basic structure, a single 
cellulose molecule, to understand the effects of some vari-
ables on model predictions. 

Many chains of different lengths coexist in a bulk polymer, 
and so the variation of structure, energetic, and elastic prop 

erties with chain length is insignificant. However, at the na-
noscale, properties are likely to be influenced by so-called end 
effects, where the molecule is short enough that the contribu-
tion the ends of the chains make is comparable to that of the 
main body of the chain. To characterize this effect, we fo-
cused this study on model cellulose chains with different 
lengths and having both periodic and nonperiodic boundary 
conditions. These models are used to predict elasticity in the 
axial direction with three commonty used calculation meth-
ods. Results are discussed in terms of the effects of chain 
length, boundary conditions, calculation method, and strain 
on the model-predicted axial modulus, and the uncertainly 
associated with those predictions. 

METHODS 
We created single chain cellulose molecules with lengths from 
one to 32 repeat units, where one unit contains two glucose 
rings and has a length of L0 (Fig. 1). Figure 2 shows an ex-
ample consisting of four repeat units. To create chains of finite 
length, a single molecule was placed in the middle of a simu-
lation box with dimensions 50 X50 X ( n x L0 + 50) Å3. infinite 

1. Schematic of single cellulose chain repeat unit, showing the 
directionally of the 1 4 linkage and intramolecule hydrogen 
bonding (dotted lines). 
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2. Snapshots of a model cellulose chain at its equilibrium 
and strained lengths where n is the number of repeat units. 
Atoms represented as grey (carbon), red (oxygen), and white 
(hydrogen)spheres. 

length molecules were obtained by adding a covalent bond 
across the periodic boundary linking the head carbon and tail 
oxygen atoms. In this case, the molecule is infinitely long in 
its axial direction and isolated In the other two directions, 
such that the simulation box is 50x50x ( n x L0) Å3. The lateral 
dimensions of the simulation box were- chosen to be 50 Å to 
ensure that the molecule did not interact with periodic im-
ages of itself during the simulation, taking into consideration 
all possible bending, rotating, and other movement of the mol-
ecule. Atomic interactions were described by the COMPASS 
force field [4] with all interaction cutoff distance of 10 Å. This 
force field was chosen because it has been applied succes 
fully to model cellulosic materials previously [2,3,5]. 

Initial positions and charges for each atom were computed, 
and then converted to a LAMMPS (large-scale atomic/molecu-
lar massively parallel simulator) input file. All subsequent sim-
ulations were performed using LAMMPS [6]. Each initial con-
figuration was equilibrated using molecular dynamics in the 
NVT ensemble (constant number of atoms, volume, and m-
perature) at a temperature of 300 K for 10 ps before produc-
tion runs using molecular mechanics. To evaluate the statisti-
cal significance of calculated results, each simulation case 
(chain length and boundary condition) was run 10 times with 
same initial atomic structure but different initial velocities 
(randomized momenta). 

To enable calculation of the axial modulus, each model was 
repeatedly deformed in small increments in the chain direc-
tion, as illustrated in Fig. 2. The equilibrium length L of a re-
peat unit and the corresponding minimum potential energy 
U were calculated using molecular mechanics with the con-
jugate gradient energy minimization algorithm. Parameters 
that quantify clastic properties, with and without the assump-
tion of constant area, have been differentiated as “chain stiff-
ness” and “chain modulus,” respectively [3]. However, this is 
not a significant issue for a single chain in a much larger simu-
lation box where the cross-sectional area is taken to be its oc-

3. Equilibrium unit cell length (red circles) and potential energy 
(black squares) for finite and infinite chains as functions of 
chain length. Each data point represents the average value of 10 
repeated simulations. 

cupied area in a unit cell, a value that changes little during the 
deformation. Therefore, we applied strains up to 0.5. In the 
cellulose Iß structure, one unit cell consisting of two mole-
cules has a cross-sectional area of 63.42 Å2. Thus, an approxi-
mate area for a single molecule is half of this value, or 31.71 
Å2. This is the value used in the elasticity calculations. We also 
note that in the physical system, intramolecular covalent 
bonds would break at some strain. However, few force fields, 
including the one used here, can account for breaking of co-
valent bonds. Introducing this capability into the model is an 
active area of research. 

Initially, all finite and infinite chains have the same unit 
cell length, 10.38 Å [7]. However, the equilibrium length cal-
culated during the deformation process was found to exhibit 
some variation between 10 Å and 11 Å (Fig. 3). This is con-
sistent with a previous observation that an isolated single cel-
lulose molecule will have a larger equilibrium length than that 
of a cellulose nanocrystal [3]. Figure 3 also illustrates that the 
potential energy of finite and infinite molecules is 25-35 kcal/ 
mol/glucose. Thus, we observe that the equilibrium unit cell 
length and potential energy are not strong functions of bound-
ary conditions or the number of repeat units. In addition, sig-
nificant variation in the data for short chains indicate that at 
least six repeat units should be used for calculations based on 
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4. A representative plot of potential energy (left y-axis; 
normalized by 6202 kcal/mol) and corresponding number of 
hydrogen bonds (right y-axis; normalized by 13) as functions 
of strain. Data from a simulation of an infinite chaing with eight 
repeat units. 

model-predicted length and energy. In the finite chain case, 
error in short chain calculations is the result of molecule end 
effects [8] and the configuration being dependent on fewer 
atoms. The latter effect is the primary source of error ob-
served for infinite chains with a small number of repeat units. 

RESULTS 
Figure 4 shows a representative plot of the change in poten-
tial energy with strain (black squares). As expected, energy 
increases rapidly with strain. The total potential energy is the 
result of the contributions of nonbonded (van der Waals, 
Coulomb, hydrogen bonds) interactions and bonded interac-
tions (i.e., covalent bonds). Figure 4 shows that the energy 
associated with nonbonded interactions (red circles) is larger 
than that of the bonded interactions (green triangles) at small 
strains (less than ~0.2). However, the opposite is true when 
the strain is large. Thus, the total potential energy is domi-
nated by nonbonded interactions at low strain and bonded 
interactions at high strain. Model chains of all lengths and 
boundary conditions exhibited similar behavior. 

The role of hydrogen bonding was evaluated by counting 
the number of hydrogen bonds present during deformation. 
A hydrogen bond is identified when the hydrogen bonding 
distance is less than or equal to 0.35 nm and the donor-hydro-
gen-accepter angle is less than or equal to 30°. As shown in 
Fig. 4, hydrogen bonding decreases rapidly within the first 5% 
strain. The hydrogen bond is modeled by a combination of 
van der Waals and Coulombic energies, and so contributes to 
the nonbonded energy. The higher nonbonded energy at 
small strain primarily results from the existence of hydrogen 
bonds, as suggested from the plot. As the strain increases, the 
hydrogen bonds break very quickly, and contribute less to the 
response of the molecule. For small strains, removing the ef-

fect of hydrogen bonds can cause predicted elastic properties 
to decrease by 50% to 60% [1]. Another study found that re-
moval of hydrogen bonds resulted in a decrease of between 
14% and 26% in Iα chain stiffness, while for Iß, removal caused 
either a 15% decrease or a 7% increase in chain stiffness, de-
pending on the initial atomic coordinates [3]. In the low strain 
regime, our observations are consistent with these findings. 
However, our results also indicate that the dependence of 
elastic behavior on hydrogen bonding should be less for elas-
ticity calculated at large strain rates. 

The axial modulus (units: Pa) can be obtained using three 
methods. Although the functional forms of the methods are 
equivalent, which parameters are obtained from simulation 
differs, and so the source of calculation error may differ as 
well. Note that all three methods are in some way dependent 
on an estimation of area which, as discussed previously, is an 
approximation. The first method [3] can be expressed as: 

(1) 

where the force F (units: N) and molecule equilibrium length 
L 0 (units: m) are obtained by fitting a polynomial to potential 
energy U (units: J); molecule length L (units: m) is obtained 
from the simulation; and the cross-sectional area A (units: m2) 
for a single molecule must be specified. 

The second method [2] can be expressed as: 

(2) 

where U and L are obtained from the simulation and and must 
be specified The error associated with this method is depen-
dent on the accuracy of the specified equilibrium length. The 
equilibrium length of a single chain is likely to be greater than 
that of a crystal. Therefore, error might be introduced into the 
process if there is a disconnection between the model and the 
source of its equilibrium length. However, if the equilibrium 
length is calculated using a fit to the U and L data obtained 
from the simulation, we find that this method yields the same 
result as the first method within statistical significance (Fig. 
5). 

The third method [9] can be expressed: 

(3) 

where stress o (units: Pa) and length L are obtained from the 
simulation L0 and must be specified. At first glance, this meth-
od appears to be the simplest, and so would potentially have 
the last error. However, the stress is calculated from the so-
called pressure virial, which contains error in itself. First, the 
pressure virial is a function of area, so that approximated pa-
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5. Comparison of three methods for calculating axial elasticity 
in large strain. Data normalized by 122 GPa. Methods 1 (blue) 
and 2 (green) yield the same result for molecules with different 
lengths and boundary conditions, while method 3 (red) predicts 
lower values. 

rameter is being specified implicitly. Second, the virial expres-
sion is not equivalent to the mechanical Cauchy stress [10]. 
As shown in Fig. 5, we find using this method yields axial 
moduli that differ from those predicted by the first two meth-

ods by up to 22% for infinite chains and 39% for finite chains. 
We therefore do not advocate use of this method and will not 
discuss it further here. 

The axial modulus was calculated for both finite and infi-
nite chains with different numbers of repeat units from data 
taken in the large and small strain regimes. Figures 6 and 7 
show the results, where the plots on the tight show the raw 
data and plots on the left provide a statistical representation. 
The statistical plots illustrate the inter-quartile range (large 
rectangle), mean (point inside the rectangle), median (line 
inside the rectangle), and maximum and minimum values 
(highest and lowest point, respectively). The data are normal-
ized in these figures to highlight the fact that the trends ate 
not specific to the force field used. 

Figure 6 illustrates the results obtained from the large 
strain (>0.2) regime. For both finite and infinite chains, the 
uncertainly in the data decreases as the chain length increas-
es. For example, the standard deviation in the finite molecule 
data is 0.14 with six repeat units, and 0.01 with 32 repeat units; 
for infinite molecules, the standard deviation is 0.15 with six 
repeat units while that with 32 repeat units is 0.03 (calcula-
tions based on normalized data). In addition, the data do not 
appear to trend in any particular way for the infinite chains, 
while the axial modulus of the finite chains increases with 
chain length and asymptotes to the same value as that pre-

6. Finite (top) and infinite (bottom) molecules at large strain; axial modulus normalized by 177 GPa (the highest value from 
calculation). The plots on the right show the raw data with a solid line indicating convergence, and left ones provide a statistical 
representation. Ten independent simulations were run for each case. 
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7. Finite (top) and infinite (bottom) molecules at small strain; axial modulus normalized by 802 GPa (the highest value from 
calculation). The plots on the right showe the raw data with a solid line indicating convergence and left ones provide a statistical 
representation. Ten independent simulations were run for each case. 

dicted for the infinite chain. 
Figure 7 shows the results obtained from the small strain 

(<0.2) regime. As with the large strain regime, the data uncer-
tainly decreases with increasing chain length. However, even 
with the longest chain the uncertainty is six times that ob-
tained from the same model in the large strain regime. In ad-
dition, the magnitude of the axial modulus is much larger in 
the small strain regime, converging to a value two to three 
times that of large strain in both finite and infinite cases. 

These observations can be understood in terms of the role 
of potential energy and hydrogen bonds. As shown in Fig 4, 
the energetics of the low strain regime is dominated by non-
bonded interactions associated with the presence of hydrogen 
bonds. These hydrogen bonds are extremely strong and so 
contribute to a high axial modulus. In the high strain regime, 
where most hydrogen bonds have broken, the energetics is 
dominated by the role of bonded interactions, and we observe 
a correspondingly lower axial modulus. 

Comparison of the axial moduli reported here to those in 
the literature poses a challenge because, as shown here, re-
sults of a molecular simulation differ significantly with model 
parameters and can be expected to vary even for a fixed set 
of conditions. The axial modulus predictions in Figs. 6 (large 
strain) and 7 (small strain) approach 109.4 Gpa and 254.8 GPa, 
respectively. Molecular simulation-based predictions of the 
axial modulus of cellulose Iß are typically in the range of 110-

180 GPa [9]. So, although there is certainly overlap between 
our results and those reported elsewhere, it is difficult to 
reach definitive conclusions. In terms of experimental results, 
the comparison is even more difficult to make. For example, 
the axial modulus for cellulose Iß obtained from x-ray scatter-
ing was reported to be 220±50 GPa [11]. Further, the elastic-
ity of a single chain will likely differ from that of a crystal be-
cause of the role of inter-chain hydrogen bonding. For 
example, we have found the mean axial elasticity for a 4x8x8 
cellulose crystal to be 155 GPa, whereas that of the corre-
sponding eight unit single chain is 113 GPa. Complicating the 
issue further is the cooperative hydrogen bonding, such that 
omitting interchain hydrogen bonding (as is necessarily the 
case for a single chain) will affect intrachain hydrogen bond-
ing [12]. However, while the results shown in this paper can-
not be directly extrapolated to cellulose nanocrystals, the 
trends observed both in the magnitude and the uncertainty 
of a model-predicted axial modulus are generally applicable. 

CONCLUSION 
This study highlights the effects of chain length, strain re-
gime, and calculation method on axial modulus prediction 
using atomistic simulation and the uncertainly associated with 
that prediction. All three of these considerations affect the 
model predictions and need to be taken into careful consider-
ation when using atomistic modeling or interpreting data ob-
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tained from it. The limitation of this study is that it was per-
formed with single chains modeled using only one force field 
(COMPASS). However, a comprehensive study that includes 
characterization of multiple force fields and the effect of 
model size, including crystal structure, is underway. These 
types of studies are critically necessary to enabling interpreta-
tion of model data. Only by understanding how “what goes 
in” affects “What comes out” can atomistic simulations transi-
tion from an investigative method to a predictive tool useful 
for cellulose-based application design. TJ 
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ABOUT THE AUTHORS 
With the increasing availability and use of atomistic 
simulations to characterize organic materials, we felt 
it was important to step back and consider, for the 
very simple system of a single cellulose chain, how 
parameters that define a model affect its predictions. 
Significant work in studying cellulose using atomistic 
simulation has been conducted since the mid-1480s. 
and the models have progressed in complexity, size, 
and accuracy. However, results are typically reported 
without considering variations due to small changes 
in model parameters or simply because of the statisti­
cal nature of the models themselves. Therefore, this 
work complements previous studies by providing a 
reference point and hopefully setting a precedentfor 
future research to report the subtle, yet important, 
model details that affect predictions and the uncer­
tainty in those predictions. 

The most significant challenge in this study was 
isolating individual model parameters to determine 
their effects independently. Atomistic models are ex­
tremely complex and we could only hope to make 
quantitative statements about the roles of model pa­
rameters by defining a problem simple enough that 
individual effects could be identified, yet complex 
enough to approach something experimentally mea­
surable. We chose to focus on the axial modulus of in­
dividual cellulose chains with which we could explicit­
ly control characteristics such as chain length and 
strain, and where there is complementary (albeit not 
directly comparable) experimental data available for 
cellulose nanocrystals. We were very surprised to dis­
cover just how much variation was inherent in these 

models, even when all input parameters were con­
stant. However, along with the realization that uncer­
tainty exists, came the understanding that we could 
quantify it and so take its effect into account when re­
porting atomistic predictions. The critical analyses of 
model predictions in this study are an important first 
step, and will form the basis for more comprehensive 
characterizations, including multiple force fields and 
various crystal sizes and structures. This work will 
help support future research in developing new engi­
neered nonwoven materials and composites that are 
based on cellulose nanoparticles. 
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