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ABSTRACT 

The state of the art among most industry citations of box compression estimation is the equation by 
McKee developed in 1963. Because of limitations in computing tools at the time the McKee equation was 
developed, the equation is a simplification, with many constraints, of a more general relationship. By 
applying the results of sophisticated finite element modeling, in this current study we derive a more 
general box compression formula that preserves the underlying theory of the McKee equation but removes 
the constraints. This formula is solvable with modern spreadsheet software, and we present an imple­
mentation method and example outputs as we relax or impose the various constraints. We analyze data 
obtained from multiple literature sources containing the traditional McKee equation inputs. We quantify 
the disparity between the McKee equation and the various sources of data and present an improved model 
for single-wall box-compression strength. The model attaches physical meaning to what were previously 
only fitting parameters, and it can serve as a tool for additional explorations in box optimization. 

Keywords: Box compression, strength, model, bending stiffness, ECT, BCT, buckling. 

INTRODUCTION performance criterion that may even be specified 
in the negotiation of price. 

Corrugated fiberboard is a primary material in Ever since the broadening of motor freight 
the shipping, distribution, and storage of almost and rail carrier classifications in 1936 to include 
every product. Boxes made from corrugated corrugated fiberboard shipping containers, 
board provide temporary protection from com- manufacturers have sought predictive strength 
pression forces for products in transit or stacked models for corrugated boxes. Researchers have 
in warehouses. In this environment, top-to- attempted to generate predictive equations that 
bottom box compression strength is an important would reliably estimate box compression 

strength without requiring the actual production 
and testing of every box. At the USDA Forest 

1 The Forest Products Laboratory is maintained in coop- Products Laboratory, Madison, Wisconsin, ini­
eration with the University of Wisconsin. This article was tial scientific analysis of boxes predates World 
written and prepared by U.S. Government employees on 
official time, and it is therefore in the public domain and not War II. Kellicutt and Landt (1951) summarized 
subject to copyright. much of this work with basic design principles 

Wood and Fiber Science, 38(3), 2006, pp. 399 – 416 



400 WOOD AND FIBER SCIENCE, JULY 2006, V. 38(3) 

in terms of correlations between material com­
pression strength and panel buckling strength. In 
this study, we expand upon those same prin­
ciples. 

McKee et al. (1963) published what has be­
come the industry’s seminal article in this area, 
including detailed citations of the literature that 
preceded their analysis. Their work resulted in 
an equation to predict single-wall (SW) box-
compression strength P, commonly called sim­
ply the “McKee equation,” of the form 

P = aPb ��D D �1−bZ2b−1 (1)m x y

where Pm is the edge-crush value of the com­
bined board, Dx and Dy are the flexural stiffness 
values for the combined board in each direction, 
and Z is the perimeter of the box to be modeled. 
As we shall discuss, this functional form is a 
simplification, with many constraints, of a more 
general relationship. Similar functional forms 
were found by Buchanan et al. (1964) and Shick 
and Chari (1965) to work for double-wall (DW) 
containers as well. Wolf (1972), Batelka and 
Smith (1993), and Challas et al. (1994) found it 
important to include additional terms to account 
for the box geometry, though the various ap­
proaches that include geometry explicitly do not 
agree. 

Using Eq. (1), McKee et al. (1963) reported 
the average difference in magnitude between 
predicted and actual compression strength of 
their data set as 6.1%, with 97% of their data 
within ±15% of the estimated value and a maxi­
mum difference of 17.1%. Subsequent literature 
reported even better accuracy for specific data 
sets with geometry effects included. However, 
the goal of developing a predictive model should 
not be an equation that describes a limited data 
set exceptionally well but rather an equation 
with good inter-laboratory precision and accu-
racy—one that can adequately address all the 
available data. 

The round-robin analysis of compression data 
on actual containers by Miles (1966) provides an 
objective quantification of how accurate any 
model could be expected to be. Eleven labora­

tories tested empty regular slotted containers of 
a single material grade and size. The simplest 
model of all the data would make P equal to the 
overall average strength. Given that model pa­
rameters are generated with real world data, we 
cannot expect any model to do better than the 
variability in testing of the input parameters. 
However, the difference between experimental 
variability and modeling variability is a real cost 
associated with box production, resulting in 
boxes that may be over-designed to compensate 
for a lack of model precision. Improving the 
accuracy of our models would remove some of 
this extra cost from the manufacturing process. 

The various studies estimating box compres­
sive strength do not all report the same values 
for a or b in their fits to Eq. (1), though they all 
typically report their values to three or more 
“significant” figures. They also do not report the 
statistical range on these values, which is of in­
terest given that all the values were arrived at 
through curve fitting. As an example, simply by 
reading the articles, we do not know if McKee’s 
value b � 0.746 is equivalent to the value 0.75 
used by Wolf (1972), 0.724 used by Shick and 
Chari (1965), or 0.778 found by Buchanan et al. 
(1964). More recent literature might lead us to 
conclude that ∼0.75 is a reasonable value for the 
exponent b, while 2–3 is a reasonable value for 
a, independent of the construction of the corru­
gated container. While in practice these simpli­
fications are often implemented at some loss of 
accuracy in estimation quality, it is not clear that 
they are legitimate for each data set individually 
or for the entire mass of data available in the 
literature. Furthermore, increasing a by 50% in a 
given equation would lead to a 50% increase in 
predicted box compression. Clearly this is not 
realistic for a given set of data. 

It is also important to note that in many analy­
ses that have followed McKee’s analysis, the 
original parameters (a and b) of the McKee 
equation are assumed in one form or another. 
The data sets themselves are fit only insofar as 
changes are made to the initial form, typically by 
incorporating the impact of box dimensions. 
This approach raises questions about the validity 
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of the resulting functional forms, given that all 
the parameters were not allowed to change in­
dependently during the minimization of the error 
term in the fitting process. 

Aside from production variables, at least 17 
elastic constants appear to be applicable to cor­
rugated fiberboard. Libove and Hubka (1951) 
identified 12 constants, of which three were 
checked experimentally, appropriate to general 
symmetrical corrugated-core sandwich plates. 
Asymmetric plates need an additional five cou­
pling constants. In this report, our theory in­
cludes four of the constants in the form of Dx, 
Dy, ĉ, and �, and as we will show, most indi­
vidual data sets can be characterized working 
only with D and Dy. With broadened data, Kel­x 

licutt and Landt (1951) and Kawabata (1997) 
advocated empirical flute-adjustment factors. 
However, with the exception of our parameter �, 
we reserve such adjustments and a rationale for 
reducing 17 elastic constants to an effective four 
constants for future work. We shall also cite a 
background nonlinear material theory, but limit 
this report to a linear material theory. 

OBJECTIVE 

Working with dimensionless expressions in­
stead of the elastic constants helped Urbanik 
and Saliklis (2003) to understand the developed 
models, even though such expressions are not 
typically encountered among box designers. The 
objective of this report is to apply the results 
of previous work (Urbanik and Saliklis 2003) 
to analyze all known available box compres­
sion strength data. We compile and analyze 19 
data sources1 currently available, explain some 
discrepancies among estimation formulas found 

1 Data analyzed in this study were taken from Angell and 
Paslay (1959), Batelka and Smith (1993), Bormett et al. 
(1981), Brodeur et al. (1997), Buchanan et al. (1964), Chal­
las et al. (1994), Fahey and Bormett (1982), Gartaganis 
(1975), Hahn et al. (1992), Hartikainen (1989), IPC (1967), 
Koning and Moody (1969), Koning and Godshall (1975), 
Little (1943), McKee et al. (1963), Schrampfer et al. (1987), 
and Shick and Chari (1965). We also used unpublished data 
from P. McKinlay and B. Frank (Materials Testing Labo­
ratory, Packaging Corporation of America). 

in the literature, and provide a deeper under­
standing of the factors that influence estima­
tion of box compression. The assumptions made 
throughout are that container performance is 
fixed by the physics of the boxes tested, and the 
purpose of testing and estimation is to arrive at 
fundamental physics to best understand and pre­
dict failure mechanisms. With that in mind, we 
also uncover several areas for additional re­
search and expansion on current knowledge. 
This work is necessary if the corrugated con­
tainer industry hopes to understand its product 
well and achieve materials savings and economy 
by reducing product variation. 

LINEAR MODEL 

Advancements in the understanding of paper 
material have allowed researchers to investigate 
the effects of material properties and geometry 
on corrugated fiberboard strength that were not 
considered in the McKee formula. In particular, 
comparisons by Urbanik and Saliklis (2003) be­
tween finite element predictions of plate buck­
ling strength and fitted formulas enabled re­
searchers to numerically investigate a broad-
based strength response of simulated box panels 
economically. 

The two-part formula given by Urbanik and 
Saliklis (2003) characterizing the postbuckling 
strength of box panels can be expressed more 
simply as 

u�Pf Pcr �= � (2)
P Py y 

Input u � 1 characterizes elastic buckling ap­
propriate when the slenderness ratio U > 1, or, in 
other words, when the total load the plate can 
support exceeds the critical buckling load, and 
u � 0 characterizes inelastic buckling when 
U � 1. Only elastic buckling was considered by 
McKee et al. (1963) in the development of 
Eq. (1). 

Complexities in calculation led McKee et al. 
(1963) to simplify the fundamental Eq. (2) to 
reach Eq. (1). To remove these limiting assump­
tions, we start with Eq. (2) in its most general­
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ized form and follow the procedures of Urbanik given by � � m�/2� and at the integer value of 
and Saliklis (2003). m that yields a minimum C. 

Pf u��̂ ua 
�= ��0 (3)

Py 

Equation (3) is applicable to either a linear or 
nonlinear material law. Corrugated fiberboard is 
inherently a nonlinear material, with curvature 
in its load-strain relationship. Furthermore, evi­
dence from sophisticated modeling seems to fa­
vor a nonlinear input. However, to fully under­
stand nonlinear material modeling, we must 
thoroughly understand the linear material re­
sponse. Thus, in this study we investigate the 
response involving only a linear material law 
and incorporate the rule �̂ � CS�� to obtain a 

= ��0 

Pf u��CS���u� (4)
Py 

Another implicit assumption in the McKee 
formula is the form of the critical load Pcr ap­
propriate for an infinitely long plate, neglecting 
twisting mechanics. By replacing the plate stiff­
ness S in Eq. (4) with equivalent physical prop­
erties, we are able to treat the general case of Pcr 

expressed in relation to Pcr 

u�Pf u�� 12�DxDy 
�� �= ��0 C

l2
P
y 
u� P u�3C��� �
�0

�
Py

cr �
�

= � (5)2 Py 

Equation (5) and input Pcr are written with box 
panel dimensions in mind—with either length l 
or width w of the box input as the plate size. By 
calculating the compression for each panel and 
summing appropriately, we are able to avoid the 
assumption made by McKee that all boxes are 
square and that the perimeter Z should be used. 

We also remove the McKee assumption that 
boxes must be relatively tall. By introducing pa­
rameter C into Eq. (5), we have accounted for 
buckling waviness in the direction of box depth 
and can deal with both tall and squatty boxes. 
The expression for C is to be evaluated for the 
simple support condition at the wave period 

2�2 �2 

C = ˆ + − ĉ2 + 1 
3�1 − v 2� 4�2��c � � 

2�2 �2 m
= min 2ĉ + +2 m2 �2m=1,2,3... 12�1 − v � 

(6) 

The result of substituting the minimum C into 
Eq. (5) leads to 

u� P u�Pf 2ĉ + M cr �2 PP � 4�1 − v �
� �

y y 

2�2 m 
M�m,�� = min + (7) 

m=1,2,3... m 2 �2 

To obtain a form appearing as a more general 
expansion to Eq. (1), we can substitute expres­
sions for Pcr and �, transform constants as � � 
a(64�2)b−1 and � � 1 −  b, use Py � Pm and 
rearrange terms to get the following expressions 
for the cases of inelastic and elastic buckling: 

For inelastic buckling, 

Pl = Pfl = a16b−1�4�2�b−1P l u=0m

(8) 

For elastic buckling, 

b �1−bPl = Pf l = a16b−1P ��D Dym x

x � 1−bD 1�4 � 2ĉ + M 
u = 1

l D
l2b−1��d � � 4�1 − v 2�

�
y 

Inelastic buckling typically occurs in box pan­
els that are geometrically stiff (low l, low w, or  
high board thickness) relative to the material 
edgewise crush test (ECT) strength. If a box 
panel is observed to crush uniformly along its 
loading edge without significant bulging, it has 
probably failed by inelastic buckling. Con­
versely, if a panel noticeably bulges with crush­
ing emanating from its corners, buckling is prob­
ably elastic. Computing the slenderness U � 
√P /Pcr of the panel is a good predictor of what 
mechanism will occur. 

Other material property inputs that relate to 

y
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TABLE 1. Inputs to model and associated coding to impose or remove various constraints. 

With constraint Without constraint 

Effect Input Code Effect Input Code 

Considers the box as square l � w � Z/4 S Models rectangular geometry l, w R 
Neglects effect of box depth; assumes to M � 2 I Models finite depth M(m, �) F 

be infinitea 

Considers only elastic buckling u � 1 E Models elastic and inelastic buckling u(U)  EI  
Neglects plate stiffening associated � � 0 — Models aspect ratio stiffening � �  0 — 

with effective aspect ratio 
Assumes that shear modulus associated ĉ � 1 — Models known shear modulus ĉ — 

with twisting conforms to St. Venant’s 
principle 

Neglects effect of plate twisting on � � 0 — Models known Poisson’s ratio � — 
Poisson’s ratio 

a The minimum of the function M(m, �) occurs at real m � �. For an infinite depth plate this yields M � 2. 

twisting through ĉ and � appear in Eqs. (7) and 
(8) but were not included in the McKee formula. 
Twisting of a corrugated panel is a difficult pro­
cess to model, and a complete characterization 
must include within-plane shear stiffness and 
Poisson’s ratios. Luo et al. (1995) suggested a 
pair of square-panel twisting tests for obtaining 
the requisite data. Angell and Paslay (1959), 
Buchanan et al. (1964), and McKinlay (1980)2 

reported partial data on the shear modulus. Com­
plete twisting data do not appear to be present in 
the literature on box compression beyond the 
work of Luo et al. (1995). When twisting stiff­
ness cannot be obtained, the inputs ĉ � 1 and 
� � 0 into Eqs. (7) and (8) are recommended. 

Though Eqs. (4), (7), and (8) are equivalent, 
each form offers an advantage in looking at plate 
strength in terms of dimensionless variables or 
actual mechanical properties. Except for the in­
troduction of empirical improvement �, no non-
mechanistic assumptions are made. Parameter � 
accounts for the apparent predictability depen­
dence on panel aspect ratio and can be under­
stood as an adjustment to overall plate rigidity as 
affected by boundary conditions and geometry. 
It is interesting to impose the constraints from 
McKee et al. (1963) onto Eq. (8) individually 
(Table 1). Imposing all these constraints reduces 
Eq. (8) to P1 � P/4 with P given by Eq. (1). 

McKinlay, P. Compression strength—a new insight. 
Unpublished. From presentation to the Forest Products 
Laboratory, July 1980. 

The logarithmic transformation of Eq. (7) 

Pf 2ĉ + M Pcr
log 

y 
= u�� log 

4�1 − v 2� 
+ log 

y 
�P P

+ u��log� + log� (9) 

allows us to fit the available data with linear 
techniques. The best fit to the equation requires 
a minimization of the differences between the 
predicted panel strength ratio Pf/Py and the ex­
perimental panel strength ratio Pf*/Py summed 
over all the available data.3 

2Pfl P* fl � +min�� �log − log
P Py y 

2Pfw P*

log − log (10)
� � P P

fw � � 
y y 

Depending on box geometry, the strength of 
the side panel Pfl might differ from the strength 
of the end panel Pfw. Experimental (actual) 
panel strength is not known directly, but it can 
be determined from experimental box compres­
sion strength P*. If the box is square, it follows 
that P* fw � P*/4l. If the box is rectangu­fl � P* 

3 Note that ∑[log(Pfl/Py) − log(P*/Py)]2 + ∑[log(Pfw/Py)fl
− log(P* /Py)]2� 2 ∑(log P − log P*)2. However, mini­
mizing the left-hand side of the equation gives distinctly 
different results than minimizing the right-hand side. Prop­
erly partitioning the load-carrying capacity between the 
length and width panels is required to account for the ob­
served impact of the corners on box compression strength, 
as described in the text. 

fw

2 
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lar, it is reasonable to iteratively proportion P* 
between the side and end panels according to the 
ratios involving predicted box compression 
strength P. 

P* P*�2l 
P* = fl = Pfl P w Pfw


1 +

l Pfl 

P* P*�2w 
P* = fw = Pfw P l Pfl 

P = 2�Pfll + Pfww� 

1 + 
w Pfw 

(11) 

We see that the side and end panels do not 
necessarily carry a load proportional to their 
fraction of the perimeter. In fact, the use of the 
perimeter in the original McKee Eq. (1) also 
runs counter to the observation in McKee et al. 
(1963) that the box corners apparently carry pro­
portionally more load than do the sides. Model­
ing a box simply as four panels of equal impact, 
implicit in the use of the perimeter, misses the 
interaction between the panels and their failure 
modes that gives rise to the strengthening effects 
of the corners. For that reason, in solving for the 
panel strength of a box, we must link the defor­
mation profiles. This extra boundary condition 
identifies the physics behind the extra load-
carrying capacity of the corners by connecting 
the mode shape of the sides. 

IMPLEMENTATION METHOD 

x

Equation (9) can be expressed with either the 
form y � m1x1 + q when � � 0 or the form y � 
m1x1 + m2x2 + q when � � 0, and fit to data 
using any standard linear equation technique (for 
instance, the LINEST function in the Microsoft 
Excel spreadsheet software). Inputs y*, x1, and 

2 are to be computed from the expressions 

P* fl 
y* = log 

P
, 

y 

x
2ĉ + M P

l = u log + log 
cr 

, and 
P�

4�1 − v 2� y 
�

x2 = ulog� (12) 

The minimization of ∑(y − y*)2 for both side 
and end panels yields the outputs m1, m2, and q 
from which �, �, and � are then computed ac­
cording to 

� = 10q, � = m1, and � = m2 �m1 (13) 

By this technique the best fitting �, �, and � are 
calculated iteratively. Initial values of Pf/Py (Eq. 
(7)) yield values of P* (Eq. (11)) and are up­
dated iteratively until convergence. 

The panel shape at failure is specified by in­
putting a value m that defines the number of 
half-waves along the panel depth. The required 
value of m for the weakest mode shape of the 
side panel is to be computed from the minimum 
M and lies between the integer value of � de-
noted as �int and , �int + 1, subject to �int � 0. 
M takes on the smallest of the values 

�2 2 2 

�
1 �int + 1

2 + 2 , + 
�int 

, or  
�2 

+ 
�22 �2 2 + 1� �int �int 

(14) 

from which the required m becomes the greater 
of either the value 1 or the integer value of the 
inverse of M(m,�) given by 

�2��M + �M2 − 4 
m = (15)

2 

P

It was empirically determined by Urbanik 
(1996) that the same value of m found to mini­
mize M for the finite depth side panel and used 
to compute Pfl should also be used to compute 

fw so as to guarantee the same mode shape in 
adjoining panels. 

RESULTS 

Meaning of � 

Data with sufficient inputs to Eq. (9) were 
found among 17 references previously cited (see 
footnote (1)). The first subset of data of interest 
is on regular slotted corrugated containers, in­
cluding SW construction from Angell and 
Paslay (1959), Bormett et al. (1981), Challas et 
al. (1994), Fahey and Bormett (1982), Frank 
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TABLE 2. Results of original McKee formula applied to 29 sets of data from 17 references. 

McKeea 

Avg 

Fitted Eq. (1) 

Avg |%| 
S I Eb 

Data set or grouping No. samples |%| error a b |%| error Improvement � � 

SW boxes 
1 Angell 3 16.6 5.29 0.66 1.91 14.7 0.572 0.345 
2 Bormett, Fahey, Koning 21 11.4 0.40 0.98 5.20 8.6 0.364 0.016 
3 Challas 24 19.1 2.23 0.72 11.3 7.7 0.361 0.282 
4 Frank waxed 78 13.2 3.74 0.65 8.42 4.7 0.400 0.347 
5 Frank clamped 78 12.3 4.04 0.64 7.74 4.6 0.405 0.357 
6 Gartaganis 4 16.6 0.01 1.49 6.57 10.0 0.291 −0.489 
7 IPC 50 8.82 1.61 0.77 7.14 1.7 0.360 0.232 
8 McKee 61 6.09 2.06 0.74 6.11 0.0 0.396 0.256 
9 Schrampfer waxed 45 9.69 2.27 0.72 7.82 1.9 0.378 0.278 

10 Schrampfer clamped 45 10.7 2.15 0.73 7.63 3.1 0.371 0.273 
11 All SW boxes 409 11.1 2.19 0.73 9.04 2.2 0.376 0.273 
12 All with lwd 319 11.3 2.22 0.73 9.40 2.1 0.378 0.275 

DW boxes 
13 Challas 6 56.0 5.28 0.54 13.9 42.1 0.276 0.458 
14 Frank waxed 4 14.5 7.36 0.58 9.4 5.1 0.475 0.425 
15 Frank clamped 4 14.2 6.26 0.60 10.0 4.2 0.466 0.403 
16 Schrampfer waxed 8 17.8 1.90 0.73 8.43 9.4 0.337 0.268 
17 Schrampfer clamped 8 16.1 1.34 0.79 5.29 10.8 0.336 0.214 
18 Shick 12 37.7 3.68 0.73 6.08 31.6 0.637 0.272 
19 All DW boxes 42 31.2 3.50 0.67 28.4 2.7 0.414 0.331 

SW tubes 
20 Batelka 108 41.1 3.07 0.76 11.5 29.6 0.671 0.236 
21 Brodeur 15 26.7 0.42 1.02 9.35 17.3 0.479 −0.020 
22 Buchanan SW 58 33.2 3.24 0.74 5.46 27.7 0.590 0.264 
23 McKinlay da 8 43.4 4.81 0.71 4.94 38.5 0.721 0.294 
24 McKinlay 1a 22 45.9 2.42 0.81 5.86 40.0 0.723 0.187 
25 McKinlay 3c 39 44.3 1.68 0.86 10.7 33.6 0.693 0.138 
26 All SW tubes 250 39.4 2.13 0.81 11.9 27.5 0.647 0.185 

Other 
27 Buchanan DW 10 34.1 1.20 0.92 5.79 28.3 0.711 0.081 
28 Hahn 5 22.6 6.57 0.63 7.94 14.6 0.592 0.373 
29 Hartikainen 16 12.4 1.99 0.76 16.1 −3.7 0.436 0.236 

a a � 2.028, b � 0.746. 
b Using Eq. (9), with constraints identical to those implicitly applied by McKee: � � 0, � � 0, ĉ � 1, u �1, l � w � Z/4, and M � 2. 

(2004),4 Gartaganis (1975), IPC (1967), Koning 
and Godshall (1975), McKee et al. (1963), and 
Schrampfer et al. (1987) and DW construction 
from Challas et al. (1994), Schrampfer et al. 
(1987), Shick and Chari (1965), and Frank 
(2004) (see also footnote 4). A second subset of 
data is of corrugated fiberboard tubes (boxes 
without top and bottom flaps) and includes SW 
construction from Batelka and Smith (1993), 
Brodeur et al. (1997), Buchanan et al. (1964), 

4 Frank, B., includes unpublished data from the Materials 
Testing Laboratory, Packaging Corporation of America. 

and McKinlay (see footnote 2) and DW con­
struction from Buchanan et al. (1964). Data from 
tests of individual corrugated fiberboard panels 
by Hahn et al. (1992) and strength predictions 
via an alternative but not disclosed model by 
Hartikainen (1989) were also examined. 

Twenty-nine data sets, as numbered in Table 
2, were grouped and organized from the refer­
ences. All references provide data on Pm, Dx, 
Dy, Z, and P*. For lack of Poisson’s ratio data, 
the assumption � � 0 was applied to all data 
sets. Assumption ĉ � 1 was also applied except 
to references from Angell and Paslay (1959), 
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Buchanan et al. (1964), and McKinlay (see foot­
note 2) containing data on Dxy, from which a 
more accurate ĉ is computable. For references 
by Schrampfer et al. (1987) and Shick and Chari 
(1965) without separate l and w data and without d 
data, it was assumed that l � w � Z/4 and M � 2. 

Data were collected by a variety of test meth­
ods; in some cases the specific method was not 
reported. The data from Schrampfer et al. (1987) 
and Frank (2004; footnote 4) are each included 
among “waxed” and “clamped” subsets, respec­
tively, corresponding to the test method used to 
obtain Pm. For these studies, the waxed data 
were acquired following TAPPI T 811 (TAPPI 
2002a) and the clamped data were acquired us­
ing an edge-clamping test fixture described in 
TAPPI T 839 (TAPPI 2002b). 

The original McKee formula with constants 
a � 2.028 and b � 0.746 in Eq. (1) was first 
applied to each data set (Table 2). Little evi­
dence exists consistent with statistical proce­
dures for the analysis of inter-laboratory data 
from which it could be inferred that a and b are 
actually constant. Nevertheless, Batelka and 
Smith (1993), Brodeur et al. (1997), Challas et 
al. (1994), IPC (1967), and Schrampfer et al. 
(1987) advocated applying the “McKee con­
stants” to their data. 

The average absolute values of the difference 
between actual and predicted results from fitting 
each of the 29 data groupings independently to 
the form of Eq. (1) with the standard McKee 
constants are given in Table 2. We found much 
higher average differences in many of the data 
sets than those reported in McKee et al. (1963). 
By letting a and b vary independently for each 
data set, we could improve the individual fits. 
The typical improvement in the average magni­
tude of the percent error of a data set is 5.7% for 
SW box data sets 1–10, 17.2% for DW box data 
sets 13–18, and 31.1% for SW tube data sets 
20–25. However, the resulting a and b values 
then differ significantly, both from those pre­
sented by McKee and across the range of differ­
ent data sets. The average error magnitudes of 
the predictions using the McKee values would 
necessitate an impractical safety factor, and the 
individually fitted values for a and b vary 

widely; therefore, there appears to be little jus­
tification for assuming that a and b are truly 
constant. 

When we apply the same constraints to Eq. 
(9) as applied in McKee et al. (1963) and dis­
cussed previously, the � and � values are simply 
transformations of the a and b values (Table 2). 
The predicted panel strength ratio Pf/Py deter­
mined for data set 3 from Challas et al. (1994) is 
compared with the respective experimental 
panel strength ratio Pf*/Py as the strength ratios 
vary with slenderness U in Fig. 1. In this first 
analysis, the critical load given by Pcr is used to 
compute U. The physical significance of � and � 
is identified on the plot. These first results are 
coded S I E to  designate square (S), infinite 
depth (I), and elastic (E) buckling constraints. 
Later we will examine modifications to these 
constraints, including rectangular (R) and finite 
depth (F) boxes with a combination elastic– 
inelastic (EI) buckling constraint. 

The differences between evaluations in terms 
of a or � are noteworthy. Except for data set 1 
from Angell and Paslay (1959) with only three 
samples, the �-levels determined for SW boxes 
are consistently lower than those determined for 
SW tubes (Table 2). Examining the confidence 

FIG. 1. Plot of Eq. (9) with u � 1 for all panels fit to 
data set 3 from Challas et al. (1994) (Table II), characterized 
by Eq. (11) and shown in relation to universal slenderness U 
of box panels. Fit is determined for model S I E, as ex-
plained in text. 
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intervals (Fig. 2), we see that nearly all the 
�−values for the SW boxes are similar and gen­
erally do not overlap with those for the tubes 
(with the exception of the small data set of tubes 
from Broduer et al. (1997)). A similar contrast in 
terms of a-levels is not apparent. 

The prefactor (� or a) gives the function its 
scale. We now see one of the advantages of writ­
ing the equation in terms of � and �, as in Eq.  
(7), instead of a and b, as in Eq. (8). As noted in 
the introduction, reported values for a vary 
broadly in the literature, effectively changing the 
estimate for box compression significantly. If 
we examine only the SW box data sets with 
more than 20 samples, the best fitting a still 
spans an order of magnitude ranging from 0.4 to 
4.0. The overall range in a is even larger. That 
appears to imply a significant spread in the es­
timate of box compression strength, though in 
actuality the corresponding adjustments to b 
tighten the range. Essentially, the use of a-values 
removes any physical meaning from the prefac­
tor beyond simply being a fitted parameter. By 
contrast, the �-values for the same SW box data 
sets have confidence intervals (Fig. 2) that 
nearly all overlap and are distinctly different 
from the values for tubes. 

Tube compression strength is higher than box 
compression strength for similar materials cut to 

FIG. 2. Approximate 95% confidence intervals deter­
mined for � calculated from exact confidence intervals de­
termined for log � in Eq. (9) using S E I  constraints. Data 
sets 11, 12, 19, and 26 are data groupings as described in the 
text and are not independent of other sets in their groups. 

the same size and shape. We find an explanation 
for increased strength in � that is missing when 
we look only at a values. From a compression 
perspective, the difference between tubes and 
boxes lies only in the presence of a score-line 
and flap at the loading point. Thus, the drop in 
the fitted �-level from tubes to boxes is a physi­
cal quantification of the strength around the 
horizontal loading edge as it is impacted by the 
scoring. This strength is relative to the experi­
mental edgewise crush strength, with the differ­
ent �-levels (the scale factor in the box estima­
tion) reflecting the fact that boxes are inherently 
weaker than tubes because of flap scores. 

We believe our results in Fig. 2 are the first 
identification of a parameter relating score-line 
mechanics to box compressive strength. In early 
experiments, Carlson (1941) examined the shape 
of the box load–compression curve in relation to 
scoring depth and found that deeper scoring 
yielded greater compression at a given load. 
Work through the Fourdrinier Kraft Board Insti­
tute (1953) explored the loss of compression 
strength that occurs with scoring. Urbanik 
(1990) quantified the spring rate of scored edges 
in relation to the vibration response of stacked 
containers and determined that scored edges 
stiffen with increasing load. Collectively, pa­
rameter � appears to be a complicated function 
of fabrication, geometry, experimental methods, 
and modeling assumptions. 

With both a and � values, the prefactor for 
DW boxes ranges widely (Fig. 2). In some data 
sets the DW model appears similar to SW boxes, 
whereas in others it appears similar to tubes. In 
nearly all the individual data sets, the number of 
data points is small and the data are unevenly 
distributed across the design space. In roughly 
half the data, we also must make assumptions 
about box dimensions. Despite these limitations, 
the �-values are essentially bounded by the val­
ues for tubes and those for boxes. Understanding 
the tube values to describe the limiting case 
when the score profile does not impact the box 
compression strength and box values to describe 
the range of impact from typical scoring, we 
might expect this breadth in results. Scoring can 
affect DW boxes in a variety of ways, given the 
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larger range of score depth and profile possible 
on a DW box. This impact may account for why 
some DW data sets significantly outperform the 
typical (McKee) estimation for compression 
strength while others significantly underper­
form the same estimation. Unfortunately, since 
the data are limited and the scoring method and 
type are not reported for any of the data sets in 
the literature, this hypothesis cannot be pursued 
further. 

Removing constraints 

The preceding analysis examined fitting Eq. 
(9) while maintaining the constraints applied by 
McKee et al. (1963). In general, we want to find 
the model where the prediction error between P 
and P* is minimized, in practice by finding the 
� and � values that minimize Eq. (10). Sixteen 
models of Eq. (9), with each combination of the 
four constraints retained or removed as dis­
cussed in the previous text, were fit to each data 

set as appropriate. The average error magnitudes 
for the best fitting model in comparison with 
model S I E are given in Fig. 3 for each SW box 
data set and in Fig. 4 for the remaining data sets. 
As noted, these models are coded for assump-
tions/constraints of square (S) or rectangular (R) 
geometry, infinite (I) or finite (F) depth, and 
elastic (E) or combined elastic–inelastic (EI) 
buckling, as well as whether or not they incor­
porate the empirical factor �. 

As mentioned previously, all these models are 
totally consistent with the underlying theory of 
McKee et al. (1963) but have different con­
straints. Results of applying models with � � 0 
are shown in Figs. 3 and 4 as well. Not all data 
sets can be modeled with all the constraints re­
moved. The Angell and Paslay (1959) data, with 
only three points, becomes under-constrained 
when we add � to the model. Since the Shick and 
Chari (1965) and Schrampfer et al. (1987) data 
sets do not include explicit box dimensions, we 
assume square, infinitely deep boxes for these 

FIG. 3. Average error magnitudes between P and P* determined for best (Best) of 16 models applied to SW box data 
sets in Table 2 compared with average error magnitude for model S I E  (SIE). SW, single-wall; c, clamped; w, waxed; lwd, 
length, width, depth. 
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FIG. 4. Average error magnitudes between P and P* determined for best (Best) of 16 models applied to DW box, tube, 
and other data sets in Table 2 compared with average error magnitude for model S I E  (SIE). Legends explained in text. 
DW, double-wall. 

data sets in the initial analysis and do not ana­
lyze them with other models. 

The improvement in the accuracy of our mod­
els as we relax various constraints is clear for 
most of the data sets (Figs. 3, 4), though the 
specific model that fits each data set best de­
pends on the data set itself. Experiments by 
Challas et al. (1994) and Frank (2004; footnote 
4) were in whole or in part explicitly designed to 
test the effects of box geometry beyond the 
McKee constraints, whereas experiments in IPC 
(1967) specifically avoided one or more con­
straints. 

An example plot of predicted and experimen­
tal strength ratios from model R F EI  applied to 
data set 3 from Challas et al. (1994) is shown in 

Fig. 5. For this case and for all EI models, slen­
derness, the square root of the ratio of the yield 
strength to the critical load, is to be calculated 
from the critical load given by 

2ĉ + M 
= �� P (16)crPcr 

4�1 − v 2� 

Then if U of a panel is computed to be greater 
than 1, u in Eq. (9) is assigned a value of 1. 
Otherwise, u is assigned a value of 0. In contrast 
with Fig. 1, Fig. 5 differentiates between elastic 
and inelastic modes of failure and reveals a dif­
ference between side panel and end panel per­
formance. The calculated level of � (Fig. 5) is 
the maximum strength per loading edge deter­
mined for the scoring geometry applied. 
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FIG. 5. Plot of Eq. (9) fit to data set 3 from Challas et al. 
(1994) (Table 2), characterized by Eq. (11) and shown in 
relation to universal slenderness U of box panels. Fit is 
determined for model R F EI as  explained in text. In contrast 
with Fig. 1, u in Eq. (9) is assigned a value of 0 or 1 
depending on level of U computed for each panel. 

In model S I E and model R F EI, for example, 
it was assumed that � � 0. An implicit law in 
the simplified calculation of P is that the buck-cr 

led wave shape is symmetric and the stress dis­
tribution up to buckling remains uniform. How­
ever, more sophisticated calculations in Urbanik 
and Saliklis (2003) led to weaker nonsymmetri­
cal patterns. Parameter � empirically corrects the 
determination of � for input to Pcr. Results of 
applying models with � �  0 are considered in 
generating Figs. 3 and 4. In some cases the best 
fit model does not incorporate �, and results with 
� � 0 are considered as well. 

The significance of including parameter � in 
Eq. (9) was quantified by applying the statistical 
F-distribution to the sum of errors squared from 
Eq. (9) with � � 0, and the sum of errors 
squared with � � 0. Consistent with Urbanik and 
Saliklis (2003), including � as a third parameter 
along with � and � was determined to be statis­
tically significant for many of the individual 
models. A global model including � was thus 
sought. Other evidence in an analysis by Ur­
banik (1996) of some tube literature suggests 
that a nonlinear material law further increases 
model accuracy. Since � is a correction made in 

part to account for nonsymmetrical failure, it 
may not be possible to totally determine the 
physical significance of � using only a linear 
material law. The results of this work based on a 
linear material law can provide the input to other 
models based on a nonlinear material law. 

Toward a global SW model 

The various � values (Fig. 2) and the previous 
discussion clearly indicate that it is not appro­
priate to try to model box compression results 
using data from structures that are not boxes. 
Further, the range in values for the fitting pa­
rameters for DW boxes and considerations of 
asymmetry evident in Libove and Hubka (1951) 
indicate that variation across data sets and per­
haps a variable associated with the scoring pro­
file are not accounted for in the available data. 
Thus, our focus for further analysis must shift to 
the available data on SW boxes. 

Since our goal in developing a predictive 
model is not to form a large subset of models 
each describing individual data sets under vari­
ous constraints but rather to generate a single 
model that can be applied broadly, we need to 
examine different approaches to unifying the 
data. One method is to group all the data sets 
together and analyze them statistically using 
blocking techniques, where each data set forms 
its own block. This statistical technique assumes 
that each data set might have its own offset due 
to differences in measurement method, equip­
ment, and other variables. It then calculates and 
removes these potential sources of variation 
from the analysis before the effects of the inde­
pendent variables of interest are tested for sig­
nificance against the noise. When we do this for 
a given set of constraints, we generate a “uni­
versal” � and � along with a set of offsets for 
each data set. However, without incorporating 
those offsets into the calculation explicitly, the 
standard error of the resulting model applied to 
each data set individually and the resulting un­
certainty and error in a given prediction are 
higher than that for a general model without 
blocking. In general, it would not be practical, 
even if possible, to calculate an offset value for 
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every laboratory before performing an estima­
tion of box compression strength. Thus, the 
blocking approach, while mathematically robust, 
does not enhance our ability to estimate general 
box performance. 

We would hope that the offsets calculated in 
the blocking process would at least reveal addi­
tional information about differences in param­
eter testing method. For instance, if one ECT 
method consistently led to stronger or more ro­
bust estimations of box performance, we would 
believe that it was a better measure of the inher­
ent strength of the combined board. However, 
the results are not uniform across the available 
data sets; while � and � values are higher for the 
Frank (2004; footnote 4) data when comparing 
the clamp to the waxed ECT, the converse is true 
for the Schrampfer et al. (1987) data. (Trends are 
more consistent for the DW results, but the data 
are too sparse to draw robust conclusions.) Ad­
ditional work in this area may help clarify which 
of the various ECT methods in use in the field 
best models box performance and may similarly 
shed light on other differences in testing technique. 

Analyzing all the SW data as a single unified 
group without blocking allows us to generate 
a model encompassing all the data. The advan­
tage of this approach is that our model becomes 
general, explicitly incorporating between-lab 
sources of testing variability. Thus, it should ap­
ply equally well to any additional (future, or 
existing and unpublished) data sets from other 
sources. However, it is important to keep in 
mind the constraints on each individual data set 
since not all sources include all the parameters 
for a full fit to the model. We can use all the SW 
data sets when applying the S I E  model, as 
discussed earlier. However, when we switch to 
rectangular (R) or finite (F) constraints, we must 
leave out the data points from Schrampfer et al. 
(1987) since that reference does not explicitly 
include dimensional information on the boxes 
tested, and we would have to assume the boxes 
were square and infinite even in a fitting routine 
with R or F constraints. This would be expected 
to inappropriately bias the fitting results. By in­
cluding all the available data independent of the 
method used to measure Pm, we lose any ability 

to further explore the impact of different mea­
surement methods. 

The 16 resultant models with different com­
binations of constraints applied to our large SW 
box data set appear in Table 3. We find that on 
average and neglecting interactions, relaxing the 
constraint that all the boxes are square improves 
our typical absolute value of the error by 0.07%; 
relaxing the constraint on the depth of the box 
improves our estimate by 0.18% on average; in­
cluding inelastic failure as a possibility in the 
model improves our estimate by 0.34% on av­
erage; and including � improves the estimate by 
0.12% on average. The model with the lowest 
average error in estimated box strength is the 
one where all these terms are included. We also 
see that models that relax more than one con­
straint typically improve the average error by 
more than the sum of the individual improve­
ments. This is a clear indication of interaction 
terms in the factorial analysis. We would expect 
these interactions given that (for example) re­
moving the constraint that all boxes are infi­
nitely deep allows additional data points to fall 
into the elastic–inelastic regime. The best fitting 
model is the one in which all the constraints are 
removed (R F EI�). 

SW model variability 

A measure of the economic practicality of our 
SW model is given in Table 4 and Fig. 6. Table 
4 presents the mean and standard deviation, as­
suming a normal distribution, of the percent pre­
diction errors P − P* for some selected models. 
Analysis of the round-robin data in Miles 
(1966), following procedures in ASTM E 691 
(ASTM 1999), yields a between-laboratory re­
producibility standard deviation of 7.74%. 
Analysis for ASTM D 642 (ASTM 2003) rec­
ommends a between-laboratory reproducibility 
of 11.3%,5 with subsequent retesting and analy­

5 The reproducibility standard deviation can be deter­
mined from 11.3%/1.96√2 � 4.08% (ASTM E 691). Thus, 
no model based on historical data can be expected to have 
a standard deviation less than 4.08% (as distinct from any 
systematic bias), even after extensive testing and retesting. 
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TABLE 3. Results from fitting all SW box data as a uniform data set for 16 different models incorporating different 
constraints.a 

Model with Avg.

Data constraints � � � |%| error r2


All SW data	 S I E 
S I E  � 
S I EI 
S I EI  � 

All SW data with lwd dimensions	 S I E 
S F E 
R I E 
R F E 
S I E  � 
S F E  � 
R I E  � 
R F E  � 
S I EI 
S F EI 
R I EI 
R F EI 
S I EI  � 
S F EI  � 
R I EI  � 
R F EI� 

0.376 0.273 0 9.04 0.911 
0.377 0.274 −0.007 9.04 0.911 
0.387 0.295 0 8.87 0.914 
0.389 0.297 −0.020 8.86 0.914 
0.378 0.275 0 9.40 0.912 
0.376 0.282 0 9.14 0.911 
0.378 0.271 0 9.25 0.914 
0.365 0.262 0 9.44 0.904 
0.376 0.272 0.091 9.35 0.913 
0.372 0.277 0.289 8.96 0.921 
0.377 0.269 0.065 9.22 0.915 
0.362 0.257 0.202 9.30 0.911 
0.387 0.293 0 9.18 0.916 
0.386 0.302 0 8.94 0.915 
0.395 0.300 0 8.95 0.918 
0.390 0.310 0 8.87 0.914 
0.387 0.292 0.035 9.17 0.916 
0.384 0.300 0.262 8.83 0.925 
0.394 0.298 0.080 8.90 0.920 
0.391 0.312 0.359 8.47 0.930 

a Data from Schrampfer et al. (1987) are only included among S and I models. 

TABLE 4. Mean and standard deviation of prediction errors between P and P* determined for selected models.a 

Avg. Mean Standard 
Model and data |%| error (%) deviation (%) 

Miles inter-laboratory data reproducibility 
McKee formula with McKee data 
McKee formula with all SW data 
S I E model with all SW data 
R F EI  � model with all SW data with lwd dimensions 

— 0.00 7.74 
6.09 0.29 7.75 
11.1 7.64 11.9 
8.99 0.62 11.1 
8.48 0.56 10.6 

a Average error includes both the accuracy of fit to specific data set and any systematic bias in data. Mean error is a measure of systematic bias in fit. The 
mean of Miles data is taken to be zero by definition because it is simply the mean of all identical boxes measured in this study. Standard deviation indicates 
variability of data set about the mean. For a perfect distribution, average error should occur at 0.675 times the standard deviation. In all cases, our average 
error is higher, indicating a higher fraction of the population in the “wings” of the distribution than would be expected in a truly “normal” distribution. 

sis reducing the inter-laboratory variation to 
4.08%.5 But such intense retesting is too costly 
to advocate for typical production control. The 
Miles (1966) variation provides an objective 
measure of how good any model can be ex­
pected to be. Current inter-laboratory round-
robin studies from Collaborative Testing Ser­
vices (2004) show similar levels of variability 
when a uniform method of sealing boxes 
is considered. Figure 6 shows the normal­
ized frequency distribution fit to the prediction 
errors. 

Variation statistics of various model and data 
combinations are also given in Table 4. The 

means of the prediction errors of the fitted mod­
els are not exactly zero because Eq. (10) is being 
minimized in the fit instead of the absolute value 
of the error, ∑(P − P*)2. Interestingly, the varia­
tion of the original McKee formula fit to the 
McKee et al. (1963) data is almost identical to 
the Miles (1966) variation (Table 4). However, 
when the McKee formula is fit to other available 
SW data, variation increases to 11.9% (Table 4). 
When we model all the data with McKee, we 
also find that the mean of the prediction errors is 
greater than zero (Fig. 6). This implies that 
McKee consistently overpredicts the measured 
box strength in the larger data set by nearly 
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FIG. 6. Frequency distribution, normalized to have areas 
equal to 1, for three model and data combinations from 
Table 4. Legends refer to Miles inter-laboratory data repro­
ducibility, McKee formula with all SW data, and R F EI  � 
model with all SW data with lwd dimensions (Table 4). 

7.5%, on top of the large variation (standard 
deviation) in the prediction. 

The available SW data are most accurately 
quantified (mean closest to zero and lowest per­
centage of error magnitude) (Table 4) with the R 
F EI  � model (Fig. 6) with all constraints re­
moved. The difference in standard deviation be­
tween the R F EI  � model and the Miles (1966) 
data is a measure of further improvements to 
expect from including twisting mechanical prop­
erties, score-line properties, and explicit nonlin­
ear behavior in the model. 

We can most easily quantify the advantage of 
the improvement in model precision using a 
model box. The accuracy of each model ex­
plored is defined by the average magnitude of 
the % error (|%| error), listed in Tables 3 and 4 
for each of the models explored. If we assume a 
box with a “true” compression strength of 1000 
lbs (453 kg), the Miles data indicate that in test­
ing we might find values from 923 to 1077 lbs 
(418 to 488 kg) at 1-sigma. The McKee estimate 
would fall in the range of 968 to 1195 lbs, (439 
to 542 kg) with an average estimate of 1076 lbs 
(488 kg). On average, the McKee estimate 
would be 7.64% high, and as we can see, even 
within a 1-sigma range of uncertainty, it might 
be as much as 19% high. This uncertainty in the 
accuracy of the estimate leads to high “safety 
factors” on box design out of necessity, as dis­

cussed in the above. By contrast, the R F EI  � 
model would fall in the range of 922 to 1091 lbs 
(418 to 494 kg), with an average estimate of 
1006 lbs (456 kg). Thus, the improved model 
prediction is much closer to the average range 
we would find in testing the actual box at a 
variety of testing labs. 

It would be interesting to compare our model 
to an independent data set to quantify the im­
provement gained by the model. However, all 
the available robust sets where data are suffi­
ciently described to be able to apply the model 
were included in generating model parameters. 
As observed for most cases in Figs. 3 and 4, the 
average estimation error is reduced for each of 
these data sets when one or more of the con­
straints assumed by McKee et al. (1963) are re­
moved. Thus, to quantify the fit we must choose 
other independent data sets that may have prob­
lems with input parameters. The joint confi­
dence region for fitted parameters � and � in our 
R F EI  � model is shown in Fig. 7 as well as joint 
confidence regions for two other data sets. The 
joint confidence region for the R F EI  � model fit 
to data from Little (1943)6 is significantly dif­
ferent than that of our SW model. 

The edge-crush data in Little (1943) were af­
fected by stress concentrations in a notched test 
specimen, which consequently inflates the fitted 
�. Data in Koning and Moody (1969) include 
intentionally defective edge-crush specimens 
tested by TAPPI T811 (TAPPI 2002a). Our SW 
fit matches the Koning and Moody (1969) box 
strength data with an average error magnitude of 
4.8%. But, more significantly, the joint confi­
dence region for the R F EI  � model fit to the 
Koning and Moody (1969) data is sweepingly 
large. As shown in Fig. 7, differences in the joint 
confidence regions representing our model and 
other data sets can reveal poor test methods, al­
beit with low variability, or high parameter vari­
ability resulting from high material variability 
sensed by a correct test method. 

6 Dx data are not given in Little (1943) and Dx/Dy � 2 
was assumed to apply. 
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FIG. 7. 95% joint confidence regions for parameters � 
and � determined for R F EI  � model with � � 0.36 and fit 
to all SW data with lwd dimensions, data from Little (1943), 
and data from Koning and Moody. (1969). Only a section of 
the Koning and Moody (1969) confidence region is shown 
plotted. 

CONCLUSIONS 

Until recently, the state of the art of box com­
pression estimation was the equation by McKee 
et al. (1963) or various modifications, with the 
assumption that Eq. (1) provided an estimation 
that was accurate to within about 6% on average 
and 15% for the majority of single-wall boxes. 
In reality, we see that for a broader data set of 
single-wall boxes, the McKee equation system­
atically overestimates compression strength. It 
provides an estimate within about 11% of the 
true box compression value on average, and the 
strength estimates of many boxes are off by 
more than 20%. The estimated strength of 
double-wall boxes and tube constructions can be 
off by even more. 

By applying the results and approach of 
Urbanik and Saliklis (2003) to the available 
data sets in the literature, we gained a deeper un­
derstanding of the differences in performance 
among box structures, as well as refined the pre­
cision of our estimations. By removing the con­
straints and assumptions in the McKee equation, 
which were necessary in 1963 because of limi­
tations in computing tools, we improved our es­
timation for single-wall boxes to ±8.5% on av­

erage. The resulting 10.6% standard deviation 
among the prediction errors compares with 
about 7.7% attainable through inter-laboratory 
testing and is a measure of modeling variation 
given available data. Our model allows for ad­
ditional inputs related to combined board twist­
ing mechanics and to score-line properties if 
such broadened data can be obtained. 

Further, we can now attach physical meaning 
to what were previously only fitting parameters. 
We see that not only does the prefactor � give 
the function its scale, it also relates to the 
strength around the score of the box. This ex­
plains why single-wall, double-wall, and tube 
constructions are not modeled with equal accu­
racy by Eq. (1) and highlights some additional 
information that would be necessary to create 
such models. The exponent � explicitly relates 
the relative impact of the contributions from 
bending stiffness, panel size, and inherent mate­
rial compressive strength. While this is the same 
function as that of the exponent in Eq. (1), writ­
ing the expression in terms of � and � instead of 
a and b disentangles the function scale factor 
from the relative proportioning of the contribu­
tions from the box material parameters. Finally, 
parameter � helps us correct for the assumption 
that the box is failing symmetrically. This as­
sumption is obviously violated in most real-
world box failures, but it is required in the ap­
plication of a closed form calculation of Pcr. 

Overall, this approach allows the improve­
ment of package construction to better meet cus­
tomer requirements and provides more objective 
criteria to establish safety factors. It also pro­
vides a tool for additional explorations in box 
optimization, from score profile optimization to 
the selection of the ECT method that best cor­
relates to actual box performance. Further work 
exploring the application of a nonlinear material 
law to box failure may shed additional light on 
these and other issues. 

NOMENCLATURE 

a, b � McKee formula constants 
C � Linear material law parameter 

derived in Johnson and Urbanik 
(1987) 



415 Urbanik and Frank—BOX COMPRESSION DATA ANALYSIS 

ĉ � Normalized in-plane shear modu­
lus of elasticity derived in Ur­
banik (1992) and computable by 
ĉ � v + 2(1 − v2)(Dxy/Dx)√D /Dy x 

for corrugated fiberboard 
Dx, Dy, D � Flexural stiffness per unit width xy 

in transverse, axial, and twisting 
directions 

d � Plate length equal to box depth 
l, w � Plate width equal to box length, 

box width. As subscripts, box 
side panel, end panel 

P

M � Mode shape function 
m � Number of buckled half-waves 

m1, m2, q � Spreadsheet constants 
P, P* � Box compression strength (pre­

dicted, experimental) 

cr � Plate critical load per unit width 
Pcr � Value of Pcr for infinite length 

plate when v � 0 and ĉ � 1 and 
given by Pcr � (4�2√DxDy/l2) 

P
P1 � Plate strength 

m � Edgewise crush strength per 
unit width 

P � Plate yield strength per unit y 

width. For corrugated fiber­
board Py � Pm 

Pf, Pf* � Plate strength per unit width 
(predicted, experimental) 

S � Dimensionless plate stiffness 
given by S � (12√D Dy/�0P l2)x y

U � Universal slenderness given by 
U � √Py/Pcr 

u � Elastic–inelastic criterion 
x1, x2, y, y* � Spreadsheet variables 

Z � Box perimeter 
�, � � Postbuckling constants 

� � Effective plate aspect ratio 

y)1/4given by � � (d/l)(D /Dx

�
�

�int � Integer component of � 

0 � Stress–strain curvature 

a � Apparent dimensionless buck-ˆ 
ling stress 

� � Empirical improvement 
v � Geometric mean Poisson’s ratio 
� � Wave length 
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