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ABSTRACT

Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were
generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A
beamline at the national Synchrotron Light source (NSLS). The beamline is equipped with high-flux x-ray monochromator
based on multilayer optics developed for this application. The sample is mounted on a translation stage with which to center
the sample rotation, a rotation stage to perform the rotation during data collection and a motorized goniometer head for small
alignment motions. The absorption image is recorded by a single-crystal scintillator, an optical microscope and a cooled
CCD array detector. Data reconstruction has provided three-dimensional geometry of the heterogeneous wood matrix in
microtomographic images. Wood is a heterogeneous material composed of long lignocellulose vessels. Although wood is a
strong natural product, fungi have evolved chemical systems that weaken the strength properties of wood by degrading
structural vessels. Tomographic images with a resolution of three microns were obtained nonintrusively to characterize the
compromised structural integrity of wood. Computational tools developed by Lindquist et al (1996) applied to characterize
the microstructure of the tomographic volumes.

Keywords: microtomography, synchrotron x-ray tomography, wood

1. INTRODUCTION

Synchrotron X-ray computed microtomography (XCMT) was used to characterize structures in sound wood and loss of this
structural integrity caused by fungal degradation. The dam was acquired with the third-generation XCMT instrument located
at the X27A beamline of the National Synchrotron Light Source2. X-ray computed tomography provides volumetric data of
element composition nondestructively, by mapping the three-dimensional X-ray absorption through the sample.

Wood is a renewable natural resource that has remarkably high strength per unit weight, making it an ideal structural
material. Loss of structural integrity from degradation by brown-rot wood decay fungi results in strength loss and failure of
wood in service. Strength loss can occur early in the decay process. Information is needed about the early stages of decay in
order to design environmentally compatible prevention and control measures’. Wood strength is due to xylem tissue that is
composed of cellulose, lignin and hemicellulose. The xylem of pine wood contains elongated, vertical cells called tracheids
that account for approximately 90% of pine wood biomass. Tracheids are thick-walled, tubular structures that have hollow
centers or pores containing air and/or water. The tracheid pore, anatomically referred to as the cell lumen, is a major port of
entry for decay fungi. Fungal enzymes and metabolites degrade cell walls of tracheids6, as evidenced by wall erosion and
microscopic breaks in the walls. The biochemical mechanisms of wood decay fungi are not clearly understood8. The
objective of this study was to characterize structure and matrix changes of wood during incipient decay using high-resolution
tomography and computational tools to analyze structural geometry in tomographic images.

Using XCMT, density differences between diverse chemical structures can be recorded in reconstructed images of a
heterogeneous matrix such as wood. The density differences between layers of cell walls, between walls and zones
surrounding contiguous cells were measured. Consequently, XCMT can be readily applied to the analysis of spatial
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distribution and interconnectivity of a pore through a volume of material. In this experiment, density differences between
tracheal walls and pore cavity were observed in the reconstructed images of control non-degraded wood and in wood exposed
to the fungus. Breakdown in the regular structure of cell walls was apparent in the tomographic slices reconstructed from the
samples exposed to the fungus. The degree and direction of wall erosion was determined by analyzing the segmented data
with a 3-dimensional medial axis analysis program (3DMA) developed by Brent Lindquist and colleagues at the State
University of New York at Stony Brook10 . Volumetric data such as porosity, pore size and distribution interconnectivity of
pores was calculated for each sample.

2. EXPERIMENTAL DESIGN

2.1 Sample preparation

Wood specimen and fungal cultures were prepared at the USDA Forest Service, Forest Products Laboratory, a facility
maintained in conjunction with the University of Wisconsin, Madison, WI. Southern yellow pine wood blocks taken from a 2
in x 4 in x 4 ft piece of lumber were cut into (approximately 1.5 mm x 1.5 mm x 10 cm) morphologically uniform spring-
wood specimen for XCMT analysis. Specimen were sterilized by autoclave and stored in sterile containers. The brown-rot
wood decay fungus, Gloeophyllum trabeum, was obtained from the culture collection at the Forest Products Laboratory. The
fungus was inoculated onto 2% malt extract agar (MEA) medium in petri dishes and allowed to grow in the dark at 27 °C,
70% relative humidity for two weeks. Wood and fungal specimen were transported to and stored at NSLS under sterile
conditions. Prior to XCMT analysis, four pieces of wood were inoculated with G. trabeum by placing the specimen on
fungal mycelia in a petri dish. Cultures were stored in the dark in a closed container to prevent dehydration.

2.2 XCMT Instrument and Data Collection

The synchrotron radiation is filtered by a monochromator comprised of a highly efficient pair of W-B4C multilayers
deposited on Silicon substrates. Energy
tunability is from 5 to 13 keV, with a ∆E/E of
about 1 .5%.  The XCMT workstation
incorporates a cooled charge-coupled device
(CCD) with 1317 x 1035 pixels; the CCD can
record the data to reconstruct up to 1035
horizontal slices, simultaneously2. During
XCMT data acquisition, the shadow of the test
sample formed on the surface of a YAG:Ce
crystal is imaged with a microscope objective,
onto a Photometrics PXL-1400 CCD camera.
(Figure 1). The magnified image of the shadow,
a 2-D linear X-ray attenuation map of the
sample, is digitally recorded by the CCD camera
at regular angular intervals, producing angle-
dependent views of the attenuation map as the
sample is rotated over a full 180 degrees.

To prevent aliasing in the reconstruction, the
number of recorded views of the sample must be
greater than or equal to the column number of
CCD pixels, N, multiplied by π/24,9. These
Nπ/2 views are then processed using a Fourier-
based Fast Filtered Back Transform algorithm to
generate M transverse images or slices through
the sample for every row of the CCD. These
reconstructed slices are then stacked to produce
a MxNxN volume representation of the sample.

Figure 1. XCMT apparatus



All measurements were performed with the monochromator tuned above the Copper k-edge, at about 9 keV. Over the 4-day
fungus test, each wood sample was imaged onto the CCD using a Nikon 5x achromatic objective. The 6.8-micron square
pixels were binned, or electronically summed, by a factor of 4x in both x and y, resulting in improved signal to noise ratio.
Five hundred views of a 1.8 mm x 1.4 mm sample area were acquired at angular intervals of .36 degrees in order to generate
microtomographic data for accurate reconstruction. The resultant digitized volume contained 28 million voxels of size 5-
microns-cubed.

Non-inoculated control and inoculated test specimens of wood were scanned for tomographic acquisition at 24, 42, 68 and 92
hours after fungal inoculation. For XCMT scans, a wood specimen was mounted with tracheids in a vertical position on a
motorized x-y stage for centering the sample in the optical field of view. The sample stage in turn is mounted to the rotational
stage used to perform data collection. This entire assembly mounts to the tilt and translational stages necessary for accurate
prealignment of the rotational stage to the CDD. The non-inoculated control sample was scanned at the beginning and at the
end of the experiment. Between scans, the control was stored in sterile conditions. At each time period, an inoculated
specimen was removed from culture, scanned and discarded.

3. DATA ANALYSIS

3.1 Data Reconstruction and Rendering

The collected raw data files were saved to disk for subsequent processing. A Fast Filtered Back Transform (FFBT),
developed at Brookhaven National Laboratory was used to reconstruct the slices from the raw data2,11. A volume of the
reconstructed slices was rendered for each set of sample data collected. The value of each voxel in the volume represents the
linear attenuation coefficient over the pixel area. Gray or color
scale images of the reconstructed data, therefore, can provide
great insight into the composition of a material. A volume of
control wood was reconstructed using Fortner Software’s T3D
(Figure 2).

In addition to differences within the tracheids, we are
interested in clearly defining the edges of the wood matrix and
monitoring breakdown of the cell walls during exposure to
fungus. It was assumed that the fungus would be largely
transparent due to its low attenuation coefficient and
segmented as air. The damage incurred by the wood due to the
traversal of the fungus would appear therefore as an increase in
irregular wood structure accompanied by an increase of pore
space in the location of the fungus. To perform the analysis,
wall must be discriminated from pore, ignoring any density
differences within the wall. In other words, gray scale images
need to be converted to simple black and white images by
identifying each voxel with an attenuation coefficient greater
than some cutoff value as solid (wood), and those below the
threshold as air or pore. Structures in Figure 2 with the highest
density are reddish-brown, medium density are brown and
lowest density are blue. Ray cells are reddish-brown, tracheid
cell walls are brown and pores are blue. The middle lamella,
spaces between tracheids, have the highest density with dark

Figure 2. Volume of control wood

reddish-brown color. Middle lamella are known to contain high concentrations of lignin, dense phenolic chemicals.

The 3D Medial Axis (3DMA) codes developed by Lindquist et al10

Lindquist et al10
were The 3D Medial Axis (3DMA) codes developed by

were used for the segmentation and analysis.
analysis of tomographic data of geological samples1,3,10

These and other codes have been applied for years to the
and can be directly applied to the study of any porous or two-element

media. All post-rendering analysis of the data was performed using the tools available in the 3DMA code. Smoothing of the



image by anisotropic diffusion was applied to the reconstructed data13 followed by straightforward global thresholding of the
data based on the image intensity histograms generated from the enhanced slice data.

A 3D Medial Axis analysis was performed on the segmented volume for each wood sample. The details of this algorithm are
discussed elsewhere14,10. Calculations of volume porosity and the interconnectivity of the pore space for each sample were
performed to estimate the damage caused by the fungus. Porosity is calculated from the percentage of total voxels found to be
pore. It was expected that the porosity would increase with exposure time to the fungus. Adjoining voxels that are identified
as pore constitute one disconnected part of the total pore volume. The number of discrete pores and the percent volume they
cover gives information about pore connectivity, making 3DMA an ideal tool for geological fluid flow problems for which
the code was initially intended. More of the pore space is connected in sound wood, but in fungal degraded wood the wall
structure is broken down over time. We hypothesized that connectivity could be used as an indicator of fungal deterioration.
Finally, the burn number distribution found in the 3DMA analysis is an indicator of the average thickness of the pore in each
sample; large burn numbers represent pore space furthest from a wood interface. Thus, a table of the number of voxels
identified at a certain number k, proportional to the radial distance of voxel from a wood interface, gives another measure of
the degree of breakdown of the cell wall exposed to fungus.

4. RESULTS AND DISCUSSION

In these and other tomographic studies of wood7, density differences were observed in the reconstructed tomography slices,
reflecting differences in chemical composition of structures within the wood. Control and fungal-exposed wood exhibited

Figure 3. Raster scan of the raw slice

variations in density within the wood cell walls. A representative raster
scan of the raw slice data of control wood is given in Figure 3, with the
high density structures in black and the low density structures in white.
The lowest density materials in white are air and fungal structures.
Tracheid cell walls are black or gray, reflecting the differences in the
primary, secondary and tertiary wall layers. Ray cells and middle lamella
are black. Resolution of the images was approximately 5 microns.

Tracheid cell walls of control wood are connected with no breaks. During
incipient decay by the potent brown-rot fungus, G. trabeum, a rapid
deterioration of the wall occurs. The fungus penetrates wood through
natural openings (pits) or by eroding tracheid walls, leaving breaks and
holes in the walls. Brown-rot fungi such as G. trabeum cause a rapid drop
in wood strength properties that is reportedly due to a non-enzymatic
depolymerization of structural cellulose’. The fungi degrade the cellulose
without first removing the lignin, leaving a brown (hence the name
brown-rot) residue of partially demethylated lignin. How the rapid change
occurs in tracheid walls is an important biochemical question as strength
loss can be measured before weight loss of the wood and only 1 percent

weight loss of wood can result in a 50 percent loss in wood strength. In this current study, some cell wall breaks were
observed in the 4-day experiment.

Erosion of walls typically occurs without visible changes. In reconstructed slices of fungal exposed wood, cell wall
structures did not appear quite as dense as those of controls, indicating chemical changes caused by the fungus.



The reconstructed data was segmented and smoothed by the 3DMA codes. An
example of the reconstructed slice of control wood in Figure 3, after smoothing
and segmentation, is shown in Figure 4. The pixels identified as wood cell walls
are colored black whereas those identified as lumen or pore are white. Wood
data is particularly difftcult to segment because of the thin wall structure (order
of 10 microns or less) and the low x-ray absorption of lignocellulose.

A tabulation of the results from the 3DMA analysis of the segmented volumes
for the 4-day experiment is given in Table 1. The total number of voxels in the
analyzed volume was over 3 million for every sample. The data supports our
hypothesis that samples exposed to the fungus for a longer period of time
exhibited a slightly higher percentage of pore space from wall breakdown. The
68-hour had a higher total porosity than the control, 24-hour and 42-hour
specimens, but was also higher in porosity than the 92 hour. This could be due to
random variability in pore size of specimen, indicating the need for a lager
number of samples per scan time.

Figure 4. Smoothed and segmented slice

A plot of the burn number distribution for these same three data sets reinforces the disconnectivity plots. These were plotted
from the data in Table 2. Bum numbers are proportional to the radius of a pore pixel from a solid interface; large burn
numbers represent pore space furthest from a wood voxel. Thus, a table of the number of voxels identified at a certain burn
number k gives another measure of the degree of breakdown of the lignin exposed to fungus. The samples exposed to fungus
have a larger number of voxels at higher burn numbers, showing an increase in the average pore thickness.



Connectivity plots for three samples, the control, after 24 and 68 hours of exposure are shown in Figure 5. Most of the
volume for each is connected. One disconnected or discrete pore covers over 40% in each case. The percent volume covered
by one pore is the least for the control and the greatest for the sample exposed for 68 hours, as expected. As more of the
lignin breaks down, a greater amount of pore voxels become interconnected. This trend is also evident in the plot as the peak
number of disconnected pore segments decreases with increasing exposure to the fungus.

Figure 5. Disconnectivity Curves Figure 6. Burn Number Distribution

CONCLUSIONS

This study has demonstrated the feasibility of using gray scale images of tomographic data and porosity and connectivity
codes operated on segmented image volumes to characterize the microscale breakdown of wood cell walls by fungi. Future
enhancements that will aid in this work include the incorporation of a narrow bandpass Si 111 pair monochromator and a
larger number of wood specimens.
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