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ABSTRACT: The numerical solution to the frequency equation for
the transverse vibration of a simple beam with symmetric overhang is
found. The numerical results converge to the analytical solutions for
the two limiting cases of a beam with no overhang and a beam with
no span and agree with the case in which the supports are at the nodal
points of a freely vibrating beam. An approximation to the solution of
the frequency equation for beams with small overhang is presented
and compared to the numerical solution. This simple yet accurate
approximation is most useful to determine a beam’s flexural stiffness,
EI, or modulus of elasticity, E, by freely vibrating a simply sup-
ported beam.
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(1)

Problem

Over 30 years ago, Pellerin [1] investigated the use of transverse
vibrations of beams to determine the modulus of elasticity, E, of
lumber and then predict strength. He examined free vibration of two
systems. One was a beam freely supported at two nodal points, and
the other was a beam simply supported at the ends. These two systems
have analytical solutions to the equations of motion and can be found
in the literature [2,3]. In these two cases, the supports are located at
distances 0.224 times the length of the beam from the ends (nodal
points), and at the ends of the beam. In practice, a beam has some
overhang and is never supported at its extreme ends. In this report, the
vibration of a beam with an overhang of arbitrary length is investigated
numerically, an approximate formula for small overhang is proposed,
and the results are compared.

Method of Solution

To determine the natural frequency, f, of a simply supported
beam with symmetric overhang of arbitrary length, we use the
methodology used in Timoshenko [2] and Seto [4] and for brevity
refer the reader to these publications. Also, we assume that the
cross-sectional dimensions of the beam are constant and small in
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comparison to its length thereby ignoring the effects of rotary
inertia and shearing deformations. #en a beam vibrates trans-
versely in one of its natural modes, the deflection at any location
varies harmonically with time, t, as follows:

y = X(A cos 2πft + B sin 2πft)

where X is strictly a function, called a normal function, of distance
x along the beam and satisfies a fourth-order ordinary differential
equation, Xiv - k4 X = 0 [2]. The general solution to this differential
equation has the form:

X (x) = C1 cos kx + C2 sin kx + C3 cosh kx + C4 sinh kx

and for transverse vibration of beams:

where

f = beam natural frequency,
E = beam modulus of elasticity,
I = beam moment of inertia,
ρ = beam mass density, and
A = beam cross-sectional area

The constants C1 to C4 must be determined from the boundary
conditions at the ends of the beam. Solving for these constants
leads to the frequency equation specific for the boundary conditions
under consideration.

For our simply supported beam with symmetric overhang we
divide the continuous beam into three sections with three distinct
coordinate systems and origins. Refer to Fig. 1 for beam geometry.
Let X1, X2, and X3 be the normal functions of the beam sections [4].
The general solution for the normal functions can be expressed as

FIG. 1—Geometry of simply supported beam with symmetric overhang.
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X1 = A1 cos kx1 + B1cosh kx1 + C1sin kx1 + D1sinh kx1 0≤x 1≤ δ
X2 = A2 cos kx2  + B2cosh kx 2  + C2sin kx2 + D2sinh kx2 0≤x2≤ δ
X3 = A3 cos kx3 + B3cosh kx 3  + C3sin kx3 + D3sinh kx3 0≤x3≤ δ

Along with these three normal functions, we have to satisfy a
number of boundary conditions. At the ends of the beam both
moment and shear have to be zero. At the supports deflection
is zero, slope and moment are continuous. These 12 boundary
conditions are expressed mathematically as follows:

at xl = 0 d2 X1 /dx1
2 = 0

d 3 X1 /dx1
3 = 0

at x1 = δ, x2 = 0 X 1 = 0

X 2 = 0

dX1 /dx1 – dX2 /dx2 = 0

d2 X1 dx1
2 – d 2 X 2 /dx2

2 = 0

at x2 = S, x3 = 0 X 2 = 0

X 3 = 0

dX2 /dx2 – dX3 /dx3 = 0

d2 X2 /dx 2
2 – d 2 X3 /dx3

2 = 0

at x3 = δ d 2 X 3 /dx 3
2 = 0

d 3X3 /dx 3
3 = 0

where δ is beam overhang with 0 < δ, S is beam span with 0 <
S, and L is beam length with S < L. If we define α = S/L as the
ratio of span to length, then the overhang can be expressed as δ
= L(1 – α )/2.

From the boundary conditions and the normal functions we can
construct a 12 by 12 matrix of the coefficients of the 12 constants.
The elements of the matrix consist of the trigonometric and hyper-
bolic terms of the normal functions. At x1, x2, x3 = 0 the arguments
of their respective terms are zero. At x1, x3 = δ the arguments of
their respective terms are kδ, that is kL (1 - α )/2. At x2 = S the
arguments of its terms are kS, that is kLa. Therefore all the argu-
ments are either zero or kL (1 - α )/2 or kL α. If a (span to length
ratio) is fixed, then the arguments are a function of kL only. This
set of 12 homogeneous equations will have nontrivial solutions
only if the determinant of the coefficients vanishes. Expansion of
the 12 by 12 determinant is the frequency equation for a simply
supported beam with symmetric overhang. Roots of the frequency
equation, numerical values of kL forcing the determinant to vanish,
correspond to the natural frequencies. We are interested in the
first nonzero root, the kL value that corresponds to the natural
fundamental frequency. Thus, the minimum nonzero kL value that
makes the determinant zero will be used to calculate the fundamen-
tal frequency (specific for the overhang corresponding to the chosen
a). We rewrite Eq 1 as:

We define K1 as the transformed fundamental root of the fre-
quency equation:

(2)

where

g = acceleration of gravity,
W = total beam weight, and

W/gL = beam mass per unit length.

Solution Steps

1. Select a value for α (ratio of span to length S/L) with 1 >
α > 0. (For α = 1 or α = 0 either the overhangs or the span
vanishes and the problem as setup in this report is not valid. These
cases have only one normal equation and four boundary
conditions.)

2. Choose a value for kL.
3. Find the determinant of the 12 by 12 matrix by

a. using Gaussian elimination with row pivoting to reduce
the matrix to a triangular matrix, and

b. multiplying the diagonal terms to calculate the
determinant.

4. Check the determinant against a very small number and
iterate Steps 2, 3, and 4 until the determinant is close enough
to zero.

5. Calculate K1 = [(k L)2/(2π)]2, this K1 is specific for the α
being investigated.

6. Loop Steps 1 to 6 covering S/L, α, from 0.999 to 0.001.

Results

The lower solid curve in Fig. 2 is K1 computed as described as
a function of S/L. As S/L approaches 1, K1 numerically converges
to 2.467 which agrees with the analytical solution [2] of a simply
supported beam with no overhang ([(π)2/(2π)]2). At S/L = 0.552
( δ = 0.224 L ), K1 is 12.679 which agrees with the analytical
solution [2] of a free-free beam with nodal (no deflection) points
at 0.224 L and 0.776 L ([(4.730)2/(2π)]2). As S/L approaches 0,
K1 numerically converges to 5.009 which agrees with the adjusted
analytical solution [2] of two back-to-back (fixed-end to fixed-
end) cantilever beams ([(1.875 × 2)2/(2π)]2).

If, for small values of δ, we ignore the overhang while still
keeping the same beam mass per unit length, we would substitute
S 4 for L4 and use 2.467. The approximation for K1 is then

and is plotted as the upper dashed curve in Fig. 2. At S/L = 0.85
the ratio of the approximation to numerical solution is 1.009, while
at S/L = 0.80 the ratio is 1.026. Substituting this approximation
into Eq 2 results in a simple approximation of the solution to the
frequency equation for simply supported beams with symmetric
overhang:

Conclusions

The numerical solution of the frequency equation of the free
transverse vibration of a simply supported beam with symmetric
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FIG. 2—Transformed fundamental root of the frequency equation for a simply supported beam with symmetric overhang.

overhang of arbitrary length is presented. A simple analytical References
approximation to the numerical solution for the case of small
overhang is shown to be quite good for 1 ≥ S/L ≥ 0.85 and
reasonable for 0.85 ≥ S/L ≥ 0.80. The approximation, valid for
a simply-supported vibrating beam with small overhang, can be
used to compute a beam’s flexural stiffness EI from measured
frequency f, measured geometry, S, L, and measured weight W
and would result in a conservative estimate of EI. The beam’s
modulus of elasticity E can be computed if I is known.
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