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ABSTRACT m, mi

Various postbuckling models involving elastic versus
indastic  buckling, linear versus  nonlinear material P
characterization, and finite versus infinite length plate geometry
were fit to historical data on compression strength of corrugated A%
fiberboard box and tube specimens. The objectives were to
determine if the buckling mode shape could be predicted and if P, P, Py
inelastic buckling failure could be differentiated from elastic failure
in the side panel and end panel components to account for S
specimen geometry and material property effects. The variation of a
normalized panel strength with a panel denderness was the U
criterion for discerning among alternative models. In some cases
multiple solutions were feasible. Overal, a finite length plate Xy
theory, combined elastic-inelastic postbuckling model, and
nonlinear material characterization with plate stiffness empirically W
corrected with respect to its aspect ratio consistently fit each data
source. a.m
NOMENCLATURE P
Ao Buckling perturbation amplitude £ 0, Cu
i, € Stress-strain constants £,£;,6
é Normalized in-plane shear modulus of elasticity

(Urbanik, 1992) v, v

dl h Plate length, width, and thickness

Dy, Dy Plate bending stiffness per unit width perpendicular ¢
and parallel to plate axis
El, El,  Fiberboard bending stiffness per unit width
perpendicular and parallel to fluting axis 8o
S/ Normalized buckling strain function, Eq. (14)
K Buckling coefflcient, Eq. (3)

‘The Forest Products Laboratory is maintained in cooperation with the
University of Wisconsin. This article was written and prepared by U. S.
Government employees on offrcial time, and it is therefore in the public
domain and not subject to copyright.

85

Number of buckled half-waves adong d and integer
component of m

Box compression strength

Buckled wave period, wave frequency, and
normalized wave frequencies

Plate critical load, applied failure load, and material
yield load per unit width

Normalized plate stiffness, Eg. (7)

Universal plate slenderness ,/Py/Pc,

Plate Cartesian coordinates perpendicular and
paralel to plate axis

Buckling perturbation function, Eqg. (5)
Postbuckling constants

Characteristic equation root

Strain, stress, and ultimate stress

Normalized buckling strains and buckling stress
Geometric mean +/wv,  of Poisson’s ratio associated
with x- and y-direction plate loading

Effective plate aspect ratio, Eq. (4)

Empirical stiffness correction

Nonlinear material postbuckling constant ¢i/Gu



INTRODUCTION

The corrugated fiberboard box is the most common containment
unit employed somewhere along the distribution and storage cycle
of almost every packaged product. For stacking applications, box
top-to-bottom  compression strength is the most common
performance characteristic. The traditional box compression formula
by McKee et al. (1963)°is essentialy a restructuring of termsin an
empirical postbuckling formula (Bulson, 1969) applicable to thin
plates made from alinear materia. The McKee formulais limited to
regular dotted-style containers, the most general in use, when the
length does not exceed three times the width and the perimeter does
not exceed seven times the depth.’

For commercial utility, McKee et d. (1963) advocated treating
arectangular box as a square box of equal perimeter and modeling
each supporting panel as an infinitely long, simply supported
plate. Material yield strength, panel bending stiffness along the
two principal axes, and panel width are the inputs to the formula
Within the limits of their data base, the McKee formula was
accurate to within 6.1% on average.

Recent issues in box design have raised concerns about the
relevance of the McKee formula for boxes other than regular slotted
containers and for shallow boxes. Statistical formulas (Matenfort,
1957) have demonstrated a greater sensitivity to box length and
width effects than predictable by the McKee formula. Elastic
boundary conditions examined in work by Bulson (1969)
introduce a more significant length sensitivity of buckled plates
than that allowed by the McKee formula. Finite element techniques
(Pommier et a., 1991) have been used to elucidate the effect of
additional elastic constants, besides bending stiffness, of
corrugated fiberboard on box compression strength.

The incorporation of nonlinear material theory from work by
Urbanik and others (Johnson and Urbanik, 1987; Urbanik, 1992)
into the postbuckling formula (Bulson, 1969) made the box
compression model of Urbanik (in preparation) more sensitive to
length and width differences. Linear material theory was shown to
overpredict the strength of narrow box panels, typically the end
panels, and to lead to an apparent strength equality between
rectangular and square boxes of the same perimeter. Nonlinear
material theory was shown to predict alower buckling strength for
low width panels and be consistent with the Maltenfort (1957)
data. The research by Urbanik (in preparation) was limited to a
single data base (McKee et al., 1963); box depth was not
considered, and failure by elastic buckling was assumed. This
report generalizes the theory (Urbanik, in preparation) further and
examines additional unpublished industry data (Batelka and Smith,
1993; Hutten and Brodeur, 1995; IPC, 1967). The objective was to
determine if the buckling mode shape can be predicted and if
inelastic buckling failure of panel components can be differentiated
from elastic failure to account for box depth and material property
effects.

*Hereafter referred to as the McKee formula

‘Box length, width, and depth refer to dimensions of the unfolded blank
regardless of box orientation. Plate or panel length and width refer to the
principle axes coinciding with the loading and transverse directions,
respectively.
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BUCKLING THEORY

Linear Material

Infinite Length Plate. The critical load P ,of a simply
supported, infinitely long plate subjected to longitudina in-plane
compression is obtainable from Bulson (1967) and was presented
by Urbanik (in preparation) in the form

- an?D,D,

<r 12

(M

Box compression strength P isthe sum TPd of failure loads
predicted by applying the empirical formula (Bulson, 1967)

B 2"
full P! Il - &}
]

y y

to the end and side panel components. Material yield strength P,is
the edgewise compression strength of the corrugated fiberboard.

Finite Length Plate. A more genera prediction of P for
plates having a finite length d is obtained by multiplying the
critical load from Equation (1) by the buckling coefficient

2 2
K:l .m_+¢_ +l
4 ¢2 mz 2

3)
where mis the number of buckled half-waves along d and f isan
effective plate aspect ratio given by

d D 1/4
13

Yy
The variation of K with f shown in Figure 1 can be compared with
figure 2.3 in Bulson (1969).

Q)

Nonlinear Material

Infinite Length Plate. The nonlinear material behavior
introduced by Johnson and Urbanik (1987) is applicable to
infinitely long plates made from paper characterized by the stress-
strain relation s = ¢, tanh( ¢ ,e/ c,). A solution to the differentia
equation of buckling was derived by considering buckling modes
of the form

W= Aocfhy-o-ﬁx (5)

and superimposing them to obtain a fourth-order characteristic
equation for b(l ). In Equation (5), | isawave frequency in the
y -direction, the plate axis, and has units of radians per unit length.
A normalized wave frequency ¢ was given by equation 2.10 of
Johnson and Urbanik as



(6)

and the solution for a normalized buckling strain € as a function of
c was determined. The optimum c¢ that yields a minimum £
corresponds to buckling of an infinitely long plate. The algorithm
(Johnson and Urbanik, 1987) for obtaining € (%) (c) of an infinitely
long plate is summarized in the Appendix. The normalized
buckling stress & from equation 5.1 of Johnson and Urbanik is
& =tanhtanh €.

The variation of 6 as afunction of a normalized plate stiffness

S_cz(th‘F‘_ 12yEIEl @
ail) v 9,2, 2

was examined by Johnson and Urbanik [1987). The first form of Sin
Equation (7) is useful when al the respective material constants
can be obtained. The second form of Swas derived by Urbanik (in
preparation) for corrugated fiberboard for which edgewise
compression strength and bending stiffness are normally
obtainable. The constant q,= ¢ 1/ s ,induces an average curvature to
the stress—strain relation, and as q,approaches e, the nonlinear
buckling theory approaches the linear theory. The second form of S
predicts the ratio P ,/P, = q,6 (Urbanik, in preparation) and
enables Equation (2) to be applied to the postbuckling response of
a nonlinear material.

Finite Length Plate. Equation (5) is applicable to finite
length platesif | ischosentoyield W = 0 at the plate boundaries.

For this case, the buckling strain will be slightly greater than the
optimum £€ as restricted by an integral number of buckled half-
waves along the plate axis. The period of the buckled wave is
p = 2p/1. from which the number m of half-waves along dis given

by

m=28 20
p =

®

The levels of buckling strain corresponding to the integer
component m 1 of mand to m,= m,+ 1 need to be examined.

The theory of Johnson and Urbanik (1987) is further
generalized in the Appendix for determining the buckling response
of a plate having a finite length. The analysis starts with a
determination of the optimum c for the infinitely long plate. Values
of ¢,and c,that are close to the optimum value and yield integer
numbers m,and m,, respectively, of half-waves are given by

m, %

=5

i=1,2
29

&)

The analysis continues with a determination of &, and &,
corresponding to fixed c,and c,, respectively. The buckling strain
of the finite length plate is then the lower of&| and &€, .
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The variation of & with Sis shown in figure 2 of Johnson and
Urbanik (1987) for the case of infinitely long plates. Figure 2
herein shows how the 6 ratio between finite and infinite length
plates varies with f at various levels of S. As Sapproaches 0, the
6 ratio approaches K. Asf approaches infinity, the variation of the
& ratio with Sshown in Figure 2 at discrete levelsis the same as
the variation of & with Sshown in figure 2 of Johnson and
Urbanik (1987) over a continuous range.

Short/Long Plate Criterion. Figures 1 and 2 predict that
when plate buckling occurs with two or more half-waves, buckling

strength is relatively insensitive to plate length. However. if plates
are short enough to constrain buckling to a single haf-wave,
buckling strength becomes increasingly sensitive to plate length
asf decreases. As shown in Figure 2, as Sincreases (i.e., for
increasingly nonlinear materials), approximating a plate with an
infinite length becomes accurate for shorter plates.

A criterion for differentiating between short and long plates
can be had by considering the buckling theory when m= 1. When
m = 1, Equation (8) predicts that ¢ = p/2f. Making this
substitution into equation 3.2' of Urbanik (1992) gives an
expression for buckling strain in terms of f when buckling occurs
with one half-wave:

(10)

2 ) -Z_l .
1’;:2{1 e -t —f(E)}
-V -V

Differentiating this expression with respect to f and equating the
result to O yields the value of f, below which plates become
increasingly sensitive to plate length.

o= an

- . 1/4
vie't +4éc2£(1 e —
€y

Equation (11) is plotted in Figure 3.

RESULTS

Box compression strength data were obtained from previously
reported tests on complete corrugated boxes, including the top and
bottom flaps (McKee et al., 1963; IPC, 1967) and corrugated tubes,
i.e., boxes without flaps (Batelka and Smith, 1963; Hutten and
Brodeur, 1995). A tube specimen would be expected to yield a more
rigid boundary condition along the horizontal loading edge,
compared to a box specimen. A more complete description of the
data can be had from the referenced sources. In this study, data are

normalized with respect to f and a universal denderness
u=Jp,ip, .

Elastic Buckling

Elastic buckling is characterized by applying Equation (2),
assuming that all box panels fail by elastic buckling. The curve-
fitting procedure is discussed in detail in another report (Urbanik,
in preparation). As mentioned previously, when materia is
characterized as nonlinear the expression 8+ G is substituted for
P ./ P,in Equation (2).



Table |-Characterization of elastic postbuckling
response—Infinite length

Table Il-Characterization of elastic postbuckling
response—Finite length

Avg. Avg
error error
Material Postbuckling constant mag- Material Postbuckling constant mag-
character- nitude character- nitude
Data source’ ization o n 6o (%) Data source ization a n [: N (%)
McKee et al. 1963 Linear 0.397 -0.255 oo 6.08 McKee et al. 1963 Linear 0.384 -0.247 oo 6.42
Nonlinear 0.434 -0.308 1.13 5.83 Nonlinear 0.428 -0.319 112 6.02
IPC 1967 (S) Linear 0.289 -0.048 o 725 IPC 1967 (S) Linear 0.290 -0.055 o0 7.26
Nonlinear 0.289 -0.048 oo 7.25 Nonlinear 0.290 -0.055 oo 726
IPC 1967 (L) Linear 0.540 -0.461 oo 6.03 IPC 1967 (L) Linear 0.528 -0.459 oo 6.05
Nonlinear 0.540 -0.461 oo 6.03 Nonlinear 0.528 -0.459 00 6.05
Ratellra & Smith Linear 0.681 -0.233 oo 112 meallin O Qenith I inaar hY <7 .n770 o Q2792
ARG R e DAKIKE o Sitliui Lincar v.goo V.ai s 6./ 0
1993 Nonlinear 0.717 -0.276 241 11.0 1993 Noniinear 0.928 0.617 0.87 572
Hutten & Brodeur  Linear 0479 -0.021 = 9.35 Hutten & Brodeur  Linear 0532  -0.381 = 5.98
1995 Nonlinear 0479 .021 ° 9% 1995 Nonlinear ~ 0.532 0381 = 598

S refers to small boxes; L to large boxes.

Infinite Length Model. In another study (Urbanik, in
preparation), the four postbuckling models involving the
combinations of square versus rectangular box geometry and linear
versus nonlinear material characterization were tested against the
data from McKee et a. (1963). In the work reported here,
comparisons among the rectangular geometry of linear and
nonlinear postbuckling models were extended for additional data
sources (Table ). The Institute of Paper Chemistry (IPC) datain
Table | are divided into small-box (S) and large-box (L) subsets
because the optimum g,found to fit the combined data was less that
0.1, an infeasible solution. Nonlinear material characterization of
the IPC data and Hutten and Brodeur (1995) data yielded g= =
and reflects the insensitivity of the elastic postbuckling-infinite
length model to nonlinear material effects within these data.

In the preceding analysis, it was assumed that box panels had
an infinite length and that the wave period of buckling in the side
panel was independent of the wave period in the end panel. An
assessment of this assumption was made by plotting Equation (3),
based on alinear material characterization, through the data of each
data source (Figs. 4—7). The high accuracy of the infinite length
model applied to the McKee et a. and IPC data (Table I) can be
attributed to the low sensitivity of P to d predicted by Figures 4
and 5, wherein K < 2 for al the data. By contrast, the data from the
other studies (Table 1) yielded less accuracy and greater K levels
(Figs. 6, 7). The lower accuracy of a simply supported plate model
applied to these data might also have resulted from a stiffer
boundary condition along the loaded edges of the tube specimens.

Finite Length Model. The finite length plate model was next
applied to the data and various rules were examined for
characterizing the buckling mode shape. Criteria for selecting the
value of mwere as follows:

1. The value of mthat yielded the weakest P for each panel, so
that side and end panels could buckle into different numbers of
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half-waves. This criterion is consistent with a simply
supported edge condition in which no bending moment gets
transferred and no interaction occurs across the vertical score-
line.

2. The value of mthat yielded the weakest P, so that side and end
panels would buckle into the same number of half-waves. This
criterion is consistent with a rigid connection between the
panels.

3. The value of mthat yielded the lowest P _for the side panel,
which was applied to side and end panels.

4. The value of mthat yielded the lowest P _for the end panel,
which was applied to side and end panels.

Criteria 3 and 4 are strictly empirical. Results based on criterion 3
are given in Table I1. As expected from the number of specimens
sensitive to box depth (Figs. 5, 6), the finite length model produced
better results for the data from Batelka and Smith (1993) and Hutten
and Brodeur (1995). However, aecuraey decreased for the McKee et
a. and IPC data. Additional tests and analysis are needed to
determine the reason.

Elastic-Inelastic Buckling

Figure 8 shows afit of Equation (2) to the Batelka and Smith
(1993) data, following the technique presented in Urbanik (in
preparation). Axes are scaled to show the variation of a normalized
strength P /P, with U. From the clustering of dataaround U = 1.07

=1 +/0.87, it can beinferred that a different failure mechanism
occurred in the box panels represented by these points. A more

general postbuckling formula characterizing the combination Of
elastic and inelastic buckling modes of failure is given by



Table llI-Characterization of elastic-inelastic
postbuckling response—Finite length

Table IV—Characterization of elastic—inelastic
postbuckling response—Finite length and corrected S

Avg Avg.
error error
Material Postbuckling constant mag- S- Postbuckling constant mag-
character- nitude correction nitude
Data source ization o n 8o (%) Data source T a n 0 (%)
McKee et al. 1963 Linear 0.405 -0.289 o 6.18 McKee et al. 0.184 0.429 -0.320 1.02 5.99
Nonlinear 0436  -0329 100  6.04 1963
IPC 1967 (S) Linear 0290 0055 = 726 IPC 1967 0.760 0413 0332 ~ 714
Nonlinear 0290  -0.055 o 726 Batelka & Smith -0.371 0.798  -0.563 124 379
1993
IPC 1967 (L) Linear 0.528  -0.459 oo 6.05 Hutten & 0323 0558 04 .
. utten -0. . 455 190 435
Nonlinear 0.528 -0.459 6.05 Brodeur 1995
Batelka & Smith Linear 0.773  -0.505 oo 5.11
1993 Nonlinear 0773  -0.505 oo 511
Huuen & Brodeur Linear 0.523 -0.349 o0 6.00 R
1995 Nonlinear ~ 0.550  -0444 330 577 Results of Correction _ _
Results of applying Equation (13) as art input to the
postbuckling model by Equation (12) and using mode criterion 3
are given in Table IV. The IPC S-subset and L-subset were
n combined, and the prediction errors for all the data sources were
B _dB| ysi found to be independent of specimen depth. Equation (12) is
P, P, (12) plotted through each data source in Figures 10-13.
A U<l DISCUSSION
A The results shown in Table IV are consistent with the stress—

The results of fitting the elastic-inelastic buckling model to the
previous data are given in Tablelll. A tit of Equation (12) to the
Batelka and Smith data (Fig. 9) yields a seemingly more rational
distribution of points compared to Figure 8.

STIFFNESS CORRECTION

Expression of Correction

Theory (March and Smith, 1945) predicts that the magnitude of
K'in Equation (3) varies with the distribution of the shearing
modulus of elasticity through the thickness of the plate. In figure
2.13 in Bulson (1969), the relative minima displayed by the cusps
in Figure 1 are predicted to increase from right to left as the loaded
edges are made more rigid. Neither the nonhomogeneous nature of
corrugated fiberboard nor the elasticity of the boundary condition
along loaded edges was made art input to the prediction of P by
Equation (1).

A successful criterion found to empirically correct for
stiffening effects attributable to variations in shearing modulus of
elasticity and boundary condition elasticity was to modify the
expression for Sand characterize panel stiffness with the apparent

stiffness given by
e 124El EI,

13
8,P, P 3

where t is an empirical stiffness correction.
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strain behavior of paper and with the effect of elastic loading edges
on plate buckling strength. With the exception of the IPC data, the
average q,= 1.39 predicted for corrugated fiberboard compares very
well with g,= 1.33 determined experimentally for paper (Urbanik,
1990). An infinite g,vaue for the IPC data resulted from the
insensitivity of high slenderness panels (Fig. 11) to nonlinear
material effects and a numerical condition for which arbitrarily large
values of q,yield equally good results. Low slenderness panels
failing by inelastic buckling (Figs. 10, 12, 13) provide a more
severe test of nonlinear material effects.

McKee et a. (1963) did not observe a depth sensitivity of box
compression specimens, and this is reflected in the low value of t
(Table IV). A value of t >0 for the IPC data predicts that box
strength increases with depth and is contrary to theory. Because
the IPC data consisted of only two box sizes (thus explaining the
compact f datain Fig. 5), avalue of t > 0 may have resulted from
fabrication differences between the two sizes. A value of t <0 for
the other datain Table IV (Batelka and Smith, 1993; Hutten and
Brodeur, 1995) leads to an apparent stiffening of panel components
as box depth and the corresponding number of buckled half-waves
decrease, and this value is consistent with the buckling of plates
with loaded edges fixed and unloaded edges simply supported
(Bulson, 1969). These tests were on tube specimens and the
obtained values of t yield a measure of the boundary condition
elasticity along the loaded edges. The horizontal score between the
box flaps and box panels of specimens from the McKee et a. and
IPC studies indicates a performance closer to a simply supported
condition.



The analysis results in Tables 11-1V are based on mode
criterion 3 applied to each data source. The effects of the assumed
mode shape on the finite length models were quantified by fitting
models based on the various combinations of linear versus
nonlinear, elastic versus elastic-inelastic, and mode criteria 1-4 to
each data source. When mode criterion 2 was used, the minimum
sum of errors squared obtained from each model was on average
22% greater than the average minima obtained from mode criterion
3. Mode criterion 4 yielded a 56% greater average than that
obtained from criterion 3. Mode criteria 2 and 4 were thus rejected.
Mode criterion 1, when applied to the nonlinear, elastic-inelastic
model tit to the Batelka and Smith (1993) data, yielded a minimum
sum of errors squared that was 3% less than the minimum obtained
from mode criterion 3. So, these data offer some evidence that mode
criterion 1 is a better choice. However. mode criterion 3 enabled all
of the IPC data to be unified in the corrected stiffness model, and it
was thus selected and applied consistently to all the data.

CONCLUSION

In areview of various postbuckling models fit to historical
data on box compression strength, a model developed from finite
length plate theory, combined elastic-inelastic failure mechanism,
and nonlinear material characterization with plate stiffness
empirically corrected with respect to its aspect ratio consistently
fit each data source. Simplified models based on infinite length
plates, elastic failure, or linear materia fit box strength data more
accurately than they fit tube strength data when the ranges of panel
aspect ratio and universal slenderness were broad. The shape
predicted by the wider box panel under simply supported
conditions, and applied to the narrower panel, was the best
predictor of the box buckling mode. The shape predicted by
independent buckling of panels was more accurate for tube
specimens.  Stiffening effects attributable to edge condition
glagticity and shearing tiffness, but not experimentally
determinable, could be empirically accounted for by correcting the
normalized panel stiffness. The corrected model predicts an average
shape of the nonlinear stress-strain curve of corrugated fiberboard
from compression strength and bending stiffness data. A plot of
normalized strength varying with universal slendernessis useful
to differentiate between elastic and inelastic failure modes and to
verify the significance of nonlinear material effects.
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APPENDIX

Algorithms for determining the buckling stress of a simply
supported plate with compression in the direction of its length and
having a nonlinear material characterization are as follows:

L Input S f,v,and¢. If the Poisson’sratio cannot be determined,
let v= 0. If the in-plane shear modulus of elasticity cannot be
determined, let & = 1.

2. Define function £(€) from Johnson and Urbanik (1987).

2€

sinh(2€) (14

f®=1-

Infinite Length-Optimum ¢
3. Determine an initial € from equation 3.5' of Urbanik (1992).

2 S(E% +1)?

(15)
12(1-v%)

€=

4. Determine New € from equation 3.4' of Urbanik (1992).

2
(16)

Newd =52 fi-0 78|
6(1-v?)
5.1f New €=€,goto Step 7.

6. Otherwise, let € = New € and return to Step 4.



7. Retain € for Step 12 and determine the optimum c¢ from
equation 3.3 of Johnson and Urbanik (1987).

7 R
x=3[1-1-v)7 @) (an

Buckling Mode Shape
8. Determine m from Equation (8), integer component m, of m,

and m=m,+ 1
9. Determine c,and c,from Equation (9).

10. Set ¢ = ¢,and determine &; from Steps 11-15. Then proceed to
Step 16.

Finite L ength-Fixed ¢

11. Input afixed value of c.

12. Determine aninitial € from the value retained in Step 7.
13, Determine New € from equation 3.2' of Urbanik (1992).

(18)

2
L a2 i 2 521 i
Newt»:=-x—i 1, C+—n—2- =< —— f(¢)
3 41-v 4y 1-v”

14. If New € =€, continue.
15. Otherwise, let € = New £ and return to Step 13.

Buckling Stress
16. Sety =Xz and repeat Steps 11-15 to determine €,.

17. Normalized buckling strain € is lower of €, and €,.
18. Determine normalized buckling stress from equation 5.1 of
Johnson and Urbanik (1987).

O = tanh€ (19)

19. Stop.
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Figure 1. Variation of buckling coefficient K with
effective aspect ratio f of plate with linear material.

K is buckling stress of a finite length plate with simply
supported edges and subjected to axial compression,
relative to buckling stress of an infinitely long plate.
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Figure 2. Variation of K with ¢ of plate with nonlinear
material. Plots at three levels of normalized plate
stiffness S are shown.
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Figure 3. Effective aspect ratio f as a function of
normalized stiffness S of plate with nonlinear material,
below which plate buckling stress becomes increasingly
sensitive to plate length. Variation is plotted for three
levels of mean Poisson’s ratio V.
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Figure 4. Variation of K with f of corrugated fiberboard
box components. Here and in Figs 5-7, material is
assumed to have linear behavior.
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tubs components.
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Figure 8. Variation of strength ratio P¢/Py with universal
slenderness U of supporting panels of corrugated tube.
Here and in Figs. 9-13, points represent strength of side
and end panels scaled as the ratio 2P¢/P of experimental
strength. Dashed line is a fit of Eqg. (11) to the data,
assuming nonlinear material behavior and failure by
elastic buckling. Here and in Figs. 9-13, solid line
corresponds to the condition Py = P.
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Figure 9. Variation of Py/Py with U of supporting panels

of corrugated tube. Here and in Figs. 10-13, dashed line
is a fit of Eqg. (12) to the data, assuming nonlinear material
behavior and failure by elastic and inelastic buckling.
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