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1 Introduction

Two important wood properties are stiffness (modulus of elasticity or MOE) and bending strength
(modulus of rupture or MOR). In the past, MOE has often been modeled as a Gaussian and MOR
as a lognormal or a two- or three-parameter Weibull. (See, for example, ASTM 2010a, Evans and
Green 1988, and Green and Evans 1988.)

Design engineers must ensure that the loads to which wood systems are subjected rarely exceed
the systems’ strengths. To this end ASTM D 2915 (ASTM 2010a), and ASTM D 143 or ASTM D
1990 (ASTM 2010b,c) describe the manner in which “allowable properties” are assigned to popu-
lations of structural lumber. In essence, an allowable strength property is calculated by estimating
a fifth percentile of a population (actually a 95% content, one-sided lower 75% tolerance bound)
and then dividing that value by “duration of load” (aging) and safety factors. The intent is that
the population can only be used in applications in which the load does not exceed the allowable
property. Of course there are stochastic issues associated with variable loads, uncertainty in esti-
mation, and the division of a percentile with no consideration of population variability. Thus, from
a statistician’s perspective, this is not an ideal approach to ensuring reliability of wood systems.
However, it is the currently codified approach.

To apply this approach, one must obtain estimates of the fifth percentiles of MOR distributions.
Currently, one method for obtaining estimates involves fitting a two-parameter Weibull distribution
to a sample of MORs. To obtain this fit, either a maximum likelihood approach or a linear regression
approach based on order statistics is permitted under ASTM D 5457 (ASTM 2010d).

Unfortunately, these methods are often applied to populations that are not really distributed
as two-parameter Weibulls. For example, in the United States, construction grade 2 by 4’s are
often classified into visual categories—select structural, number 1, number 2—or into machine
stress-rated (MSR) grades. In the case of MSR grades, MOE boundaries are selected, MOE is
measured nondestructively, and boards are placed into categories based upon the MOE bins into
which the boards fall. Because MOE and MOR are correlated, bins with higher MOE boundaries
also tend to contain board populations with higher MOR values. The fifth percentiles of these
MOR populations are sometimes estimated by fitting Weibull distributions to these populations.
Statisticians recognize that this poses a problem. Even if the full population of lumber strengths
were distributed as a Weibull, we would not expect that subpopulations formed by visual grades
or MOE binning would continue to be distributed as Weibulls.

In fact, such a subpopulation is not distributed as a Weibull. Instead, if the full joint MOE–
MOR population were distributed as a bivariate Gaussian–Weibull, the subpopulation would be
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distributed as a “pseudo-truncated Weibull” (PTW). In this paper, we obtain the distribution of
a PTW and show how to obtain estimates of its parameters and its quantiles by fitting a bivariate
Gaussian–Weibull to the full MOE–MOR distribution. To do this, we first define a particular
form of a bivariate Gaussian–Weibull distribution. In Sections 2 and 3 of this paper, we describe
this form and establish that it can be fit by asymptotically efficient likelihood methods in the full
MOE–MOR case. In Sections 4 and 5, we discuss the truncated case and derive the density of a
PTW.

In a subsequent paper, we will describe a Web-based computer program that we have developed
to perform the asymptotically efficient fit. We will use a related program to fit simulated MOE–
MOR data and evaluate the small sample quality of the fits. In a third paper, we will show that
Weibull fits to PTW data can yield poor estimates of probabilities of failure.

As an aside, we remark that the bivariate Gaussian–Weibull distribution has uses other than as a
generator of pseudo-truncated Weibulls. For example, engineers who are interested in simulating the
performance of wood systems must begin with a model for the joint stiffness, strength distribution
of the members of the system. Provided that we are considering the full population, a Gaussian–
Weibull is one possible model for this joint distribution.

Bivariate Gaussian–Weibull distributions have not yet appeared in the literature. However,
Gumbel (1960), Freund (1961), Marshall and Olkin (1967), Block and Basu (1974), Clayton (1978),
Lee (1979), Hougaard (1986), Sarker (1987), Lu and Bhattacharyya (1990), Patra and Dey (1999),
Johnson et al. (1999), and others have previously investigated bivariate Weibulls.

We note that the bivariate Gaussian–Weibull distribution that we investigate in the current
paper is not the only possible bivariate distribution with Gaussian and Weibull marginals. In
essence we begin with a “Gaussian copula”—a bivariate uniform distribution generated by starting
with a bivariate normal distribution and then applying normal cumulative distribution functions to
its marginals. However, there is a large literature on alternative copulas (multivariate distributions
with uniform marginals). See, for example, Nelsen (1999) and Jaworski (2010). (Also see Wang
et al. (2008) for an application of copulas to joint models of tree heights and diameters.) These
alternatives would lead to alternative bivariate Gaussian–Weibulls. Ultimately, the test of the
usefulness of our proposed version of a Gaussian–Weibull for a particular application will depend
on the match between the theoretical distribution and data. Still, we believe that the analysis of our
proposed version in the current paper represents a useful step in the construction and evaluation
of bivariate Gaussian–Weibull distributions.

2 A bivariate Gaussian–Weibull distribution

To generate a bivariate Gaussian–Weibull distribution, we follow Johnson and Kotz (1972). (Taylor
and Bender (1988, 1989) introduced this technique in a lumber context.) That is, let X1, X2 be
distributed as independent N(0,1)’s. Define X = μ + σX1 and Y = ρX1 +

√
1− ρ2X2. Then

X is distributed as a N(μ, σ2), Y is distributed as a N(0,1), and their correlation is ρ. Now let
U = Φ(Y ). Then U is a Uniform(0,1) random variable that is correlated with X. Finally, let
W = (− log(1 − U))1/β/γ. Then W is distributed as a Weibull with shape parameter β and scale
parameter 1/γ, and the pair X,W have our joint “bivariate Gaussian–Weibull” distribution. In
this paper, we require that β > 1. Given this generating process, it is straightforward to show (see
Appendix A) that the joint density is given by

f(x,w) = bivnorm(x, y)× weib(w)/φ(y)
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where φ is the N(0,1) probability density function, Φ is the N(0,1) cumulative distribution function,

y = Φ−1
(
1− exp

(
−(γ × w)β

))

weib(w) = γββwβ−1 exp
(
−(γ × w)β

)
and

bivnorm(x, y) =
1

2π

1

σ
√
1− ρ2

exp(−arg)

where
arg =

(
(x− μ)2/σ2 − 2ρ(x− μ)y/σ + y2

)
/(2(1− ρ2))

In Figures 1–9 we provide contour plots of the bivariate Gaussian–Weibull distribution for
coefficients of variation (CV’s) equal to 0.35, 0.25, and 0.15, and generating correlations equal to
0.5, 0.7, and 0.9. The CV of a univariate distribution is its standard deviation divided by its mean.
Note that as the CV declines from 0.35 to 0.25 to 0.15 (as the Weibull shape parameter increases
from 3.13 to 4.54 to 7.91) the density contours become much less elliptical. That is, the distribution
diverges from a bivariate normal. We would expect this as a Weibull is “like a normal” for shape
near 3.6 (skewness equals 0.00056, excess kurtosis equals −0.28), and a Weibull becomes skewed to
the left and leptokurtic as the shape increases.

3 Asymptotic distribution of the estimated parameter vector of
the bivariate Gaussian–Weibull distribution

Now assume that we have have n independent pairs of observations, (x1, w1), . . . , (xn, wn) from the
bivariate Gaussian–Weibull distribution. Then we have the following theorem.
Theorem 1

√
n

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

μ̂
σ̂
ρ̂
γ̂

β̂

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝

μ
σ
ρ
γ
β

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

D→ N(0, I(θ)−1)

where θ ≡ (μ, σ, ρ, γ, β)T , μ̂, σ̂ are one-step Newton estimators based on the standard univariate
normal maximum likelihood estimators of the mean and standard deviation of a Gaussian, γ̂, β̂ are
one-step Newton estimators based on the standard maximum likelihood estimators of 1/scale and
shape for a Weibull, ρ̂ is a one-step Newton estimator based on the

√
n-consistent estimator of ρ

introduced in Appendix B, and the elements of I(θ) are listed in Appendix E2 (and E3).

Proof
The proof is an application of theorem 4.2 of chapter 6 of Lehmann (1983). To invoke Lehmann’s

theorem we must establish a series of conditions.

Lehmann’s conditions (A0)–(A2)

That conditions (A0)–(A2) hold is clear.

Lehmann’s condition (A)

That condition (A) holds (the existence of third partials of the density) is clear.
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Lehmann’s condition (B)

Lehmann’s condition (B)(8) is established in Appendix E1. Lehmann’s condition (B)(9) is estab-
lished in Appendices E2 and E3.

Lehmann’s condition (C)

The fact that the information matrix is positive definite is established in Appendix I.

Lehmann’s condition (D)

Lehmann’s condition (D) is established in Appendix J. �
A Web program that obtains the asymptotically efficient likelihood estimates of the five param-

eters and confidence bounds on these estimates will be described in a subsequent paper.

4 A truncated bivariate Gaussian–Weibull distribution

In wood engineering applications, it is often the case that we do not have data from a full bivariate
Gaussian–Weibull distribution. Instead, we have data from the subpopulation that is formed by
considering lumber whose MOE values lie between two pre-determined limits, cl and cu (that is,
we have machine stress-rated lumber). It is clear that the joint density in this case is

f(x,w)/ (Φ((cu − μ)/σ)− Φ((cl − μ)/σ)) (1)

for x between cl and cu and 0 elsewhere.

5 The pseudo-truncated Weibull distribution

The pseudo-truncated Weibull distribution function at w is given by integrating the truncated
bivariate Gaussian–Weibull density (1) over the region [cl, cu]× [0, w]. That is (from result (11) in
Appendix A)

FPTW(w) =

∫ w

0
F1(s)× F2(s)/ (Φ((cu − μ)/σ)− Φ((cl − μ)/σ)) ds (2)

where

F1(s) ≡ γββsβ−1 exp
(
−(γs)β

)
(3)

and

F2(s) ≡
∫ cu

cl

1√
2π

1

σ
√
1− ρ2

exp
(
− ((x− μ)/σ − ρy)2 /(2(1− ρ2))

)
dx (4)

where

y = Φ−1
(
1− exp

(
−(γs)β

))
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We have

F2 =

∫ (cu−μ)/σ

(cl−μ)/σ

1√
2π

1√
1− ρ2

exp

(
−
(
x/

√
1− ρ2 − ρy/

√
1− ρ2

)2
/2

)
dx

=

∫ (cu−μ)/
(
σ
√

1−ρ2
)

(cl−μ)/
(
σ
√

1−ρ2
)

1√
2π

exp

(
−
(
x− ρy/

√
1− ρ2

)2
/2

)
dx (5)

=

∫ (cu−μ)/
(
σ
√

1−ρ2
)
−ρy/

√
1−ρ2

(cl−μ)/
(
σ
√

1−ρ2
)
−ρy/

√
1−ρ2

1√
2π

exp
(−x2/2

)
dx

= Φ
(
(cu − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

)
− Φ

(
(cl − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

)
From results (2), (3), and (5), the pseudo-truncated Weibull density is given by

fPTW(w) =
d

dw
FPTW(w) (6)

= γββwβ−1 exp
(
−(γw)β

)
×
(
Φ
(
(cu − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

)
− Φ

(
(cl − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

))
÷ (Φ((cu − μ)/σ)− Φ((cl − μ)/σ))

where
y = Φ−1

(
1− exp

(
−(γw)β

))
Thus, as we would expect, for ρ = 0, the pseudo-truncated Weibull density is simply the Weibull
density, γββwβ−1 exp

(−(γw)β
)
. In Appendix K, we show that as ρ → 1, the pseudo-truncated

Weibull density converges to 0 for w below wl or w above wu where wl is defined by

Φ

(
cl − μ

σ

)
= 1− exp

(
−(γwl)

β
)

(7)

and wu is defined by

Φ

(
cu − μ

σ

)
= 1− exp

(
−(γwu)

β
)

(8)

In Appendix K, we also show that for w ∈ (wl, wu), as ρ → 1, the pseudo-truncated Weibull density
converges to

γββwβ−1 exp
(
−(γw)β

)
/
(
exp

(
−(γwl)

β
)
− exp

(
−(γwu)

β
))

That is, as ρ → 1, the density of a pseudo-truncated Weibull converges to the density of a truncated
Weibull.

Figures 10 and 11 are Weibull probability plots of PTW data. That is, we plot the ordered
data from a PTW sample against the predicted ordered data from the best Weibull fit to the data.
If the data really were Weibull, then the plots would be approximately linear. In Figure 10, the
generating X,Y correlation was 0, so the data actually was Weibull and the plot is approximately
linear. In Figure 11, the generating X,Y correlation was 0.99, so the data was “far from Weibull”
and the plot is quite nonlinear. For both data sets, the Weibull coefficient of variation was 0.25
and cl and cu corresponded to the 0.2 and 0.8 quantiles of the Gaussian distribution.

In Appendix L, we formally establish that pseudo-truncated Weibull distributions are not
Weibull distributions.
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6 Summary

In the context of wood strength modeling, we have introduced a bivariate Gaussian–Weibull dis-
tribution and the associated pseudo-truncated Weibull distribution. In this paper, we obtain the
asymptotic distribution of the estimated parameter vector for a bivariate Gaussian–Weibull distri-
bution. In a subsequent paper, we will discuss a Web-based computer program that implements
this theory to obtain estimates of the parameters of a bivariate Gaussian–Weibull distribution. In
a third paper, we will investigate the question of whether allowable property estimates based on a
Weibull assumption can be poor if the strength population is actually a pseudo-truncated Weibull
population.
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8 Appendix A—Bivariate Gaussian–Weibull density

Let X,Y have a joint bivariate normal distribution with

X ∼ N(μ, σ2)

Y ∼ N(0, 1)

and correlation(X,Y ) = ρ.
Since Y ∼ N(0, 1), we know that Φ(Y ) is distributed as a Uniform(0,1). (Here, Φ denotes the

N(0,1) cumulative distribution function.) Thus, we know that

W ≡ (− log(1− Φ(Y )))1/β /γ ∼ Weibull(γ, β) (9)

(a two-parameter Weibull distribution with scale parameter 1/γ and shape parameter β).
We then say that X,W have a bivariate Gaussian–Weibull distribution with parameters μ, σ,

ρ, γ, and β.
Using the multivariate form of the change-of-variables theorem (see, for example, Rudin 1987),

we can calculate the joint density function of X,W . First, we invert Equation (9) to obtain

Y = Φ−1
(
1− exp

(
−(γ ×W )β

))
Thus, the transform that takes (x,w) to (x, y) is

T(x,w) =

(
T1(x,w)
T2(x,w)

)
=

(
x

Φ−1
(
1− exp(−(γ × w)β)

) )
The corresponding Jacobian matrix is(

∂T1/∂x ∂T1/∂w
∂T2/∂x ∂T2/∂w

)
=

(
1 0
0 γββwβ−1 exp(−(γ × w)β)/φ

(
Φ−1

(
1− exp(−(γ × w)β)

)) )
and the absolute value of its determinant is

det = γββwβ−1 exp(−(γ × w)β)/φ
(
Φ−1

(
1− exp(−(γ × w)β)

))
Thus, the Gaussian–Weibull probability density function (pdf) at x,w is

bivnorm(x, y, μ, σ, ρ)× det (10)

where
y = Φ−1

(
1− exp

(
−(γ × w)β

))
and

bivnorm(x, y, μ, σ, ρ) =
1

2π
× 1

σ
√
1− ρ2

× exp(arg)

where

arg = − (
(x− μ)2/σ2 − 2ρ(x− μ)y/σ + y2

)
/(2(1− ρ2))

= − (
(x− μ)2/σ2 − 2ρ(x− μ)y/σ + ρ2y2 + y2 − ρ2y2

)
/(2(1− ρ2))

= − ((x− μ)/σ − ρy)2 /(2(1− ρ2))− y2/2

That is, the Gaussian–Weibull pdf at x,w is given by

gaussweib(x,w;μ, σ, ρ, γ, β) ≡ γββwβ−1 exp
(
−(γw)β

)
(11)

× 1√
2π

1

σ
√
1− ρ2

exp
(
− ((x− μ)/σ − ρy)2 /(2(1− ρ2))

)
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9 Appendix B—
√
n-Consistent Initial Estimators of the Parame-

ters

We will need the following two lemmas in our development. The first of these lemmas provides
a useful fact about the tail behavior of normal distributions. Versions of this fact have appeared
previously in the statistical literature. See, for example, the discussions of “Mills’ ratio” in Kendall
and Stuart (1977) and Johnson and Kotz (1970). The particular form of the fact described in
Lemma 1 is due to Gordon (1941). A simple proof of Lemma 1 is given in Verrill and Durst (2005).

Lemma 1

For x < 0,

x2/(x2 + 1) < Φ(x)/ (φ(x)/(−x)) < 1 (12)

and for x > 0,

x2/(x2 + 1) < (1− Φ(x))/(φ(x)/x) < 1 (13)

where Φ(x) is the N(0,1) cumulative distribution function and φ(x) is the N(0,1) probability density
function.

Lemma 2

Let W ∼ Weibull(γ, β). Then

E
(
(log(W ))2

)
< ∞

Proof

We have∫ ∞

0
(log(w))2 γββwβ−1 exp

(
−(γw)β

)
dw ≤ γββ

∫ 1

0
(log(w))2wβ−1dw (14)

+

∫ ∞

0
w2γββwβ−1 exp

(
−(γw)β

)
dw

We know from Weibull theory that the second term on the right hand side in (14) is finite. Consider
the first integral on the right hand side.

∫ 1

0
(log(w))2wβ−1dw =

∫ 0

−∞
w2 exp(w(β − 1)) exp(w)dw (15)

=

∫ 0

−∞
w2 exp(wβ)dw

= (1/β)

∫ ∞

0
w2β exp(−wβ)dw

= 2/β3 (16)

�

A referee has noted that

E (log(W )) = − (γE + β log(γ)) /β (17)

and

E
(
(log(W ))2

)
=

π2

6β2
+ (E (log(W )))2 (18)

9



where γE is the Euler-Mascheroni constant. Result (17) follows from∫ ∞

0
log(w)γββwβ−1 exp

(
−(γw)β

)
dw =

∫ ∞

0
log

(
s1/β

)
γββs(β−1)/β exp

(
−(γβs)

) 1

β
s1/β−1ds

=
(
γβ/β

)∫ ∞

0
log(s) exp

(
−(γβs)

)
ds

=
1

β

(∫ ∞

0
log(t) exp(−t)dt− β log(γ)

)
= (−γE − β log(γ)) /β (19)

To invoke theorem 4.2 of Lehmann (1983) to establish that our final estimators of the parameters
are asymptotically efficient, we first need to establish that our initial estimates of the parameters
are

√
n-consistent. (ân is a

√
n-consistent estimator of a if

√
n(ân − a) = Op(1). A sequence of

random variables {Xn} is Op(1) if given any ε > 0, we can find constants Mε, Nε such that n > Nε

implies that Prob(Xn > Mε) < ε.) As our initial estimators of μ and σ, we take the standard one-
variable estimators x̄ =

∑
xi/n and s =

√∑
(xi − x̄)2/(n− 1). As our initial estimators of γ and

β, we take the one-variable maximum likelihood estimators, γ̂ and β̂. Thus, our initial estimators
of μ, σ, γ, and β are

√
n-consistent. Our initial estimator of ρ is given by

ρ̂ ≡ ŝxy/
√
sxx × ŝyy (20)

where

ŝxy ≡
n∑

i=1

(xi − x̄)(ŷi − ˆ̄y)

sxx ≡
n∑

i=1

(xi − x̄)2

ŝyy ≡
n∑

i=1

(ŷi − ˆ̄y)2

ˆ̄y ≡
n∑

i=1

ŷi/n

and
ŷi ≡ g(wi; γ̂, β̂) ≡ Φ−1

(
1− exp

(
−(γ̂ × wi)

β̂
))

(21)

Theorem 2 √
n (ρ̂− ρ) = Op(1)

where ρ̂ is defined in Equation (20).
Proof

Define

sxy ≡
n∑

i=1

(xi − x̄)(yi − ȳ)

syy ≡
n∑

i=1

(yi − ȳ)2

ȳ ≡
n∑

i=1

yi/n

10



where
yi ≡ g(wi; γ, β) ≡ Φ−1

(
1− exp

(
−(γ × wi)

β
))

(22)

(The distinction between the “hatted” variables in definitions (21) and the “unhatted” variables in
definitions (22) is that in the hatted case, γ, β are replaced by their estimates γ̂, β̂.)

We know that
r ≡ sxy/

√
sxx × syy

is a
√
n-consistent estimator of ρ. (That is, we know that

√
n(r − ρ) = Op(1).) Thus, we will be

done if we can show that √
n (r − ρ̂) = Op(1) (23)

We have

r − ρ̂ = sxy/
√
sxx × syy − ŝxy/

√
sxx × ŝyy

=

∑n
i=1(xi − x̄)(yi − ȳ)√

sxx × syy
−

∑n
i=1(xi − x̄)(ŷi − ˆ̄y)√

sxx × syy

+

∑n
i=1(xi − x̄)(ŷi − ˆ̄y)√

sxx × syy
−

∑n
i=1(xi − x̄)(ŷi − ˆ̄y)√

sxx × ŝyy

≡ D1 +D2 (24)

To show that
√
nD1 = Op(1), we need to show that

√
n

(
n∑

i=1

(xi − x̄)
(
yi − ȳ − (ŷi − ˆ̄y)

)
/n

)
= Op(1) (25)

By the Cauchy–Schwarz inequality and the fact that
∑n

i=1(xi − x̄)2/n
p→ σ2, we know that we can

establish result (25) by establishing that

n∑
i=1

(
yi − ȳ − (ŷi − ˆ̄y)

)2
= Op(1) (26)

and it is clear that result (26) follows if

n∑
i=1

(yi − ŷi)
2 = Op(1) (27)

(This follows because
∑n

i=1(zi − z̄)2 ≤ ∑n
i=1 z

2
i .)

From definitions (21) and (22) we have

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(
g(wi; γ, β)− g(wi; γ̂, β̂)

)2
(28)

By Taylor’s theorem this equals

n∑
i=1

(
∂g(wi;θ)

∂γ
|θ∗,i(γ̂ − γ) +

∂g(wi;θ)

∂β
|θ∗,i(β̂ − β)

)2

(29)

where θ = (γ, β)T and θ∗,i ≡ (γ∗,i, β∗,i)T lies on the line between (γ, β)T and (γ̂, β̂)T .

11



Thus, given the Cauchy–Schwarz inequality, to establish result (27), it is sufficient to establish

n∑
i=1

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

(γ̂ − γ)2 = Op(1) (30)

and
n∑

i=1

(
∂g(wi;θ)

∂β
|θ∗,i

)2

(β̂ − β)2 = Op(1) (31)

Because γ̂ and β̂ are the maximum likelihood estimates of γ and β, to establish results (30) and
(31), it is sufficient to establish

n∑
i=1

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

/n = Op(1) (32)

and
n∑

i=1

(
∂g(wi;θ)

∂β
|θ∗,i

)2

/n = Op(1) (33)

Consider result (32). We have

n∑
i=1

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

/n =
∑

wi<wlow

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

/n

+
∑

wlow≤wi≤wup

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

/n (34)

+
∑

wup<wi

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

/n

≡ S1 + S2 + S3

where 0 < wlow < wup. We will show that S1, S2, and S3 are Op(1).
First, consider S2. Let ε > 0 be given. Recall that in this paper we require that β > 1. Because

γ̂
p→ γ, β̂

p→ β > 1,
∑n

i=1w
r
i /n

p→ E(W r), and (from Lemma 2)
∑n

i=1(log(wi))
2/n

p→ E((log(W ))2),
given any γlow, γup such that 0 < γlow < γ < γup, γlow < 1 < γup and any βlow, βup such that
1 < βlow < β < βup, we can find an N such that n > N implies

prob (An ∩Bn ∩ Cn) > 1− ε (35)

where An is the set on which

βlow < β̂ < βup and γlow < γ̂ < γup

Bn is the set on which ∣∣∣∣∣
n∑

i=1

w
2βup

i /n− E
(
W 2βup

)∣∣∣∣∣ < 1

and Cn is the set on which ∣∣∣∣∣
n∑

i=1

(log(wi))
2/n− E

(
(log(W ))2

)∣∣∣∣∣ < 1

12



Define

w1/4 ≡ (log(4/3))1/β/γ (36)

w3/4 ≡ (log(4))1/β/γ (37)

so

1− exp
(
−(γ × w1/4)

β
)

= 1/4 (38)

1− exp
(
−(γ × w3/4)

β
)

= 3/4 (39)

Now choose wlow small enough so that

γlow × wlow < γup × wlow < 1, (γup × wlow)
βlow < min

(
1/4, (γ × w1/4)

β
)

(40)

and choose wup large enough so that

wup > 1, γup × wup > γlow × wup > 1, (γlow × wup)
βlow > (γ × w3/4)

β (41)

Let

K ≡ min
(
φ
(
Φ−1

(
1− exp(−(γlow × wlow)

βup)
))

, φ
(
Φ−1

(
1− exp(−(γup × wup)

βup)
)))

Then, because γlow × wlow < 1 and γup × wup > 1, on set An we have

φ
(
Φ−1

(
1− exp(−(γ∗,i × wi)

β∗,i)
))

≥ K for all wi in [wlow, wup] (42)

so ∣∣∣∣∂g(wi;θ)

∂γ
|θ∗,i

∣∣∣∣ = β∗,iγ
β∗,i−1
∗,i w

β∗,i
i exp

(
−(γ∗,iwi)

β∗,i
)
/φ

(
Φ−1

(
1− exp(−(γ∗,iwi)

β∗,i)
))

≤ β∗,i × γ
β∗,i−1
∗,i × w

β∗,i
i /K (43)

≤ βup × γ
βup−1
up × w

βup
up /K ≡ M1

From results (35) and (43), we know that n > N implies that

prob(S2 < M2
1 ) > 1− ε

That is,
S2 = Op(1) (44)

Now consider S1. Let ε > 0 be given. As in the S2 analysis, we can find an N such that n > N
implies that result (35) holds. Then, by our previous choice of wlow (see (40)), on An we have

(γ∗,i × wlow)
β∗,i < (γup × wlow)

β∗,i

< (γup × wlow)
βlow (45)

< min
(
1/4, (γ × w1/4)

β
)

and thus, for wi < wlow,

0 < (γ∗,i × wi)
β∗,i < (γ∗,i × wlow)

β∗,i < min
(
1/4, (γ × w1/4)

β
)

(46)
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so

Φ−1
(
1− exp

(
−(γ∗,i × wi)

β∗,i
))

< Φ−1
(
1− exp

(
−(γ × w1/4)

β
))

= Φ−1(1/4) < 0 (47)

Thus, on An, for wi < wlow, we can apply Lemma 1 to obtain∣∣∣∣∂g(wi;θ)

∂γ
|θ∗,i

∣∣∣∣ = β∗,iγ
β∗,i−1
∗,i w

β∗,i
i exp

(
−(γ∗,iwi)

β∗,i
)
/φ

(
Φ−1

(
1− exp(−(γ∗,iwi)

β∗,i)
))

≤ β∗,i × γ
β∗,i−1
∗,i × w

β∗,i
i /den (48)

≤ (βup/γlow)× (γ∗,iwi)
β∗,i/den

where
den = −

(
1− exp(−(γ∗,iwi)

β∗,i)
)
×
(
Φ−1

(
1− exp(−(γ∗,iwi)

β∗,i)
))

(49)

(We now want to show that den goes to 0 no faster than the (γ∗,iwi)
β∗,i in the numerator.)

By results (47)–(49), on An, for wi < wlow,∣∣∣∣∂g(wi;θ)

∂γ
|θ∗,i

∣∣∣∣ < − (
(βup/γlow)/Φ

−1(1/4)
)× (γ∗,iwi)

β∗,i/
(
1− exp(−(γ∗,iwi)

β∗,i)
)

(50)

Now by result (46), on An, for wi < wlow, and x ≡ (γ∗,iwi)
β∗,i ,

1− exp
(
−(γ∗,iwi)

β∗,i
)

= 1− (
1− x+ x2/2!− x3/3! + x4/4!− . . .

)
= x

(
1− x/2! + x2/3!− x3/4! + . . .

)
> x(1− x/2)

> x(1− 1/8) = x× 7/8 (51)

or
1/

(
1− exp(−(γ∗,iwi)

β∗,i)
)
< (8/7)× (1/(γ∗,iwi)

β∗,i) (52)

Thus, by results (50) and (52), on An, for wi < wlow∣∣∣∣∂g(wi;θ)

∂γ
|θ∗,i

∣∣∣∣ < − (
(βup/γlow)/Φ

−1(1/4)
)× (8/7) ≡ M2 (53)

From results (35) and (53), we know that n > N implies that

prob(S1 < M2
2 ) > 1− ε

That is,
S1 = Op(1) (54)

Now consider S3. Let ε > 0 be given. As in the S2 analysis, we can find an N such that n > N
implies that result (35) holds. Then, by our previous choice of wup (see (41)), on An, for wi > wup,
we have

(γ∗,i × wi)
β∗,i ≥ (γlow × wup)

βlow (55)

≥ (γ × w3/4)
β

so
Φ−1

(
1− exp

(
−(γ∗,i × wi)

β∗,i
))

> Φ−1(3/4) > 0 (56)
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Thus, on An, for wi > wup, we can apply Lemma 1 to obtain∣∣∣∣∂g(wi;θ)

∂γ
|θ∗,i

∣∣∣∣ = β∗,iγ
β∗,i−1
∗,i w

β∗,i
i exp

(
−(γ∗,iwi)

β∗,i
)
/φ

(
Φ−1

(
1− exp(−(γ∗,iwi)

β∗,i)
))

≤ β∗,i × γ
β∗,i−1
∗,i × w

β∗,i
i × exp

(
−(γ∗,iwi)

β∗,i
)
/den (57)

≤ βup × γ
βup−1
up × w

βup

i × exp
(
−(γ∗,iwi)

β∗,i
)
/den

where

den = exp
(
−(γ∗,iwi)

β∗,i
)
×
(
Φ−1

(
1− exp(−(γ∗,iwi)

β∗,i)
))

(58)

By results (56)–(58), on An, for wi > wup,∣∣∣∣∂g(wi;θ)

∂γ
|θ∗,i

∣∣∣∣ ≤ βup × γ
βup−1
up × w

βup

i /Φ−1(3/4) (59)

Thus, on An ∩Bn,

S3 ≤
(
βup × γ

βup−1
up /Φ−1(3/4)

)2 ×
n∑

i=1

w
2βup

i /n (60)

<
(
βup × γ

βup−1
up /Φ−1(3/4)

)2 ×
(
E
(
W 2βup

)
+ 1

)
≡ M3

(61)

From results (35) and (60), we know that n > N implies that

prob(S3 < M3) > 1− ε

That is,

S3 = Op(1) (62)

Results (34), (44), (54), and (62) establish result (32). Thus to complete the proof of (27), we
need to establish result (33).

In general, the proof of result (33) is essentially the same as the proof of result (32). However,
there is one distinction that must be addressed. We have

∂g(wi;θ)

∂β
|θ∗,i = (γ∗,iwi)

β∗,i × log(γ∗,iwi)× exp
(
−(γ∗,iwi)

β∗,i
)
/φ

(
Φ−1

(
1− exp(−(γ∗,iwi)

β∗,i)
))
(63)

Given this equality, it is clear that the analogues to the results S2 = Op(1) and S3 = Op(1) follow
as they did in the proof of result (32). However, the analogue of S1 = Op(1) requires slightly more
care. In particular, on An, for wi < wlow, we can apply Lemma 1 to obtain∣∣∣∣∂g(wi;θ)

∂β
|θ∗,i

∣∣∣∣ = (γ∗,iwi)
β∗,i × |log(γ∗,iwi)| × exp

(
−(γ∗,iwi)

β∗,i
)
/φ

(
Φ−1

(
1− exp(−(γ∗,iwi)

β∗,i)
))

≤ (γ∗,iwi)
β∗,i × |log(γ∗,iwi)| × exp

(
−(γ∗,iwi)

β∗,i
)
/den (64)

where

den = −
(
1− exp(−(γ∗,iwi)

β∗,i)
)
×
(
Φ−1

(
1− exp(−(γ∗,iwi)

β∗,i)
))

(65)
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By results (47), (52), (64) and (65), on An, for wi < wlow,∣∣∣∣∂g(wi;θ)

∂β
|θ∗,i

∣∣∣∣ < − (
1/Φ−1(1/4)

)× |log(γ∗,iwi)| × (γ∗,iwi)
β∗,i/

(
1− exp(−(γ∗,iwi)

β∗,i)
)
(66)

≤ − (
(8/7)/Φ−1(1/4)

)× |log(γ∗,iwi)|

From results (35) and (66) and the (ubiquitous) Cauchy–Schwarz inequality, we know that n > N
implies that

prob(T1 < M4) > 1− ε (67)

where

T1 ≡
∑

wi<wlow

(
∂g(wi;θ)

∂β
|θ∗,i

)2

/n

and

M4 =
(
(8/7)/Φ−1(1/4)

)2 × [
J2 + 2J

(
E
(
(log(W ))2

)
+ 1

)1/2
+ E

(
(log(W ))2

)
+ 1

]

where

J ≡ max (| log(γlow)|, | log(γup)|)
That is,

T1 = Op(1) (68)

and result (33) follows.

As noted above, results (32) and (33) establish results (30) and (31), which establish result (27)
which establishes √

nD1 = Op(1) (69)

To complete the proof of the Theorem we now need to show that

√
nD2 = Op(1) (70)

To establish (70), we first need to establish a few facts about yi and ŷi. By the Cauchy–Schwarz
inequality and result (27), we have

√
n
∣∣ȳ − ˆ̄y

∣∣ ≤ √
n

n∑
i=1

|yi − ŷi| /n

≤ √
n

(
n∑

i=1

(yi − ŷi)
2/n

)1/2

=

(
n∑

i=1

(yi − ŷi)
2

)1/2

= Op(1)

Thus, √
n
(
ˆ̄y2 − ȳ2

)
=

√
n
(
ˆ̄y − ȳ

) (
ˆ̄y + ȳ

)
= Op(1) (71)
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By the Cauchy–Schwarz inequality, we have

n∑
i=1

(ŷi + yi)
2/n =

n∑
i=1

(ŷi − yi + 2yi)
2/n (72)

=

∣∣∣∣∣
n∑

i=1

(ŷi − yi)
2/n+ 4

n∑
i=1

(ŷi − yi)yi/n+ 4

n∑
i=1

y2i /n

∣∣∣∣∣
≤

n∑
i=1

(ŷi − yi)
2/n+ 4

(
n∑

i=1

(ŷi − yi)
2/n

)1/2( n∑
i=1

y2i /n

)1/2

+ 4

n∑
i=1

y2i /n

By results (27) and (72) and the fact that

n∑
i=1

y2i /n
p→ E(Y 2)

we have
n∑

i=1

(ŷi + yi)
2/n = Op(1) (73)

By the Cauchy–Schwarz inequality and results (27) and (73) we have

√
n

∣∣∣∣∣
n∑

i=1

(
ŷ2i − y2i

)
/n

∣∣∣∣∣ =
√
n

∣∣∣∣∣
n∑

i=1

(ŷi − yi) (ŷi + yi) /n

∣∣∣∣∣ (74)

≤ √
n

(
n∑

i=1

(ŷi − yi)
2 /n

)1/2( n∑
i=1

(ŷi + yi)
2 /n

)1/2

= Op(1)

By results (71) and (74) we have

√
n (ŝyy/n− syy/n) =

√
n

(
n∑

i=1

ŷ2i /n− ˆ̄y2 −
(

n∑
i=1

y2i /n− ȳ2

))
(75)

=
√
n

(
n∑

i=1

(
ŷ2i − y2i

)
/n− (

ˆ̄y2 − ȳ2
))

= Op(1)

From result (75) we have

√
n

(√
ŝyy/n−

√
syy/n

)
=

√
n (ŝyy/n− syy/n) /

(√
ŝyy/n+

√
syy/n

)
= Op(1) (76)

Now

D2 ≡
∑n

i=1(xi − x̄)(ŷi − ˆ̄y)√
sxx × syy

−
∑n

i=1(xi − x̄)(ŷi − ˆ̄y)√
sxx × ŝyy

(77)

=

∑n
i=1(xi − x̄)(ŷi − ˆ̄y)

n
×

√
sxx × ŝyy/n2 −√

sxx × syy/n2√
sxx × syy × sxx × ŝyy/n4

≡ F1 × F2
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By the Cauchy–Schwarz inequality and (75)

|F1| ≤
(

n∑
i=1

(xi − x̄)2/n

)1/2( n∑
i=1

(ŷi − ˆ̄y)2/n

)1/2

(78)

=
√
sxx/n×

√
ŝyy/n

p→ σ × 1

By results (76) and (77)

√
nF2 =

√
sxx/n√

sxx × syy × sxx × ŝyy/n4
×√

n

(√
ŝyy/n−

√
syy/n

)
= Op(1) (79)

Results (77), (78), and (79) imply that

√
nD2 = Op(1) (80)

This completes the proof of the Theorem. �

10 Appendix C—Partial Derivatives of log(f(x, w))

Given result (10) we have

log(f(x,w)) = − log(2π)− log(σ)− log
(√

1− ρ2
)

−
(x−μ

σ

)2
2(1− ρ2)

+
2ρ

(x−μ
σ

)
y

2(1− ρ2)
− y2

2(1− ρ2)
(81)

+ β log(γ) + log(β) + (β − 1) log(w)

− (γw)β + log
(√

2π
)
+ y2/2

Thus, [first partials]

∂ log(f(x,w))

∂μ
=

x− μ

σ2(1− ρ2)
− ρy

σ(1− ρ2)
(82)

∂ log(f(x,w))

∂σ
=

−1

σ
+

(x− μ)2

σ3(1− ρ2)
− ρ(x− μ)y

σ2(1− ρ2)
(83)

∂ log(f(x,w))

∂ρ
=

ρ

1− ρ2
−
((

x− μ

σ

)2

+ y2

)
ρ

(1− ρ2)2
+

(
x− μ

σ

)
y

(
1 + ρ2

(1− ρ2)2

)
(84)

∂ log(f(x,w))

∂γ
=

ρ
(x−μ

σ

) ∂y
∂γ

1− ρ2
−

y ∂y
∂γ

1− ρ2
+

β

γ
− wββγβ−1 + y

∂y

∂γ
(85)

∂ log(f(x,w))

∂β
=

ρ
(x−μ

σ

) ∂y
∂β

1− ρ2
−

y ∂y
∂β

1− ρ2
+ log(γ) +

1

β
+ log(w)− (γw)β log(γw) + y

∂y

∂β
(86)

and [second main partials]
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∂2 log(f(x,w))

∂μ2
=

−1

σ2(1− ρ2)
(87)

∂2 log(f(x,w))

∂σ2
=

1

σ2
− 3(x− μ)2

σ4(1− ρ2)
+

2ρ(x− μ)y

σ3(1− ρ2)
(88)

∂2 log(f(x,w))

∂ρ2
=

1

1− ρ2
+

2ρ2

(1− ρ2)2
−
((

x− μ

σ

)2

+ y2

)(
1

(1− ρ2)2
+

4ρ2

(1− ρ2)3

)

+

(
x− μ

σ

)
y

(
2ρ

(1− ρ2)2
+

4(1 + ρ2)ρ

(1− ρ2)3

)
(89)

∂2 log(f(x,w))

∂γ2
=

ρ
(x−μ

σ

)
1− ρ2

∂2y

∂γ2
− 1

1− ρ2

((
∂y

∂γ

)2

+ y
∂2y

∂γ2

)
(90)

− β

γ2
− wββ(β − 1)γβ−2 +

((
∂y

∂γ

)2

+ y
∂2y

∂γ2

)

∂2 log(f(x,w))

∂β2
=

ρ
(x−μ

σ

)
1− ρ2

∂2y

∂β2
− 1

1− ρ2

((
∂y

∂β

)2

+ y
∂2y

∂β2

)
(91)

− 1

β2
− (γw)β(log(γw))2 +

((
∂y

∂β

)2

+ y
∂2y

∂β2

)

and [second mixed partials, μ]

∂2 log(f(x,w))

∂μ∂σ
=

−2(x− μ)

σ3(1− ρ2)
+

ρy

1− ρ2
1

σ2
(92)

∂2 log(f(x,w))

∂μ∂ρ
=

2(x− μ)

σ2

ρ

(1− ρ2)2
− y(1 + ρ2)

σ(1− ρ2)2
(93)

∂2 log(f(x,w))

∂μ∂γ
=

ρ

1− ρ2
∂y

∂γ

(−1

σ

)
(94)

∂2 log(f(x,w))

∂μ∂β
=

ρ

1− ρ2
∂y

∂β

(−1

σ

)
(95)

and [second mixed partials, σ]

∂2 log(f(x,w))

∂σ∂ρ
=

2(x− μ)2

σ3

ρ

(1− ρ2)2
− (x− μ)y

σ2

(1 + ρ2)

(1− ρ2)2
(96)

∂2 log(f(x,w))

∂σ∂γ
=

−(x− μ)

σ2
× ρ

1− ρ2
× ∂y

∂γ
(97)

∂2 log(f(x,w))

∂σ∂β
=

−(x− μ)

σ2
× ρ

1− ρ2
× ∂y

∂β
(98)
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and [second mixed partials, ρ]

∂2 log(f(x,w))

∂ρ∂γ
=

(
x− μ

σ

)
∂y

∂γ

(
1

1− ρ2
+

2ρ2

(1− ρ2)2

)
− y × ∂y

∂γ
× 2ρ

(1− ρ2)2
(99)

∂2 log(f(x,w))

∂ρ∂β
=

(
x− μ

σ

)
∂y

∂β

(
1

1− ρ2
+

2ρ2

(1− ρ2)2

)
− y × ∂y

∂β
× 2ρ

(1− ρ2)2
(100)

and [second mixed partials, γ]

∂2 log(f(x,w))

∂γ∂β
=

(
x− μ

σ

)
ρ

1− ρ2
∂2y

∂γ∂β
− 1

1− ρ2

(
∂y

∂γ

∂y

∂β
+ y

∂2y

∂γ∂β

)
(101)

+ 1/γ −
(
wβ log(w)βγβ−1 + wβγβ−1 + wββγβ−1 log(γ)

)
+

∂y

∂γ

∂y

∂β
+ y

∂2y

∂γ∂β

and [third main partials]

1:
∂3 log(f(x,w))

∂μ3
= 0 (102)

2:
∂3 log(f(x,w))

∂σ3
=

−2

σ3
+

12(x− μ)2

σ5(1− ρ2)
− 6ρ(x− μ)y

σ4(1− ρ2)
(103)

3:

∂3 log(f(x,w))

∂ρ3
=

6ρ

(1− ρ2)2
+

8ρ3

(1− ρ2)3
(104)

−
((

x− μ

σ

)2

+ y2

)(
12ρ

(1− ρ2)3
+

24ρ3

(1− ρ2)4

)

+

(
x− μ

σ

)
y

(
2

(1− ρ2)2
+

8ρ2

(1− ρ2)3
+

4(1 + 3ρ2)

(1− ρ2)3
+

24ρ2(1 + ρ2)

(1− ρ2)4

)

4:

∂3 log(f(x,w))

∂γ3
=

ρ

1− ρ2

(
x− μ

σ

)
∂3y

∂γ3
− 1

1− ρ2

(
3
∂y

∂γ

∂2y

∂γ2
+ y

∂3y

∂γ3

)
(105)

+
2β

γ3
− wββ(β − 1)(β − 2)γβ−3 +

(
3
∂y

∂γ

∂2y

∂γ2
+ y

∂3y

∂γ3

)

5:

∂3 log(f(x,w))

∂β3
=

ρ

1− ρ2

(
x− μ

σ

)
∂3y

∂β3
− 1

1− ρ2

(
3
∂y

∂β

∂2y

∂β2
+ y

∂3y

∂β3

)
(106)

+
2

β3
− (γw)β (log(γw))3 +

(
3
∂y

∂β

∂2y

∂β2
+ y

∂3y

∂β3

)

and [third partials, 2 with respect to μ]
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6:
∂3 log(f(x,w))

∂μ2∂σ
=

2

σ3(1− ρ2)
(107)

7:
∂3 log(f(x,w))

∂μ2∂ρ
=

−2ρ

σ2(1− ρ2)2
(108)

8:
∂3 log(f(x,w))

∂μ2∂γ
= 0 (109)

9:
∂3 log(f(x,w))

∂μ2∂β
= 0 (110)

and [third partials, 2 with respect to σ]
10:

∂3 log(f(x,w))

∂σ2∂μ
=

6(x− μ)

σ4(1− ρ2)
− 2yρ

σ3(1− ρ2)
(111)

11:
∂3 log(f(x,w))

∂σ2∂ρ
=

−6(x− μ)2

σ4

ρ

(1− ρ2)2
+

2(x− μ)y

σ3

1 + ρ2

(1− ρ2)2
(112)

12:
∂3 log(f(x,w))

∂σ2∂γ
=

2(x− μ)

σ3
× ρ

1− ρ2
× ∂y

∂γ
(113)

13:
∂3 log(f(x,w))

∂σ2∂β
=

2(x− μ)

σ3
× ρ

1− ρ2
× ∂y

∂β
(114)

and [third partials, 2 with respect to ρ]
14:

∂3 log(f(x,w))

∂ρ2∂μ
=

2(x− μ)

σ2

(
1

(1− ρ2)2
+

4ρ2

(1− ρ2)3

)
− y

σ

(
2ρ

(1− ρ2)2
+

4ρ(1 + ρ2)

(1− ρ2)3

)
(115)

15:

∂3 log(f(x,w))

∂ρ2∂σ
=

2(x− μ)2

σ3

(
1

(1− ρ2)2
+

4ρ2

(1− ρ2)3

)
(116)

− (x− μ)y

σ2

(
2ρ

(1− ρ2)2
+

4ρ(1 + ρ2)

(1− ρ2)3

)

16:

∂3 log(f(x,w))

∂ρ2∂γ
=

(
x− μ

σ

)
∂y

∂γ

(
2ρ

(1− ρ2)2
+

4ρ

(1− ρ2)2
+

8ρ3

(1− ρ2)3

)
(117)

− y
∂y

∂γ

(
2

(1− ρ2)2
+

8ρ2

(1− ρ2)3

)

17:

∂3 log(f(x,w))

∂ρ2∂β
=

(
x− μ

σ

)
∂y

∂β

(
2ρ

(1− ρ2)2
+

4ρ

(1− ρ2)2
+

8ρ3

(1− ρ2)3

)
(118)

− y
∂y

∂β

(
2

(1− ρ2)2
+

8ρ2

(1− ρ2)3

)
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and [third partials, 2 with respect to γ]
18:

∂3 log(f(x,w))

∂γ2∂μ
=

−1

σ
× ρ

1− ρ2
× ∂2y

∂γ2
(119)

19:
∂3 log(f(x,w))

∂γ2∂σ
=

−(x− μ)

σ2
× ρ

1− ρ2
× ∂2y

∂γ2
(120)

20:

∂3 log(f(x,w))

∂γ2∂ρ
=

(
x− μ

σ

)(
1

1− ρ2
+

2ρ2

(1− ρ2)2

)
∂2y

∂γ2
− 2ρ

(1− ρ2)2

((
∂y

∂γ

)2

+ y
∂2y

∂γ2

)
(121)

21:

∂3 log(f(x,w))

∂γ2∂β
=

(
x− μ

σ

)
× ρ

1− ρ2
× ∂3y

∂γ2∂β
(122)

− 1

1− ρ2

(
2× ∂y

∂γ
× ∂2y

∂γ∂β
+

∂y

∂β
× ∂2y

∂γ2
+ y × ∂3y

∂γ2∂β

)

− 1

γ2
−
(
wβ log(w)(β2 − β)γβ−2 + wβ(2β − 1)γβ−2 + wβ(β2 − β)γβ−2 log(γ)

)

+

(
2× ∂y

∂γ
× ∂2y

∂γ∂β
+

∂y

∂β
× ∂2y

∂γ2
+ y × ∂3y

∂γ2∂β

)

and [third partials, 2 with respect to β]
22:

∂3 log(f(x,w))

∂β2∂μ
=

−1

σ
× ρ

1− ρ2
× ∂2y

∂β2
(123)

23:
∂3 log(f(x,w))

∂β2∂σ
=

−(x− μ)

σ2
× ρ

1− ρ2
× ∂2y

∂β2
(124)

24:

∂3 log(f(x,w))

∂β2∂ρ
=

(
x− μ

σ

)(
1

1− ρ2
+

2ρ2

(1− ρ2)2

)
∂2y

∂β2
− 2ρ

(1− ρ2)2

((
∂y

∂β

)2

+ y
∂2y

∂β2

)
(125)

25:

∂3 log(f(x,w))

∂β2∂γ
=

(
x− μ

σ

)
× ρ

1− ρ2
× ∂3y

∂γ∂β2
(126)

− 1

1− ρ2

(
2× ∂y

∂β
× ∂2y

∂γ∂β
+

∂y

∂γ
× ∂2y

∂β2
+ y × ∂3y

∂γ∂β2

)

−
(
wββγβ−1(log(γw))2 + (γw)β2 log(γw)/γ

)
+

(
2× ∂y

∂β
× ∂2y

∂γ∂β
+

∂y

∂γ
× ∂2y

∂β2
+ y × ∂3y

∂γ∂β2

)

and [third partials, μ, σ, ρ]
26:

∂3 log(f(x,w))

∂μ∂σ∂ρ
=

−4(x− μ)

σ3
× ρ

(1− ρ2)2
+

y

σ2
×
(

1

1− ρ2
+

2ρ2

(1− ρ2)2

)
(127)
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and [third partials, μ, σ, γ]
27:

∂3 log(f(x,w))

∂μ∂σ∂γ
=

1

σ2
× ρ

1− ρ2
× ∂y

∂γ
(128)

and [third partials, μ, σ, β]
28:

∂3 log(f(x,w))

∂μ∂σ∂β
=

1

σ2
× ρ

1− ρ2
× ∂y

∂β
(129)

and [third partials, μ, ρ, γ]
29:

∂3 log(f(x,w))

∂μ∂ρ∂γ
=

−1

σ
× 1 + ρ2

(1− ρ2)2
× ∂y

∂γ
(130)

and [third partials, μ, ρ, β]
30:

∂3 log(f(x,w))

∂μ∂ρ∂β
=

−1

σ
× 1 + ρ2

(1− ρ2)2
× ∂y

∂β
(131)

and [third partials, μ, γ, β]
31:

∂3 log(f(x,w))

∂μ∂γ∂β
=

−1

σ
× ρ

1− ρ2
× ∂2y

∂γ∂β
(132)

and [third partials, σ, ρ, γ]
32:

∂3 log(f(x,w))

∂σ∂ρ∂γ
=

−(x− μ)

σ2
× 1 + ρ2

(1− ρ2)2
× ∂y

∂γ
(133)

and [third partials, σ, ρ, β]
33:

∂3 log(f(x,w))

∂σ∂ρ∂β
=

−(x− μ)

σ2
× 1 + ρ2

(1− ρ2)2
× ∂y

∂β
(134)

and [third partials, σ, γ, β]
34:

∂3 log(f(x,w))

∂σ∂γ∂β
=

−(x− μ)

σ2
× ρ

1− ρ2
× ∂2y

∂γ∂β
(135)

and [third partials, ρ, γ, β]
35:

∂3 log(f(x,w))

∂ρ∂γ∂β
=

x− μ

σ

(
1

1− ρ2
+

2ρ2

(1− ρ2)2

)
∂2y

∂γ∂β
− 2ρ

(1− ρ2)2

(
∂y

∂γ

∂y

∂β
+ y

∂2y

∂γ∂β

)
(136)

11 Appendix D—Partial Derivatives of y

Recall that
y ≡ Φ−1

(
1− exp(−(γw)β

)
Thus, we have

∂y

∂γ
=

exp
(−(γw)β

)
βγβ−1wβ

φ(y)
(137)

=
√
2π × βγβ−1 × wβ × exp

(
−(γw)β

)
× exp

(
y2/2

)
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∂y

∂β
=

√
2π × (γw)β log(γw)× exp

(
−(γw)β

)
× exp

(
y2/2

)
(138)

∂2y

∂γ2
=

√
2π βwβ

[
(β − 1)γβ−2 exp

(
−(γw)β

)
exp

(
y2/2

)
(139)

+ γβ−1 exp
(
−(γw)β

)
(−1)wββγβ−1 exp

(
y2/2

)
+ γβ−1 exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂γ

]

∂2y

∂β2
=

√
2π log(γw)

[
(γw)β log(γw) exp

(
−(γw)β

)
exp

(
y2/2

)
(140)

+ (γw)β exp
(
−(γw)β

)
(−1)(γw)β log(γw) exp

(
y2/2

)
+ (γw)β exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂β

]

∂2y

∂γ∂β
=

√
2π

[
(1/γ)(γw)β exp

(
−(γw)β

)
exp

(
y2/2

)
(141)

+ log(γw)wββγβ−1 exp
(
−(γw)β

)
exp

(
y2/2

)
+ log(γw)(γw)β exp

(
−(γw)β

)
(−1)wββγβ−1 exp

(
y2/2

)
+ log(γw)(γw)β exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂γ

]

∂3y

∂γ3
=

√
2πβwβ

(
(β − 1)× T1 − wββ × T2 + T3

)
(142)

where

T1 = (β − 2)γβ−3 exp
(
−(γw)β

)
exp

(
y2/2

)
+ γβ−2 exp

(
−(γw)β

)
(−1)wββγβ−1 exp

(
y2/2

)
+ γβ−2 exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂γ

T2 = (2β − 2)γ2β−3 exp
(
−(γw)β

)
exp

(
y2/2

)
+ γ2β−2 exp

(
−(γw)β

)
(−1)wββγβ−1 exp

(
y2/2

)
+ γ2β−2 exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂γ
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T3 = (β − 1)γβ−2 exp
(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂γ

+ γβ−1 exp
(
−(γw)β

)
(−1)wββγβ−1 exp

(
y2/2

)
y
∂y

∂γ

+ γβ−1 exp
(
−(γw)β

)
exp

(
y2/2

)
y2

(
∂y

∂γ

)2

+ γβ−1 exp
(
−(γw)β

)
exp

(
y2/2

)(∂y

∂γ

)2

+ γβ−1 exp
(
−(γw)β

)
exp

(
y2/2

)
y
∂2y

∂γ2

∂3y

∂β3
=

√
2π log(γw) (log(γw)× T1 − log(γw)× T2 + T3) (143)

where

T1 = (γw)β log(γw) exp
(
−(γw)β

)
exp

(
y2/2

)
+ (γw)β exp

(
−(γw)β

)
(−1)(γw)β log(γw) exp

(
y2/2

)
+ (γw)β exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂β

T2 = (γw)2β2 log(γw) exp
(
−(γw)β

)
exp

(
y2/2

)
+ (γw)2β exp

(
−(γw)β

)
(−1)(γw)β log(γw) exp

(
y2/2

)
+ (γw)2β exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂β

T3 = (γw)β log(γw) exp
(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂β

+ (γw)β exp
(
−(γw)β

)
(−1)(γw)β log(γw) exp

(
y2/2

)
y
∂y

∂β

+ (γw)β exp
(
−(γw)β

)
exp

(
y2/2

)
y2

(
∂y

∂β

)2

+ (γw)β exp
(
−(γw)β

)
exp

(
y2/2

)(∂y

∂β

)2

+ (γw)β exp
(
−(γw)β

)
exp

(
y2/2

)
y
∂2y

∂β2

∂3y

∂γ2∂β
=

√
2π

(
wβ × T1 + wββ × T2 − wββ × T3 + wβ × T4

)
(144)

where

T1 = (β − 1)γβ−2 exp
(
−(γw)β

)
exp

(
y2/2

)
+ γβ−1 exp

(
−(γw)β

)
(−1)wββγβ−1 exp

(
y2/2

)
+ γβ−1 exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂γ
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T2 = (1/γ)γβ−1 exp
(
−(γw)β

)
exp

(
y2/2

)
+ log(γw)(β − 1)γβ−2 exp

(
−(γw)β

)
exp

(
y2/2

)
+ log(γw)γβ−1 exp

(
−(γw)β

)
(−1)wββγβ−1 exp

(
y2/2

)
+ log(γw)γβ−1 exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂γ

T3 = (1/γ)(γw)β exp
(
−(γw)β

)
γβ−1 exp

(
y2/2

)
+ log(γw)wββγβ−1 exp

(
−(γw)β

)
γβ−1 exp

(
y2/2

)
+ log(γw)(γw)β exp

(
−(γw)β

)
(−1)wββγβ−1γβ−1 exp

(
y2/2

)
+ log(γw)(γw)β exp

(
−(γw)β

)
(β − 1)γβ−2 exp

(
y2/2

)
+ log(γw)(γw)β exp

(
−(γw)β

)
γβ−1 exp

(
y2/2

)
y
∂y

∂γ

T4 = (1/γ)γβ exp
(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂γ

+ log(γw)βγβ−1 exp
(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂γ

+ log(γw)γβ exp
(
−(γw)β

)
(−1)wββγβ−1 exp

(
y2/2

)
y
∂y

∂γ

+ log(γw)γβ exp
(
−(γw)β

)
exp

(
y2/2

)
y2

(
∂y

∂γ

)2

+ log(γw)γβ exp
(
−(γw)β

)
exp

(
y2/2

)(∂y

∂γ

)2

+ log(γw)γβ exp
(
−(γw)β

)
exp

(
y2/2

)
y
∂2y

∂γ2

∂3y

∂γ∂β2
=

√
2π (T1 + log(γw)× T2 − log(γw)× T3 + log(γw)× T4) (145)

where

T1 = γβ−1 log(γ)wβ exp
(
−(γw)β

)
exp

(
y2/2

)
+ γβ−1wβ log(w) exp

(
−(γw)β

)
exp

(
y2/2

)
+ γβ−1wβ exp

(
−(γw)β

)
(−1)(γw)β log(γw) exp

(
y2/2

)
+ γβ−1wβ exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂β
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T2 = wβ log(w)βγβ−1 exp
(
−(γw)β

)
exp

(
y2/2

)
+ wβγβ−1 exp

(
−(γw)β

)
exp

(
y2/2

)
+ wββγβ−1 log(γ) exp

(
−(γw)β

)
exp

(
y2/2

)
+ wββγβ−1 exp

(
−(γw)β

)
(−1)(γw)β log(γw) exp

(
y2/2

)
+ wββγβ−1 exp

(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂β

T3 = (γw)β log(γw) exp
(
−(γw)β

)
wββγβ−1 exp

(
y2/2

)
+ (γw)β exp

(
−(γw)β

)
(−1)(γw)β log(γw)wββγβ−1 exp

(
y2/2

)
+ (γw)β exp

(
−(γw)β

)
wβ log(w)βγβ−1 exp

(
y2/2

)
+ (γw)β exp

(
−(γw)β

)
wβγβ−1 exp

(
y2/2

)
+ (γw)β exp

(
−(γw)β

)
wββγβ−1 log(γ) exp

(
y2/2

)
+ (γw)β exp

(
−(γw)β

)
wββγβ−1 exp

(
y2/2

)
y
∂y

∂β

T4 = (γw)β log(γw) exp
(
−(γw)β

)
exp

(
y2/2

)
y
∂y

∂γ

+ (γw)β exp
(
−(γw)β

)
(−1)(γw)β log(γw) exp

(
y2/2

)
y
∂y

∂γ

+ (γw)β exp
(
−(γw)β

)
exp

(
y2/2

)
y2

∂y

∂γ

∂y

∂β

+ (γw)β exp
(
−(γw)β

)
exp

(
y2/2

) ∂y

∂γ

∂y

∂β

+ (γw)β exp
(
−(γw)β

)
exp

(
y2/2

)
y

∂2y

∂γ∂β
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12 Appendix E1—Expectations of the first partials of the likeli-
hood

Recall that, by construction, x, y are normal random variables with correlation 1, means μ and 0,
respectively, and standard deviations σ and 1, respectively.

Thus, from result (82), we have

E

(
∂ log(f(x,w))

∂μ

)
= 0− 0 = 0 (147)

From result (83), we have

E

(
∂ log(f(x,w))

∂σ

)
=

−1

σ
+

σ2

σ3(1− ρ2)
− ρ2σ

σ2(1− ρ2)
=

−1

σ
+

1

σ(1− ρ2)
− ρ2

σ(1− ρ2)
= 0 (148)

27



From result (84), we have

E

(
∂ log(f(x,w))

∂ρ

)
=

ρ

1− ρ2
− 2ρ

(1− ρ2)2
+

ρ(1 + ρ2)

(1− ρ2)2
= 0 (149)

From results (85), (261), and (277), we have

E

(
∂ log(f(x,w))

∂γ

)
=

ρ2E
(
y ∂y
∂γ

)
1− ρ2

−
E
(
y ∂y
∂γ

)
1− ρ2

+ 0 + E

(
y
∂y

∂γ

)
= 0 (150)

From results (86), (262), and (278), we have

E

(
∂ log(f(x,w))

∂β

)
=

ρ2E
(
y ∂y
∂β

)
1− ρ2

−
E
(
y ∂y
∂β

)
1− ρ2

+ 0 + E

(
y
∂y

∂β

)
= 0 (151)

13 Appendix E2—Expectations of the second partials of the like-
lihood

(The existence and finiteness of the expectations involving partial derivatives of y are established
in Appendix H.)

Recall that, by construction, x, y are normal random variables with correlation 1, means μ and
0, respectively, and standard deviations σ and 1, respectively.

Thus, from result (87), we have

E

(
∂2 log(f(x,w))

∂μ2

)
=

−1

σ2(1− ρ2)
(152)

From result (88), we have

E

(
∂2 log(f(x,w))

∂σ2

)
=

1

σ2
− 3

σ2(1− ρ2)
+

2ρ2

σ2(1− ρ2)
=

−2 + ρ2

σ2(1− ρ2)
(153)

From result (89), we have

E

(
∂2 log(f(x,w))

∂ρ2

)
=

1

1− ρ2
+

2ρ2

(1− ρ2)2
− 2

(
1

(1− ρ2)2
+

4ρ2

(1− ρ2)3

)

+ ρ

(
2ρ

(1− ρ2)2
+

4(1 + ρ2)ρ

(1− ρ2)3

)

=
−(1 + ρ2)

(1− ρ2)2
(154)

From results (90), (256), and (282), we have

E

(
∂2 log(f(x,w))

∂γ2

)
=

ρ2

1− ρ2
E

(
y
∂2y

∂γ2

)
− ρ2

1− ρ2
E

((
∂y

∂γ

)2

+ y
∂2y

∂γ2

)

− β2

γ2

=
−ρ2

1− ρ2
E

((
∂y

∂γ

)2
)

− β2

γ2
(155)
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From results (91), (256), and (287), we have

E

(
∂2 log(f(x,w))

∂β2

)
=

ρ2

1− ρ2
E

(
y
∂2y

∂β2

)
− ρ2

1− ρ2
E

((
∂y

∂β

)2

+ y
∂2y

∂β2

)
(156)

− 1

β2
− E

(
(γw)β(log(γw))2

)

=
−ρ2

1− ρ2
E

((
∂y

∂β

)2
)

− 1

β2
− E

(
(γw)β(log(γw))2

)

=
−ρ2

1− ρ2
E

((
∂y

∂β

)2
)

− 1

β2

− E
(
(log(w))2

)
− 2

β
E (log(w))

− 2 log(γ)E (log(w))− 2 log(γ)

β

− (log(γ))2

From result (92), we have

E

(
∂2 log(f(x,w))

∂μ∂σ

)
=

−2E(x− μ)

σ3(1− ρ2)
+

ρE(y)

1− ρ2
1

σ2
= 0 (157)

From result (93), we have

E

(
∂2 log(f(x,w))

∂μ∂ρ

)
=

2E(x− μ)

σ2

ρ

(1− ρ2)2
− E(y)(1 + ρ2)

σ(1− ρ2)2
= 0 (158)

From result (94), we have

E

(
∂2 log(f(x,w))

∂μ∂γ

)
=

ρ

1− ρ2
E

(
∂y

∂γ

)(−1

σ

)
(159)

From result (95), we have

E

(
∂2 log(f(x,w))

∂μ∂β

)
=

ρ

1− ρ2
E

(
∂y

∂β

)(−1

σ

)
(160)

From results (96) and (256), we have

E

(
∂2 log(f(x,w))

∂σ∂ρ

)
=

2ρ

σ(1− ρ2)2
− ρ(1 + ρ2)

σ(1− ρ2)2

=
ρ

σ(1− ρ2)
(161)

From results (97) and (256), we have

E

(
∂2 log(f(x,w))

∂σ∂γ

)
=

−ρ2

σ(1− ρ2)
E

(
y
∂y

∂γ

)
(162)

From results (98) and (256), we have

E

(
∂2 log(f(x,w))

∂σ∂β

)
=

−ρ2

σ(1− ρ2)
E

(
y
∂y

∂β

)
(163)

29



From results (99) and (256), we have

E

(
∂2 log(f(x,w))

∂ρ∂γ

)
=

(
ρ

1− ρ2
+

2ρ3

(1− ρ2)2
− 2ρ

(1− ρ2)2

)
E

(
y
∂y

∂γ

)

=
−ρ

1− ρ2
× E

(
y
∂y

∂γ

)
(164)

From results (100) and (256), we have

E

(
∂2 log(f(x,w))

∂ρ∂β

)
=

(
ρ

1− ρ2
+

2ρ3

(1− ρ2)2
− 2ρ

(1− ρ2)2

)
E

(
y
∂y

∂β

)

=
−ρ

1− ρ2
× E

(
y
∂y

∂β

)
(165)

From results (101) and (256), we have

E

(
∂2 log(f(x,w))

∂γ∂β

)
=

ρ2

1− ρ2
E

(
y

∂2y

∂γ∂β

)
− ρ2

1− ρ2
E

(
∂y

∂γ

∂y

∂β
+ y

∂2y

∂γ∂β

)

+ 1/γ − E
(
wβ log(w)βγβ−1

)
− E

(
wβγβ−1

)
− E

(
wββγβ−1 log(γ)

)
≡ − ρ2

1− ρ2
E

(
∂y

∂γ

∂y

∂β

)
+ 1/γ − T1 − T2 − T3 (166)

We have

T1 = − log(w)wββγβ−1 exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γβ−1β

(
βwβ−1 log(w) + wβ−1

)
exp

(
−(γw)β

)
dw

=
β

γ

∫ ∞

0
log(w)γββwβ−1 exp

(
−(γw)β

)
dw +

1

γ

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

=
β

γ
× E (log(w)) +

1

γ
(167)

and

T2 = −γβ−1wβ exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γβ−1βwβ−1 exp

(
−(γw)β

)
dw

=
1

γ
(168)

and

T3 = − log(γ)γβ−1βwβ exp
(
−(γw)β

)∣∣∣∞
0

+
β log(γ)

γ

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

=
β log(γ)

γ
(169)

From results (166)–(169), we have

E

(
∂2 log(f(x,w))

∂γ∂β

)
= − ρ2

1− ρ2
E

(
∂y

∂γ

∂y

∂β

)
− β

γ
× E (log(w))

− 1

γ
− β log(γ)

γ
(170)
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14 Appendix E3—E
(
∂f/∂θi

f × ∂f/∂θj
f

)
’s

(The existence and finiteness of the expectations involving partial derivatives of y are established
in Appendix H. The existence and finiteness of E(log(w)) and E

(
(log(w))2

)
follow from Lemma

2.)

Recall from (11) that the pdf of the Gaussian-Weibull is given by

f(x,w) ≡ γββwβ−1 exp
(
−(γw)β

)
(171)

× 1√
2π

× 1

σ
√
1− ρ2

× exp

(
−
(
x− μ

σ
− ρy

)2

/
(
2
(
1− ρ2

)))

where

y = Φ−1
(
1− exp

(
−(γ × w)β

))

Thus

∂f
∂μ

f
=

1

σ

(x−μ
σ − ρy

)
1− ρ2

(172)

∂f
∂σ

f
=

−1

σ
+

1

σ

(x−μ
σ − ρy

)
1− ρ2

(
x− μ

σ

)
∂f
∂ρ

f
=

ρ

1− ρ2
+

(x−μ
σ − ρy

)
y

1− ρ2
−

(x−μ
σ − ρy

)2
ρ

(1− ρ2)2

∂f
∂γ

f
=

β

γ
− wββγβ−1 +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂γ
∂f
∂β

f
= log γ +

1

β
+ log(w)− (γw)β log(γw) +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂β

From (172) and (256), we have

E

⎛
⎝(

∂f
∂μ

f

)2
⎞
⎠ = E

⎛
⎝((x−μ

σ − ρy
)

1
σ

1− ρ2

)2
⎞
⎠

=
1

σ2(1− ρ2)2
E

((
x− μ

σ

)2

− 2ρy

(
x− μ

σ

)
+ ρ2y2

)

=
1

σ2(1− ρ2)2
(
1− 2ρ2 + ρ2

)
=

1

σ2(1− ρ2)
(173)
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From (172), (256), (289), and (290), we have

E

⎛
⎝(

∂f
∂σ

f

)2
⎞
⎠ = E

(
1

σ2
− 2

σ2(1− ρ2)

(
x− μ

σ
− ρy

)(
x− μ

σ

)

+
1

σ2(1− ρ2)2

(
x− μ

σ
− ρy

)2(x− μ

σ

)2
)

=
1

σ2
− 2

σ2(1− ρ2)
(1− ρ2)

+
1

σ2(1− ρ2)2
E

((
x− μ

σ

)4

− 2ρy

(
x− μ

σ

)3

+ ρ2y2
(
x− μ

σ

)2
)

=
−1

σ2
+

1

σ2(1− ρ2)2
(
3− 6ρ2 + ρ2 + 2ρ4

)
=

−1

σ2
+

1

σ2(1− ρ2)2
(
3− 3ρ2 − 2ρ2 + 2ρ4

)
=

−1

σ2
+

1

σ2(1− ρ2)

(
1 + 2− 2ρ2

)
=

1

σ2

(
1 +

1

1− ρ2

)
(174)

From (172), (256), and (273)–(276), we have

E

⎛
⎝(

∂f
∂ρ

f

)2
⎞
⎠ =

ρ2

(1− ρ2)2
+

2ρ

(1− ρ2)2
E

((
x− μ

σ

)
y − ρy2

)

− 2ρ2

(1− ρ2)3
E

((
x− μ

σ

)2

− 2ρy

(
x− μ

σ

)
+ ρ2y2

)

+
1

(1− ρ2)2
E

((
x− μ

σ
− ρy

)2

y2

)
− 2ρ

(1− ρ2)3
E

((
x− μ

σ
− ρy

)3

y

)

+
ρ2

(1− ρ2)4
E

((
x− μ

σ
− ρy

)4
)

=
ρ2

(1− ρ2)2
+

2ρ

(1− ρ2)2
(ρ− ρ)− 2ρ2

(1− ρ2)3
(
1− 2ρ2 + ρ2

)
+

1

(1− ρ2)2
(1− ρ2)− 2ρ

(1− ρ2)3
× 0 +

ρ2

(1− ρ2)4
3(1− ρ2)2

=
1 + ρ2

(1− ρ2)2
(175)
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From (172), we have

E

⎛
⎝(

∂f
∂γ

f

)2
⎞
⎠ = E

((
β

γ
− wββγβ−1

)2
)

+ 2E

((
β

γ
− wββγβ−1

)((
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂γ

))

+ E

((
x− μ

σ
− ρy

)2 ρ2

(1− ρ2)2

(
∂y

∂γ

)2
)

≡ T1 + T2 + T3 (176)

T1 =

∫ ∞

0

(
β2

γ2
− 2wββ2γβ−2 + w2ββ2γ2β−2

)
γββwβ−1 exp

(
−(γw)β

)
dw

=
β2

γ2
− 2

∫ ∞

0
wββ2γβ−2γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ ∞

0
w2ββ2γ2β−2γββwβ−1 exp

(
−(γw)β

)
dw

≡ β2

γ2
− 2U1 + U2 (177)

U1 = −wββ2γβ−2 exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γβ−2β3wβ−1 exp

(
−(γw)β

)
dw

=
β2

γ2

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw =

β2

γ2
(178)

U2 = −w2ββ2γ2β−2 exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
2βw2β−1β2γ2β−2 exp

(
−(γw)β

)
dw

=

∫ ∞

0
2β2wβγβ−2γββwβ−1 exp

(
−(γw)β

)
dw

= −2β2wβγβ−2 exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
2β3wβ−1γβ−2 exp

(
−(γw)β

)
dw

=
2β2

γ2
(179)

From results (177)–(179), we have

T1 =
β2

γ2
(180)

From result (258), we have

T2 =

∫ ∞

0
2

(
β

γ
− wββγβ−1

)
denweib

ρ

1− ρ2
∂y

∂γ

∫ ∞

−∞

(
x− μ

σ
− ρy

)
denin dx dw = 0 (181)

where denin is defined in (254) and denweib is defined in (259).
From result (264), we have

T3 =

∫ ∞

0
denweib

ρ2

(1− ρ2)2

(
∂y

∂γ

2)∫ ∞

−∞

(
x− μ

σ
− ρy

)2

denin dx dw =
ρ2

1− ρ2
E

((
∂y

∂γ

)2
)

(182)

33



From results (176), and (180)–(182), we have

E

⎛
⎝(

∂f
∂γ

f

)2
⎞
⎠ =

ρ2

1− ρ2
E

((
∂y

∂γ

)2
)

+
β2

γ2
(183)

From (172), we have

E

⎛
⎝(

∂f
∂β

f

)2
⎞
⎠ = E

((
log γ +

1

β
+ log(w)− (γw)β log(γw)

)2
)

+ 2E

((
log γ +

1

β
+ log(w)− (γw)β log(γw)

)((
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂β

))

+ E

((
x− μ

σ
− ρy

)2 ρ2

(1− ρ2)2

(
∂y

∂β

)2
)

≡ T1 + T2 + T3 (184)

From result (264), we have

T3 =

∫ ∞

0
denweib

ρ2

(1− ρ2)2

(
∂y

∂β

2)∫ ∞

−∞

(
x− μ

σ
− ρy

)2

denin dx dw =
ρ2

1− ρ2
E

((
∂y

∂β

)2
)

(185)
From result (258), we have

T2 =

∫ ∞

0
2

(
log γ +

1

β
+ log(w)− (γw)β log(γw)

)
denweib

ρ

1− ρ2
∂y

∂β

∫ ∞

−∞

(
x− μ

σ
− ρy

)
denin dx dw = 0

(186)
Next, we have

T1 =

(
log γ +

1

β

)
E

(
log γ +

1

β
+ log(w)− (γw)β log(γw)

)

+

(
log γ +

1

β

)
E
(
log(w)− (γw)β log(γw)

)

+ E

((
log(w)− (γw)β log(γw)

)2
)

≡ U1 + U2 + U3 (187)

By result (281)
U1 = 0 (188)

and

U2 = −
(
log(γ) +

1

β

)2

(189)

Now,

U3 = E
(
(log(w))2

)
+ E

(
(γw)2β (log(γ))2

)
+ E

(
(γw)2β (log(w))2

)
− 2E

(
(γw)β log(γ) log(w)

)
− 2E

(
(γw)β (log(w))2

)
+ 2E

(
(γw)2β log(γ) log(w)

)
≡ V1 + V2 + V3 + V4 + V5 + V6 (190)
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V2 = (log(γ))2
(
− (γw)2β exp

(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γ2β2βw2β−1 exp

(
−(γw)β

)
dw

)

= (log(γ))2
∫ ∞

0
γβ2wβγββwβ−1 exp

(
−(γw)β

)
dw

= (log(γ))2
(
−2γβwβ exp

(
−(γw)β

)∣∣∣∞
0

+ 2

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

)
= 2 (log(γ))2 (191)

V3 = − (γw)2β (log(w))2 exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γ2β2βw2β−1(log(w))2 exp

(
−(γw)β

)
dw

+

∫ ∞

0
(γw)2β 2 log(w)

1

w
exp

(
−(γw)β

)
dw

=

∫ ∞

0
γβ2wβ(log(w))2γββwβ−1 exp

(
−(γw)β

)
dw

+
1

β

∫ ∞

0
γβ2wβ log(w)γββwβ−1 exp

(
−(γw)β

)
dw

= −2γβwβ(log(w))2 exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
2γβ

(
βwβ−1(log(w))2 + wβ2 log(w)

1

w

)
exp

(
−(γw)β

)
dw

− 1

β
γβ2wβ log(w) exp

(
−(γw)β

)∣∣∣∣
∞

0

+

∫ ∞

0

2

β
γβ

(
βwβ−1 log(w) + wβ 1

w

)
exp

(
−(γw)β

)
dw

= 2

∫ ∞

0
(log(w))2γββwβ−1 exp

(
−(γw)β

)
dw

+
4

β

∫ ∞

0
log(w)γββwβ−1 exp

(
−(γw)β

)
dw

+
2

β

∫ ∞

0
log(w)γββwβ−1 exp

(
−(γw)β

)
dw

+
2

β2

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

= 2E
(
(log(w))2

)
+

6

β
E (log(w)) +

2

β2
(192)

V4 = −2 log(γ)

(
−(γw)β log(w) exp

(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
log(w)γββwβ−1 exp

(
−(γw)β

)
dw

+
1

β

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

)

= −2 log(γ)

(
E (log(w)) +

1

β

)
(193)
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V5 = −2
(
−(γw)β(log(w))2 exp

(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γβ

(
βwβ−1(log(w))2 + wβ2 log(w)

1

w

)
exp

(
−(γw)β

)
dw

)

= −2

(∫ ∞

0
(log(w))2γββwβ−1 exp

(
−(γw)β

)
dw +

2

β

∫ ∞

0
log(w)γββwβ−1 exp

(
−(γw)β

)
dw

)

= −2E
(
(log(w))2

)− 4

β
E (log(w)) (194)

V6 = 2 log(γ)
(
−(γw)2β log(w) exp

(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γ2β

(
2βw2β−1 log(w) + w2β−1

)
exp

(
−(γw)β

)
dw

)

= 2 log(γ)

(∫ ∞

0
2γβwβ log(w)γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ ∞

0
γβ

1

β
wβγββwβ−1 exp

(
−(γw)β

)
dw

)

= 2 log(γ)
(
−2γβwβ log(w) exp

(
−(γw)β

)∣∣∣∞
0

+ 2

∫ ∞

0
γβ

(
βwβ−1 log(w) + wβ−1

)
exp

(
−(γw)β

)
dw

− γβ
1

β
wβ exp

(
−(γw)β

)∣∣∣∣
∞

0

+
1

β

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

)

= 2 log(γ)

(
2E (log(w)) +

2

β
+

1

β

)

= 4 log(γ)E (log(w)) +
6 log(γ)

β
(195)

From results (190)–(195), we have

U3 = E
(
(log(w))2

)
+ 2 (log(γ))2

+ 2E
(
(log(w))2

)
+

6

β
E (log(w)) +

2

β2

− 2 log(γ)

(
E (log(w)) +

1

β

)
− 2E

(
(log(w))2

)− 4

β
E (log(w))

+ 4 log(γ)E (log(w)) +
6 log(γ)

β

= E
(
(log(w))2

)
+

2

β
E (log(w)) +

4 log(γ)

β

+ 2 log(γ) (E (log(w))) + 2 (log(γ))2 +
2

β2
(196)
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Results (187)–(189) and (196) yield

T1 = E
(
(log(w))2

)
+

2

β
E (log(w)) +

2 log(γ)

β

+ 2 log(γ) (E (log(w))) + (log(γ))2 +
1

β2
(197)

Results (184)–(186) and (197) yield

E

⎛
⎝(

∂f
∂β

f

)2
⎞
⎠ =

ρ2

1− ρ2
E

((
∂y

∂β

)2
)

+ E
(
(log(w))2

)
+

2

β
E (log(w)) +

2 log(γ)

β

+ 2 log(γ) (E (log(w))) + (log(γ))2 +
1

β2
(198)

From results (172), (258), and (265), we have

E

(
∂f
∂μ

f
×

∂f
∂σ

f

)
= E

(
1

σ

(x−μ
σ − ρy

)
1− ρ2

×
(
−1

σ
+

1

σ

(x−μ
σ − ρy

)
1− ρ2

(
x− μ

σ

)))

= 0 (199)

From results (172), (258), (266), and (267), we have

E

(
∂f
∂μ

f
×

∂f
∂ρ

f

)
= E

(
1

σ

(x−μ
σ − ρy

)
1− ρ2

×
(

ρ

1− ρ2
+

(x−μ
σ − ρy

)
y

1− ρ2
−

(x−μ
σ − ρy

)2
ρ

(1− ρ2)2

))

= 0 (200)

From results (172), (258), and (264), we have

E

(
∂f
∂μ

f
×

∂f
∂γ

f

)
= E

(
1

σ

(x−μ
σ − ρy

)
1− ρ2

×
(
β

γ
− wββγβ−1 +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂γ

))

=
ρ

σ(1− ρ2)
E

(
∂y

∂γ

)
(201)

From results (172), (258), and (264), we have

E

(
∂f
∂μ

f
×

∂f
∂β

f

)
= E

(
1

σ

(x−μ
σ − ρy

)
1− ρ2

×
(
log γ +

1

β
+ log(w)− (γw)β log(γw) +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂β

))

=
ρ

σ(1− ρ2)
E

(
∂y

∂β

)
(202)
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Next, from result (172), we have

E

(
∂f
∂σ

f
×

∂f
∂ρ

f

)
= E

((
−1

σ
+

1

σ

(x−μ
σ − ρy

)
1− ρ2

(
x− μ

σ

))

×
(

ρ

1− ρ2
+

(x−μ
σ − ρy

)
y

1− ρ2
−

(x−μ
σ − ρy

)2
ρ

(1− ρ2)2

))

= E

(
−1

σ

(
ρ

1− ρ2
+

(x−μ
σ − ρy

)
y

1− ρ2
−

(x−μ
σ − ρy

)2
ρ

(1− ρ2)2

))

+ E

(
1

σ

(x−μ
σ − ρy

)
1− ρ2

(
x− μ

σ

)
ρ

1− ρ2

)

+ E

(
1

σ

(x−μ
σ − ρy

)
1− ρ2

(
x− μ

σ

) (x−μ
σ − ρy

)
y

1− ρ2

)

− E

(
1

σ

(x−μ
σ − ρy

)
1− ρ2

(
x− μ

σ

) (x−μ
σ − ρy

)2
ρ

(1− ρ2)2

)

≡ T1 + T2 + T3 + T4 (203)

Results (258) and (264) yield

T1 = 0 (204)

The fact that (x− μ)/σ and y are bivariate standard normals with correlation ρ yields

T2 =
ρ

σ(1− ρ2)
(205)

By results (289) and (290), we have

T3 =
1

σ(1− ρ2)2

(
E

((
x− μ

σ

)3

y

)
− 2ρE

((
x− μ

σ

)2

y2

)
+ ρ2E

((
x− μ

σ

)
y3
))

=
1

σ(1− ρ2)2
(
3ρ− 2ρ(1 + 2ρ2) + 3ρ3

)
=

1

σ(1− ρ2)2
× ρ(1− ρ2) =

ρ

σ(1− ρ2)
(206)

By result (268), we have

T4 =
−ρ

σ(1− ρ2)3
E

((
x− μ

σ
− ρy

)3(x− μ

σ

))
=

−3ρ

σ(1− ρ2)
(207)

Results (203)–(207) yield

E

(
∂f
∂σ

f
×

∂f
∂ρ

f

)
=

−ρ

σ(1− ρ2)
(208)
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Next, from result (172), we have

E

(
∂f
∂σ

f
×

∂f
∂γ

f

)
= E

((
−1

σ
+

1

σ

(x−μ
σ − ρy

)
1− ρ2

(
x− μ

σ

))

×
(
β

γ
− wββγβ−1 +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂γ

))

= E

(−1

σ

(
β

γ
− wββγβ−1

))

− ρ

σ(1− ρ2)
E

((
x− μ

σ
− ρy

)
∂y

∂γ

)

+ E

(
1

σ(1− ρ2)

((
x− μ

σ

)2

− ρ

(
x− μ

σ

)
y

)(
β

γ
− wββγβ−1

))

+
ρ

σ(1− ρ2)2
E

((
x− μ

σ
− ρy

)2(x− μ

σ

)
∂y

∂γ

)

≡ T1 + T2 + T3 + T4 (209)

Result (277) yields

T1 = 0 (210)

Result (258) yields

T2 = 0 (211)

Results (256), (263), and (277) yield

T3 = 0 (212)

Result (270) yields

T4 =
ρ2

σ(1− ρ2)
E

(
y
∂y

∂γ

)
(213)

Results (209)–(213) yield

E

(
∂f
∂σ

f
×

∂f
∂γ

f

)
=

ρ2

σ(1− ρ2)
E

(
y
∂y

∂γ

)
(214)
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Next, from result (172), we have

E

(
∂f
∂σ

f
×

∂f
∂β

f

)
= E

((
−1

σ
+

1

σ

(x−μ
σ − ρy

)
1− ρ2

(
x− μ

σ

))

×
(
log γ +

1

β
+ log(w)− (γw)β log(γw) +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂β

))

= E

(−1

σ

(
log γ +

1

β
+ log(w)− (γw)β log(γw)

))

− ρ

σ(1− ρ2)
E

((
x− μ

σ
− ρy

)
∂y

∂β

)

+
1

σ(1− ρ2)
E

((
log γ +

1

β
+ log(w)− (γw)β log(γw)

)(
x− μ

σ
− ρy

)(
x− μ

σ

))

+
ρ

σ(1− ρ2)2
E

((
x− μ

σ
− ρy

)2(x− μ

σ

)
∂y

∂β

)

≡ T1 + T2 + T3 + T4 (215)

Result (281) yields

T1 = 0 (216)

Result (258) yields

T2 = 0 (217)

Results (256), (263), and (281) yield

T3 = 0 (218)

Result (270) yields

T4 =
ρ2

σ(1− ρ2)
E

(
y
∂y

∂β

)
(219)

Results (215)–(219) yield

E

(
∂f
∂σ

f
×

∂f
∂β

f

)
=

ρ2

σ(1− ρ2)
E

(
y
∂y

∂β

)
(220)
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Next, from result (172), we have

E

(
∂f
∂ρ

f
×

∂f
∂γ

f

)
= E

((
ρ

1− ρ2
+

(x−μ
σ − ρy

)
y

1− ρ2
−

(x−μ
σ − ρy

)2
ρ

(1− ρ2)2

)

×
(
β

γ
− wββγβ−1 +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂γ

))

=
ρ

1− ρ2
E

(
β

γ
− wββγβ−1 +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂γ

)

+ E

((
β

γ
− wββγβ−1

)((x−μ
σ − ρy

)
y

1− ρ2

))

+ E

(
ρy

(1− ρ2)2
∂y

∂γ

(
x− μ

σ
− ρy

)2
)

− ρ

(1− ρ2)2
E

((
β

γ
− wββγβ−1

)(
x− μ

σ
− ρy

)2
)

− ρ2

(1− ρ2)3
E

(
∂y

∂γ

(
x− μ

σ
− ρy

)3
)

≡ T1 + T2 + T3 + T4 + T5 (221)

Results (258) and (277) yield

T1 = 0 (222)

Result (258) yields

T2 = 0 (223)

Result (264) yields

T3 =
ρ

1− ρ2
E

(
y
∂y

∂γ

)
(224)

Results (264) and (277) yield

T4 = 0 (225)

Result (274) yields

T5 = 0 (226)

Results (221)–(226) yield

E

(
∂f
∂ρ

f
×

∂f
∂γ

f

)
=

ρ

1− ρ2
E

(
y
∂y

∂γ

)
(227)
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Next, from result (172), we have

E

(
∂f
∂ρ

f
×

∂f
∂β

f

)
= E

((
ρ

1− ρ2
+

(x−μ
σ − ρy

)
y

1− ρ2
−

(x−μ
σ − ρy

)2
ρ

(1− ρ2)2

)

×
(
log γ +

1

β
+ log(w)− (γw)β log(γw) +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂β

))

=
ρ

1− ρ2
E

(
log γ +

1

β
+ log(w)− (γw)β log(γw) +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂β

)

+ E

((
log γ +

1

β
+ log(w)− (γw)β log(γw)

)((x−μ
σ − ρy

)
y

1− ρ2

))

+ E

(
ρy

(1− ρ2)2
∂y

∂β

(
x− μ

σ
− ρy

)2
)

− ρ

(1− ρ2)2
E

((
log γ +

1

β
+ log(w)− (γw)β log(γw)

)(
x− μ

σ
− ρy

)2
)

− ρ2

(1− ρ2)3
E

(
∂y

∂β

(
x− μ

σ
− ρy

)3
)

≡ T1 + T2 + T3 + T4 + T5 (228)

Results (258) and (281) yield

T1 = 0 (229)

Result (258) yields

T2 = 0 (230)

Result (264) yields

T3 =
ρ

1− ρ2
E

(
y
∂y

∂β

)
(231)

Results (264) and (281) yield

T4 = 0 (232)

Result (274) yields

T5 = 0 (233)

Results (228)–(233) yield

E

(
∂f
∂ρ

f
×

∂f
∂β

f

)
=

ρ

1− ρ2
E

(
y
∂y

∂β

)
(234)
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Next, from result (172), we have

E

(
∂f
∂γ

f
×

∂f
∂β

f

)
= E

((
β

γ
− wββγβ−1 +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂γ

)

×
(
log γ +

1

β
+ log(w)− (γw)β log(γw) +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂β

))

= E

((
β

γ
− wββγβ−1

)(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂β

)

+ E

((
log γ +

1

β
+ log(w)− (γw)β log(γw)

)(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂γ

)

+
ρ2

(1− ρ2)2
E

(
∂y

∂γ

∂y

∂β

(
x− μ

σ
− ρy

)2
)

+ E

((
β

γ
− wββγβ−1

)(
log γ +

1

β
+ log(w)− (γw)β log(γw)

))
≡ T1 + T2 + T3 + T4 (235)

Result (258) yields

T1 = 0 (236)

and

T2 = 0 (237)

Result (264) yields

T3 =
ρ2

1− ρ2
E

(
∂y

∂γ

∂y

∂β

)
(238)

Now note that

T4 =

∫ ∞

0

(
β

γ
− wββγβ−1

)(
log γ +

1

β
+ log(w)− (γw)β log(γw)

)
γββwβ−1 exp

(
−(γw)β

)
dw

=
β

γ

(
log γ +

1

β

)

−
(
log γ +

1

β

)∫ ∞

0
wββγβ−1γββwβ−1 exp

(
−(γw)β

)
dw

+
β

γ

∫ ∞

0

(
log(w)− (γw)β log(γw)

)
γββwβ−1 exp

(
−(γw)β

)
dw

−
∫ ∞

0
wββγβ−1

(
log(w)− (γw)β log(γw)

)
γββwβ−1 exp

(
−(γw)β

)
dw

≡ U1 + U2 + U3 + U4 (239)

We have∫ ∞

0
wββγβ−1γββwβ−1 exp

(
−(γw)β

)
dw = −wββγβ−1 exp

(
−(γw)β

)∣∣∣∞
0

+
β

γ

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

=
β

γ
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Thus

U2 = −
(
log γ +

1

β

)
β

γ
(240)

By results (279) and (280), we have

U3 = −β

γ

(
log γ +

1

β

)
(241)

Next

U4 = −
∫ ∞

0
wββγβ−1 log(w)γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ ∞

0
wββγβ−1(γw)β log(γw)γββwβ−1 exp

(
−(γw)β

)
dw

≡ V1 + V2 (242)

We have

−V1 = −wββγβ−1 log(w) exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
βγβ−1

(
βwβ−1 log(w) + wβ−1

)
exp

(
−(γw)β

)
dw

=
β

γ

∫ ∞

0
log(w)γββwβ−1 exp

(
−(γw)β

)
dw

+
1

γ

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

=
β

γ
E (log(w)) +

1

γ
(243)

Next,

V2 =

∫ ∞

0
γ2β−1w2ββ log(γ)γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ ∞

0
γ2β−1w2ββ log(w)γββwβ−1 exp

(
−(γw)β

)
dw

≡ W1 +W2 (244)

We have

W1 = −γ2β−1w2ββ log(γ) exp
(
−(γw)β

)∣∣∣∞
0

+ 2β log(γ)

∫ ∞

0
γβ−1wβγββwβ−1 exp

(
−(γw)β

)
dw

= 2β log(γ)

(
−γβ−1wβ exp

(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γβ−1βwβ−1 exp

(
−(γw)β

)
dw

)

=
2β log(γ)

γ
(245)
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Also,

W2 = −γ2β−1w2ββ log(w) exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γ2β−1β

(
2βw2β−1 log(w) + w2β−1

)
exp

(
−(γw)β

)
dw

= 2β

∫ ∞

0
γβ−1wβ log(w)γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ ∞

0
γβ−1wβγββwβ−1 exp

(
−(γw)β

)
dw

≡ X1 +X2 (246)

We have

X1 = 2β

(
−γβ−1wβ log(w) exp

(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γβ−1

(
βwβ−1 log(w) + wβ−1

)
exp

(
−(γw)β

)
dw

)

= 2β

(
E

(
1

γ
log(w)

)
+

1

βγ

)
= 2

(
β

γ
E (log(w)) +

1

γ

)
(247)

and

X2 = −γβ−1wβ exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γβ−1βwβ−1 exp

(
−(γw)β

)
dw =

1

γ
(248)

Results (246)–(248) yield

W2 = 2

(
β

γ
E (log(w)) +

1

γ

)
+

1

γ
(249)

Results (244), (245), and (249) yield

V2 = 2

(
β

γ
E (log(w)) +

1

γ

)
+

1

γ
+

2β log(γ)

γ
(250)

Results (242), (243), and (250) yield

U4 =
β

γ
E (log(w)) +

1

γ
+

1

γ
+

2β log(γ)

γ
(251)

Results (239), (240), (241), and (251) yield

T4 = −β

γ

(
log(γ) +

1

β

)
+

β

γ
E (log(w)) +

1

γ
+

1

γ
+

2β log(γ)

γ

=
β

γ
E (log(w)) +

1

γ
+

β log(γ)

γ
(252)

Results (235)–(238) and (252) yield

E

(
∂f
∂γ

f
×

∂f
∂β

f

)
=

ρ2

1− ρ2
E

(
∂y

∂γ

∂y

∂β

)

+
β

γ
E (log(w)) +

1

γ
+

β log(γ)

γ
(253)
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15 Appendix F—Miscellaneous useful integrals

(The existence and finiteness of the expectations involving partial derivatives of y are established
in Appendix H. The existence and finiteness of E(log(w)) and E

(
(log(w))2

)
follow from Lemma

2.)

Define

denin ≡ 1√
2π

× 1

σ
√
1− ρ2

× exp

(
−
(
x− μ

σ
− ρy

)2

/
(
2
(
1− ρ2

)))
(254)

Then, because denin is simply the pdf of a N
(
μ+ ρσy, σ2(1− ρ)2

)
,∫ ∞

−∞
denin dx = 1 (255)

(Note that the demonstrations of some of the results below could also be based on the fact that
denin is the pdf of a N

(
μ+ ρσy, σ2(1− ρ)2

)
. However, instead, in most cases we have found it

expedient to explicitly perform some of the integral calculations. Either approach is valid.)

Next

∫ ∞

−∞
(x− μ)/σ × denin dx =

∫ ∞

−∞
1√
2π

× (x− μ)/σ

σ
√
1− ρ2

× exp

(
−
(
x− μ

σ
− ρy

)2

/
(
2
(
1− ρ2

)))
dx

=

∫ ∞

−∞
1√
2π

× x√
1− ρ2

× exp
(
− (x− ρy)2 /

(
2
(
1− ρ2

)))
dx

=
√
1− ρ2

∫ ∞

−∞
x√
2π

× exp

(
−
(
x− ρy/

√
1− ρ2

)2
/2

)
dx

=
√
1− ρ2 × ρy/

√
1− ρ2 = ρy (256)

and ∫ ∞

−∞
(x− μ)/σ × y × denin dx = ρy2 (257)

From results (255) and (256) we have∫ ∞

−∞

(
x− μ

σ
− ρy

)
denin dx = ρy − ρy = 0 (258)

Define

denweib ≡ γββwβ−1 exp
(
−(γw)β

)
(259)

Then from (11)

gaussweib(x,w;μ, σ, ρ, γ, β) = denweib× denin (260)

and by result (256)

E

(
x− μ

σ
× ∂y

∂γ

)
=

∫ ∞

0
denweib

∫ ∞

−∞
x− μ

σ
× ∂y

∂γ
× denin dx dw (261)

=

∫ ∞

0
denweib× ρy

∂y

∂γ
dw

= E

(
ρy

∂y

∂γ

)
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Similarly,

E

(
x− μ

σ
× ∂y

∂β

)
= E

(
ρy

∂y

∂β

)
(262)

Next, as in the development of result (256),

∫ ∞

−∞

(
x− μ

σ

)2

× denin dx = (1− ρ2)

∫ ∞

−∞
x2√
2π

× exp

(
−
(
x− ρy/

√
1− ρ2

)2
/2

)
dx

= (1− ρ2)×
(
1 +

ρ2y2

1− ρ2

)
= 1− ρ2 + ρ2y2 (263)

From results (256) and (263) we have

∫ ∞

−∞

(
x− μ

σ
− ρy

)2

× denin dx =

∫ ∞

−∞

((
x− μ

σ

)2

− 2ρy

(
x− μ

σ

)
+ ρ2y2

)
denin dx

= 1− ρ2 + ρ2y2 − 2ρ2y2 + ρ2y2 = 1− ρ2 (264)

By result (288), we have

E

((
x− μ

σ
− ρy

)2(x− μ

σ

))
= E

((
x− μ

σ

)3

− 2ρ

(
x− μ

σ

)2

y + ρ2
(
x− μ

σ

)
y2

)
= 0 (265)

and

E

((
x− μ

σ
− ρy

)2

y

)
= E

((
x− μ

σ

)2

y − 2ρ

(
x− μ

σ

)
y2 + ρ2y3

)
= 0 (266)

and

E

((
x− μ

σ
− ρy

)3
)

= E

((
x− μ

σ

)3

− 3ρ

(
x− μ

σ

)2

y + 3ρ2
(
x− μ

σ

)
y2 − ρ3E

(
y3
))

= 0

(267)

By results (289) and (290), we have

E

((
x− μ

σ
− ρy

)3(x− μ

σ

))
= E

((
x− μ

σ

)4

− 3

(
x− μ

σ

)3

ρy

+ 3

(
x− μ

σ

)2

ρ2y2 −
(
x− μ

σ

)
ρ3y3

)

= 3− 9ρ2 + 3(1 + 2ρ2)ρ2 − 3ρ4

= 3− 6ρ2 + 3ρ4 = 3− 3ρ2 − 3ρ2 + 3ρ4

= 3(1− ρ2)− 3ρ2(1− ρ2) = 3(1− ρ2)2 (268)
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Next, as in the development of (256), we have∫ ∞

−∞

(
x− μ

σ

)3

denin dx =

∫ ∞

−∞
1√
2π

× x3√
1− ρ2

× exp
(
− (x− ρy)2 /

(
2
(
1− ρ2

)))
dx

= (1− ρ2)3/2
∫ ∞

−∞
x3√
2π

× exp

(
−
(
x− ρy/

√
1− ρ2

)2
/2

)
dx

= (1− ρ2)3/2
∫ ∞

−∞

(
x3 +

3ρyx2√
1− ρ2

+
3ρ2y2x

1− ρ2
+

ρ3y3

(1− ρ2)3/2

)
φ(x) dx

= (1− ρ2)3/2

(
3ρy√
1− ρ2

+
ρ3y3

(1− ρ2)3/2

)

= 3ρ(1− ρ2)y + ρ3y3 (269)

From results (256), (263), and (269), we have∫ ∞

−∞

(
x− μ

σ
− ρy

)2(x− μ

σ

)
× denin dx

=

∫ ∞

−∞

((
x− μ

σ

)3

− 2ρ

(
x− μ

σ

)2

y + ρ2
(
x− μ

σ

)
y2

)
× denin dx

= 3ρ(1− ρ2)y + ρ3y3 − 2ρy(1− ρ2 + ρ2y2) + ρ2y2(ρy)

= ρ(1− ρ2)y (270)

Next, by result (261),

E

((
x− μ

σ
− ρy

)
∂y

∂γ

)
= E

(
x− μ

σ

∂y

∂γ

)
− E

(
ρy

∂y

∂γ

)
= 0 (271)

Similarly,

E

((
x− μ

σ
− ρy

)
∂y

∂β

)
= 0 (272)

Next,

E

((
x− μ

σ
− ρy

)4
)

=

∫ ∞

0
denweib

∫ ∞

−∞

(
x− μ

σ
− ρy

)4

denin dx dw

=

∫ ∞

0
denweib

∫ ∞

−∞
(x− ρy)4√

2π
× 1√

1− ρ2
× exp

(
− (x− ρy)2 /

(
2
(
1− ρ2

)))
dx dw

=

∫ ∞

0
denweib

∫ ∞

−∞

(√
1− ρ2 x− ρy

)4

√
2π

× exp

(
−
(
x− ρy/

√
1− ρ2

)2
/2

)
dx dw

=

∫ ∞

0
denweib

∫ ∞

−∞

(√
1− ρ2

(
x+ ρy/

√
1− ρ2

)
− ρy

)4

√
2π

× exp
(−x2/2

)
dx dw

=
(
1− ρ2

)2 ∫ ∞

0
denweib

∫ ∞

−∞
x4√
2π

× exp
(−x2/2

)
dx dw

= 3
(
1− ρ2

)2
(273)
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Similarly,∫ ∞

−∞

(
x− μ

σ
− ρy

)3

denin dx = (1− ρ2)3/2
∫ ∞

−∞
x3√
2π

× exp
(−x2/2

)
dx = 0 (274)

and

E

((
x− μ

σ
− ρy

)3

y

)
=

(
1− ρ2

)3/2 ∫ ∞

0
denweib

∫ ∞

−∞
x3y√
2π

× exp
(−x2/2

)
dx dw = 0 (275)

and (the result below can also be obtained by noting that (x − μ)/σ and y are distributed as
standard normals with correlation ρ and then making use of results (289) and (290))

E

((
x− μ

σ
− ρy

)2

y2

)
=

(
1− ρ2

) ∫ ∞

0
denweib

∫ ∞

−∞
x2y2√
2π

× exp
(−x2/2

)
dx dw

=
(
1− ρ2

) ∫ ∞

0
denweib× y2 dw

=
(
1− ρ2

) ∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
×
(
Φ−1

(
1− exp

(
−(γw)β

)))2
dw

=
(
1− ρ2

) ∫ ∞

0

dFW (w)

dw
× (

Φ−1 (FW (w))
)2

dw

=
(
1− ρ2

) ∫ 1

0

dFW

(
F−1
W (s)

)
dw

× (
Φ−1 (s)

)2
dF−1

W (s)

=
(
1− ρ2

) ∫ 1

0

dFW

(
F−1
W (s)

)
dw

× (
Φ−1 (s)

)2 1

dFW

(
F−1
W (s)

)
/dw

ds

=
(
1− ρ2

) ∫ 1

0

(
Φ−1 (s)

)2
ds

=
(
1− ρ2

) ∫ ∞

−∞
s2 dΦ(s) =

(
1− ρ2

) ∫ ∞

−∞
s2φ(s) ds = 1− ρ2 (276)

Next

E

(
β

γ
−W ββγβ−1

)
=

∫ ∞

0

(
β

γ
− wββγβ−1

)
γββwβ−1 exp

(
−(γw)β

)
dw

=
β

γ
+

(
wββγβ−1 exp

(
−(γw)β

)∣∣∣∞
0

−
∫ ∞

0
β2(γw)β−1 exp

(
−(γw)β

)
dw

)

=
β

γ
− β

γ

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw = 0 (277)

Next, we want to show that

E
(
log(γ) + 1/β + log(W )− (γW )β log(γW )

)
= 0 (278)

We have ∫ ∞

0
− (γw)β log(γ)

(
γββwβ−1 exp

(
−(γw)β

))
dw

= (γw)β log(γ) exp
(
−(γw)β

)∣∣∣∞
0

− log(γ)

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

= − log(γ) (279)
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Also, ∫ ∞

0
− (γw)β log(w)

(
γββwβ−1 exp

(
−(γw)β

))
dw

= (γw)β log(w) exp
(
−(γw)β

)∣∣∣∞
0

−
∫ ∞

0

d

dw

(
(γw)β log(w)

)
exp

(
−(γw)β

)
dw

= −
∫ ∞

0

(
γββwβ−1 log(w) + γβwβ−1

)
exp

(
−(γw)β

)
dw

= −
∫ ∞

0
log(w)γββwβ−1 exp

(
−(γw)β

)
dw −

∫ ∞

0
γβwβ−1 exp

(
−(γw)β

)
dw

= −
∫ ∞

0
log(w)γββwβ−1 exp

(
−(γw)β

)
dw − 1/β (280)

Results (279) and (280) imply that

E
(
log(γ) + 1/β + log(W )− (γW )β log(γW )

)
= log(γ) + 1/β + E (log(W )) (281)

− E
(
(γW )β log(γ)

)
− E

(
(γW )β log(w)

)
= log(γ) + 1/β + E (log(W ))

− log(γ)− E (log(W ))− 1/β = 0

as desired.

Next, ∫ ∞

0

(
β

γ2
+ wββ(β − 1)γβ−2

)
γββwβ−1 exp

(
−(γw)β

)
dw

=
β

γ2
+

(
−wββ(β − 1)γβ−2 exp

(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
βwβ−1β(β − 1)γβ−2 exp

(
−(γw)β

)
dw

)

=
β

γ2
+

β(β − 1)

γ2

∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

=
β2

γ2
(282)

Next, ∫ ∞

0
(γw)β (log(γw))2 γββwβ−1 exp

(
−(γw)β

)
dw

=

∫ ∞

0
γβwβ (log(w))2 γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ ∞

0
γβwβ2 log(γ) log(w)γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ ∞

0
γβwβ (log(γ))2 γββwβ−1 exp

(
−(γw)β

)
dw

≡ T1 + T2 + T3 (283)
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We have

T1 = −γβwβ (log(w))2 exp
(
−(γw)β

)∣∣∣∞
0

+

∫ ∞

0
γβ

(
βwβ−1(log(w))2 + 2 log(w)wβ−1

)
exp

(
−(γw)β

)
dw

= E
(
(log(w))2

)
+

2

β
E (log(w)) (284)

and

T2 = −2 log(γ)γβwβ log(w) exp
(
−(γw)β

)∣∣∣∞
0

+ 2 log(γ)

∫ ∞

0
γβ

(
βwβ−1 log(w) + wβ−1

)
exp

(
−(γw)β

)
dw

= 2 log(γ)E (log(w)) +
2 log(γ)

β
(285)

and

T3 = − (log(γ))2 γβwβ exp
(
−(γw)β

)∣∣∣∞
0

+ (log(γ))2
∫ ∞

0
γββwβ−1 exp

(
−(γw)β

)
dw

= (log(γ))2 (286)

Results (283)–(286) yield∫ ∞

0
(γw)β (log(γw))2 γββwβ−1 exp

(
−(γw)β

)
dw = E

(
(log(w))2

)
+

2

β
E (log(w))

+ 2 log(γ)E (log(w)) +
2 log(γ)

β

+ (log(γ))2 (287)

16 Appendix G—Three bivariate normal results

Assume that (
S
T

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))

Then

E
(
ST 2

)
=

∫ ∞

−∞
t2√
2π

exp
(−t2/2

) ∫ ∞

−∞
1√
2π

s√
1− ρ2

exp
(−(s− ρt)2/(2(1− ρ2))

)
ds dt

=

∫ ∞

−∞
t2√
2π

exp
(−t2/2

)
ρt dt = 0 (288)

Similarly,

E
(
S2T 2

)
=

∫ ∞

−∞
t2√
2π

exp
(−t2/2

) ∫ ∞

−∞
1√
2π

s2√
1− ρ2

exp
(−(s− ρt)2/(2(1− ρ2))

)
ds dt

=

∫ ∞

−∞
t2√
2π

exp
(−t2/2

)
(1− ρ2 + ρ2t2) dt = 1 + 2ρ2 (289)
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and

E
(
ST 3

)
=

∫ ∞

−∞
t3√
2π

exp
(−t2/2

) ∫ ∞

−∞
1√
2π

s√
1− ρ2

exp
(−(s− ρt)2/(2(1− ρ2))

)
ds dt

=

∫ ∞

−∞
t3√
2π

exp
(−t2/2

)
ρt dt = 3ρ (290)

17 Appendix H—Existence (and finiteness) of the expectations
involving partial derivatives of y

To complete the calculations presented in Appendices E1-E3, we need to prove that a number of
integrals involving y and its partial derivatives are well-defined. The “proofs” are all similar and
are related to arguments made in the proof of Theorem 2. Let wlow and wup be defined as in that
proof. (We assume that results (40) and (41) hold.)

First, consider E( ∂y∂γ ). From result (137) we have

∂y

∂γ
=

exp
(−(γw)β

)
βγβ−1wβ

φ(y)
(291)

where

y ≡ Φ−1
(
1− exp(−(γw)β

)
Our claim, which in essence establishes all the results in this Appendix, is that

∫ ∞

0

(
wβ exp

(−(γw)β
)

φ(y)

)
γββwβ−1 exp

(
−(γw)β

)
dw

is well-defined and finite.

We have ∫ ∞

0

(
wβ exp

(−(γw)β
)

φ(y)

)
γββwβ−1 exp

(
−(γw)β

)
dw

=

∫ wlow

0

(
wβ exp

(−(γw)β
)

φ(y)

)
γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ wup

wlow

(
wβ exp

(−(γw)β
)

φ(y)

)
γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ ∞

wup

(
wβ exp

(−(γw)β
)

φ(y)

)
γββwβ−1 exp

(
−(γw)β

)
dw

≡ T1 + T2 + T3 (292)

It is clear that T2 is well-defined and finite.

Now consider T3. By result (41), for w > wup

(γw)β > (γwup)
β > (γlowwup)

β

> (γlowwup)
βlow > (γw3/4)

β
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so

1− exp
(
−(γw)β

)
> 1− exp

(
−(γw3/4)

β
)
= 3/4 (293)

By Lemma 1 and (293), we have

T3 <

∫ ∞

wup

wβ exp
(−(γw)β

)
exp (−(γw)β)× Φ−1(3/4)

γββwβ−1 exp
(
−(γw)β

)
dw (294)

which is clearly well-defined and finite.
Now consider T1. By result (40), for w < wlow

(γw)β < (γwlow)
β < (γupwlow)

β

< (γupwlow)
βlow < min

(
1/4, (γw1/4)

β
)

(295)

so
1− exp

(
−(γw)β

)
< 1− exp

(
−(γw1/4)

β
)
= 1/4 (296)

By Lemma 1 and (296), we have

T1 <

∫ wlow

0

wβ exp
(−(γw)β

)
(1− exp (−(γw)β))× (−Φ−1(1/4))

γββwβ−1 exp
(
−(γw)β

)
dw (297)

Now for w < wlow, by (40) we have (as in result (295))

(γw)β < (γupwlow)
βlow < 1/4 (298)

Thus, for w < wlow and x ≡ (γw)β ,

1− exp(−(γw)β) = 1− (
1− x+ x2/2!− x3/3! + x4/4!− . . .

)
= x

(
1− x/2! + x2/3!− x3/4! + . . .

)
> x(1− x/2)

> x(1− 1/8) = x× 7/8 (299)

Results (297) and (299) imply

T1 <

∫ wlow

0

wβ exp
(−(γw)β

)
((γw)β × 7/8)× (−Φ−1(1/4))

γββwβ−1 exp
(
−(γw)β

)
dw (300)

which is clearly well-defined and finite. Results (291), (292), (294), and (300) imply that E
(
∂y
∂γ

)
is well-defined and finite.

Now consider E(y ∂y
∂γ ). We have∫ ∞

0

(
wβ exp

(−(γw)β
)

φ(y)

)
|y|γββwβ−1 exp

(
−(γw)β

)
dw

=

∫ wlow

0

(
wβ exp

(−(γw)β
)

φ(y)

)
|y|γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ wup

wlow

(
wβ exp

(−(γw)β
)

φ(y)

)
|y|γββwβ−1 exp

(
−(γw)β

)
dw

+

∫ ∞

wup

(
wβ exp

(−(γw)β
)

φ(y)

)
|y|γββwβ−1 exp

(
−(γw)β

)
dw

≡ T1 + T2 + T3 (301)
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It is clear that T2 is well-defined and finite.

Now consider T3. By Lemma 1, we have

T3 <

∫ ∞

wup

wβ exp
(−(γw)β

)
exp (−(γw)β)× y

yγββwβ−1 exp
(
−(γw)β

)
dw (302)

which is clearly well-defined and finite.

Now consider T1. By Lemma 1, we have

T1 <

∫ wlow

0

wβ exp
(−(γw)β

)
(1− exp (−(γw)β))× (−y)

(−y)γββwβ−1 exp
(
−(γw)β

)
dw (303)

Results (303) and (299) imply

T1 <

∫ wlow

0

wβ exp
(−(γw)β

)
((γw)β × 7/8)

γββwβ−1 exp
(
−(γw)β

)
dw (304)

which is clearly well-defined and finite. Results (301), (302) and (304) imply that E
(
y ∂y
∂γ

)
is

well-defined and finite.

It is clear via an inspection of the remaining partial derivatives in Appendix D that their
expectations can be handled similarly. (We also use the additional fact that for β > 1, log(w)wβ−1

converges to 0 as w decreases to 0.)

18 Appendix I—Positive definite information matrix

To invoke Lehmann’s Theorem 4.2, we need to establish that the information matrix is positive
definite. In Appendices E2 and E3 we establish that

E

(
−∂2 log(f(x,w))

∂θi∂θj

)
= E

(
∂f/∂θi

f
× ∂f/∂θj

f

)
(305)

Thus

aT I(θ)a =

5∑
i=1

5∑
j=1

aiajE

(
∂f/∂θi

f
× ∂f/∂θj

f

)

= E

⎛
⎝(

5∑
i=1

ai
∂f/∂θi

f

)2
⎞
⎠ ≥ 0 (306)

To complete the proof that I(θ) is positive definite we need to show that

5∑
i=1

ai
∂f/∂θi

f
= 0 a.e. (307)
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implies a = 0. From result (172) we have

5∑
i=1

ai
∂f/∂θi

f
= a1 ×

(
1

σ

(x−μ
σ − ρy

)
1− ρ2

)
(308)

+ a2 ×
(
−1

σ
+

1

σ

(x−μ
σ − ρy

)
1− ρ2

(
x− μ

σ

))

+ a3 ×
(

ρ

1− ρ2
+

(x−μ
σ − ρy

)
y

1− ρ2
−

(x−μ
σ − ρy

)2
ρ

(1− ρ2)2

)

+ a4 ×
(
β

γ
− wββγβ−1 +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂γ

)

+ a5 ×
(
log γ +

1

β
+ log(w)− (γw)β log(γw) +

(
x− μ

σ
− ρy

)
ρ

1− ρ2
∂y

∂β

)

From result (137), we have

∂y

∂γ
= βγβ−1 × wβ × exp

(
−(γw)β

)
/φ(y) (309)

From result (138), we have

∂y

∂β
= (γw)β log(γw)× exp

(
−(γw)β

)
/φ(y) (310)

Recall that
y ≡ Φ−1

(
1− exp(−(γw)β

)
Now let ε > 0 be given. Then results (307) through (310) imply that given any w0, we can find an
associated x,w rectangle chosen so that (x− μ)/σ − ρy is small in the rectangle such that∣∣∣∣a2 ×

(−1

σ

)
+ a3 ×

(
ρ

1− ρ2

)
(311)

+ a4 ×
(
β

γ
− wββγβ−1

)

+ a5 ×
(
log γ +

1

β
+ log(w)− (γw)β log(γw)

)∣∣∣∣ < ε/2

for some (x,w) in the rectangle.
A suitable rectangle can be written as [x0 − δ, x0 + δ] × [w0 − δ, w0 + δ] where δ can be made

arbitrarily small, (x0 −μ)/σ− ρy0 = 0, and y0 = Φ−1
(
1− exp(−(γw0)

β
)
. By (307), there must be

some (x,w) in the rectangle for which
∑5

i=1 ai
∂f/∂θi

f = 0.
Taking w0 large enough

|a4 + a5K log(γw)| < ε (312)

for K fixed and positive and w arbitrarily large. As ε was arbitrary, this implies that a4 and a5
equal 0.

Now, given results (307) and (308) and the fact that a4 = a5 = 0, given any ε > 0, we can find
an x,w region of positive measure (chosen so that y is large and (x− μ)/σ is bounded) such that
(taking y large enough) ∣∣∣∣a3 ×

( −ρ

1− ρ2
− ρ3

(1− ρ2)2

)∣∣∣∣ < ε (313)
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This implies that a3 = 0 or ρ = 0. If ρ = 0, then (given that a4 = a5 = 0)

5∑
i=1

ai
∂f/∂θi

f
= a1 ×

(
1

σ

x− μ

σ

)
+ a2 ×

(
−1

σ
+

1

σ

(
x− μ

σ

)2
)

+ a3 ×
(
x− μ

σ
y

)
(314)

Given results (307) and (314), given any ε > 0, we can find an x,w region of positive measure
(chosen so that y is large and (x− μ)/σ is bounded above and bounded below away from 0) such
that (taking y large enough) ∣∣∣∣a3

(
x− μ

σ

)∣∣∣∣ < ε

for arbitrary (x− μ)/σ in the bounded region. Thus, a3 = 0.
Next, given results (307) and (308) and the fact that a3 = a4 = a5 = 0, given any ε > 0, we can

find an x,w region of positive measure (chosen so that (x − μ)/σ is large and y is bounded) such
that (letting x get large enough) ∣∣∣∣a2 × 1

σ(1− ρ2)

∣∣∣∣ < ε (315)

This implies that a2 = 0.
Finally, results (307) and (308) and the fact that a2 = a3 = a4 = a5 = 0 imply that a1 = 0, or

a = 0 as needed.

19 Appendix J—Lehmann’s condition D

Lehmann’s condition D requires that there exists an open 5-dimensional set, S, that contains the
point θ0 = (γ0, β0, ρ0, μ0, σ0), and that there exist functions Mijk(x,w) such that∣∣∣∣∂3 log(f(x,w;θ))

∂θiθjθk

∣∣∣∣ ≤ Mijk(x,w) (316)

for all θ ∈ S, and

Eθ0
(Mijk(x,w)) < ∞ (317)

for all i, j, k.
The third partials of log(f(x,w;θ)) are displayed in Appendix C. There are 35 third partials.

They can all be handled with five techniques. We will present these techniques in detail by using
them to handle some of the 35 partials, and then describe which of them are needed for each of the
remaining 35 third partials.

Let 0 < γlow < γ0 < γup, γlow < 1 < γup, 1 < βlow < β0 < βup, −1 < ρlow < ρ0 < ρup < 1,
μlow < μ0 < μup, and 0 < σlow < σ0 < σup. Then

S ≡ (γlow, γup)× (βlow, βup)× (ρlow, ρup)× (μlow, μup)× (σlow, σup)

is an open neighborhood of θ0 = (γ0, β0, ρ0, μ0, σ0). Let

S̄ ≡ [γlow, γup]× [βlow, βup]× [ρlow, ρup]× [μlow, μup]× [σlow, σup]

denote the closure of S.
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Technique 1—portion of a partial is a continuous function of the parameters
alone (not involving w or x)

Because S̄ is compact, the image of any continuous function on S̄ is bounded. Thus, in those cases
in which a portion of the third partial is simply a function of γ, β, ρ, μ, σ (and not of x or w) we can
find a constant M that dominates the absolute value of that portion of the partial for all elements
of S.

This technique permits us to fully handle third partials (listed in Appendix C) 1, 6–9, and to
handle those portions of the other third partials that are dependent only on the parameters (and
not on x or w).

Technique 2—portion of a partial is
(
wβ × exp

(−(γw)β
)× y × exp (y2/2)

)k
We proceed here in a fashion similar to the fashion in which we proceeded in Appendix H. Let wlow

and wup be defined as in the proof of Theorem 2. That is, we assume that results (36)–(41) hold
with γ, β replaced by γ0, β0. We have

∫ ∞

0

∣∣∣∣∣w
β exp

(−(γw)β
)
y

φ(y)

∣∣∣∣∣
k

γβ0
0 β0w

β0−1 exp
(
−(γ0w)

β0

)
dw

=

∫ wlow

0

∣∣∣∣∣w
β exp

(−(γw)β
)
y

φ(y)

∣∣∣∣∣
k

γβ0
0 β0w

β0−1 exp
(
−(γ0w)

β0

)
dw

+

∫ wup

wlow

∣∣∣∣∣w
β exp

(−(γw)β
)
y

φ(y)

∣∣∣∣∣
k

γβ0
0 β0w

β0−1 exp
(
−(γ0w)

β0

)
dw

+

∫ ∞

wup

∣∣∣∣∣w
β exp

(−(γw)β
)
y

φ(y)

∣∣∣∣∣
k

γβ0
0 β0w

β0−1 exp
(
−(γ0w)

β0

)
dw

≡ T1 + T2 + T3 (318)

Note that we are now drawing a distinction between general (γ, β) ∈ [γlow, γup]× [βlow, βup] and
the true parmaeter vector (γ0, β0).

It is clear that for (γ, β, ρ, μ, σ) ∈ S̄, the
∣∣wβ exp

(−(γw)β
)
y/φ(y)

∣∣k in T2 can be dominated
by a constant that does not depend on the parameter values, and that the resulting integral over
(wlow, wup) is finite.

Now consider T3. By Lemma 1 and the facts that wup > 1 and for w > wup,

(γw)β > (γlowwup)
β > (γlowwup)

βlow > (γ0w3/4)
β0

(assumption (41)), for w > wup we have

∣∣∣∣∣w
β exp

(−(γw)β
)
y

φ(y)

∣∣∣∣∣
k

<

∣∣∣∣∣w
β × exp

(−(γw)β
)× y

exp (−(γw)β)× y

∣∣∣∣∣
k

< wβupk (319)

Clearly, wβupk does not depend upon the parameter values and the resulting integral over (wup,∞)
is finite.
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Now consider T1. By Lemma 1, (299), and the facts that γlow < 1 and

(γw)β < (γupwlow)
β < (γupwlow)

βlow < min(1/4, (γ0w1/4)
β0)

we have ∣∣∣∣∣w
β exp

(−(γw)β
)
y

φ(y)

∣∣∣∣∣
k

<

∣∣∣∣∣w
β × exp

(−(γw)β
)× y

(1− exp (−(γw)β))× y

∣∣∣∣∣
k

<

(
wβ

(γw)β × 7/8

)k

<

(
1

γ
βup

low × 7/8

)k

(320)

Clearly, this quantity does not depend upon the parameter values and the resulting integral over
(−∞, wlow) is finite.

This analysis of T1, T2, and T3 establishes that on S,(
wβ × exp

(
−(γw)β

)
× y × exp

(
y2/2

))k

can be dominated by a function that does not depend on the parameter values whose expectation
(with respect to the θ0 pdf) is finite.

Techniques 1, 2, and 5 (see below) together permit us to fully handle third partials 18, 22, and
27–31.

Technique 3—handling (x− μ)/σ and ((x− μ)/σ)2

First note that |x− μ|/σ < ((x− μ)/σ)2 + 1 so we only need to address ((x− μ)/σ)2.
Define

M ≡ max (|μlow|, |μup|)
Then for θ ∈ S (

x− μ

σ

)2

≤ (|x|+M)2

σ2
low

=
|x|2 + 2|x|M +M2

σ2
low

(321)

Define
y0 ≡ Φ−1

(
1− exp

(
−(γ0w)

β0

))
Then we have∫ ∞

−∞
|x| 1√

2π

1

σ0
√
1− ρ20

exp
(
− ((x− μ0)/σ0 − ρ0y0)

2 /(2(1− ρ20))
)
dx

=

∫ ∞

−∞
|x+ μ0| 1√

2π

1

σ0
√

1− ρ20
exp

(
−
(
x/

(
σ0

√
1− ρ20

)
− ρ0y0/

√
1− ρ20

)2

/2

)
dx

=

∫ ∞

−∞

∣∣∣∣σ0
√

1− ρ20 x+ μ0

∣∣∣∣ 1√
2π

exp

(
−
(
x− ρ0y0/

√
1− ρ20

)2

/2

)
dx

=

∫ ∞

−∞

∣∣∣∣σ0
√

1− ρ20

(
x+ ρ0y0/

√
1− ρ20

)
+ μ0

∣∣∣∣ 1√
2π

exp
(−x2/2

)
dx

=

∫ ∞

−∞

∣∣∣∣σ0
√

1− ρ20 x+ σ0ρ0y0 + μ0

∣∣∣∣ 1√
2π

exp
(−x2/2

)
dx

≤ σ0

√
1− ρ20

2√
2π

+ σ0|ρ0||y0|+ |μ0| (322)
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By a similar argument,∫ ∞

−∞
|x|2 1√

2π

1

σ0
√

1− ρ20
exp

(
− ((x− μ0)/σ0 − ρ0y0)

2 /(2(1− ρ20))
)
dx

= σ2
0(1− ρ20) + σ2

0ρ
2
0y

2
0 + 2μ0σ0ρ0y0 + μ2

0 (323)

Results (321)–(323) and technique 4 below establish that for θ ∈ S, ((x − μ)/σ)2 (and thus
|x− μ|/σ) can be dominated by a function that does not depend on θ and that is integrable with
respect to f(x,w;θ0).

Technique 4—handling y and y2

Because |y| < y2 + 1, we can focus on y2.
Let wlow and wup be defined as in the proof of Theorem 2. That is, we assume that results

(37)–(41) hold with γ, β replaced by γ0, β0. We have∫ ∞

0
y2γβ0

0 β0w
β0−1 exp

(
−(γ0w)

β0

)
dw =

∫ wlow

0
y2γβ0

0 β0w
β0−1 exp

(
−(γ0w)

β0

)
dw

+

∫ wup

wlow

y2γβ0
0 β0w

β0−1 exp
(
−(γ0w)

β0

)
dw

+

∫ ∞

wup

y2γβ0
0 β0w

β0−1 exp
(
−(γ0w)

β0

)
dw

≡ T1 + T2 + T3 (324)

It is clear that for (γ, β, ρ, μ, σ) ∈ S̄, y2 =
(
Φ−1(1− exp(−(γw)β))

)2
in T2 can be dominated

by a constant that does not depend on the parameter values, and that the resulting T2 integral is
finite.

Now consider T3.
We claim that for w large enough, y2 is “like” 2(γw)β . From (39) and (41) (with γ, β replaced

by γ0, β0), we know that for w > wup and θ ∈ S,

(γw)β > (γlowwup)
β > (γlowwup)

βlow > (γ0w3/4)
β0 (325)

so
y = Φ−1

(
1− exp

(
−(γw)β

))
> Φ−1(3/4) > 0

Thus, we can apply Lemma 1 to obtain

y2

1 + y2
1√
2π

exp
(−y2/2

)
< exp

(
−(γw)β

)
y <

1√
2π

exp
(−y2/2

)
(326)

Taking logs, we then obtain

log

(
y2

1 + y2

)
+ log

(
1√
2π

)
− y2

2
< −(γw)β + log(y) < log

(
1√
2π

)
− y2

2
(327)

or

log

(
y2

1 + y2

)
/(−y2/2) + log

(
1√
2π

)
/(−y2/2) + 1 > (γw)β/(y2/2) + log(y)/(−y2/2)

> log

(
1√
2π

)
/(−y2/2) + 1 (328)

59



By (325), for w > wup and any θ ∈ S,

y = Φ−1
(
1− exp

(
−(γw)β

))
> Φ−1

(
1− exp

(
−(γlowwup)

βlow

))
so we can make y arbitrarily large by choosing wup large enough. Thus, by result (328), given any
δ > 0, we can choose wup large enough so that w > wup implies

1− δ < (γw)β/(y2/2) < 1 + δ

or, taking δ = 1/2,
y2/4 < (γw)β

or
y2 < 4(γw)β < 4(γupw)

βup (329)

Thus, for (γ, β, ρ, μ, σ) ∈ S, the y2 in T3 can be dominated by a function that does not depend on
the parameter values, and the resulting integral over (wup,∞) is finite.

Now consider T1.
We claim that for w small enough, y2 is “like” −2β log(γw). From (38) and (40) (with γ, β

replaced by γ0, β0), we know that for w < wlow and θ ∈ S,

(γw)β < (γupwlow)
βlow < min

(
1/4, (γ0w1/4)

β0

)
(330)

so
y = Φ−1(1− exp

(
−(γw)β

)
< Φ−1(1/4) < 0

Thus, we can apply Lemma 1 to obtain

y2

1 + y2
1√
2π

exp
(−y2/2

)
<

(
1− exp

(
−(γw)β

))
(−y) <

1√
2π

exp
(−y2/2

)
(331)

Taking logs, we then obtain

log

(
y2

1 + y2

)
+ log

(
1√
2π

)
− y2

2
< log

(
1− exp

(
−(γw)β

))
+ log(−y) < log

(
1√
2π

)
− y2

2
(332)

or

log

(
y2

1 + y2

)
/(−y2/2) + log

(
1√
2π

)
/(−y2/2) + 1 > − log

(
1− exp

(
−(γw)β

))
/(y2/2)

+ log(−y)/(−y2/2)

> log

(
1√
2π

)
/(−y2/2) + 1 (333)

Because γupwlow < 1 (result (40)), for w < wlow and and θ ∈ S,

y = Φ−1
(
1− exp

(
−(γw)β

))
< Φ−1

(
1− exp

(
−(γupwlow)

βlow

))
so we can make −y arbitrarily large by choosing wlow small enough. Thus, by result (333), given
any δ > 0, we can choose wlow small enough so that w < wlow implies

1− δ < − log
(
1− exp

(
−(γw)β

))
/(y2/2) < 1 + δ (334)
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Now by results (299) and (330), for w < wlow and θ ∈ S,

1− exp
(
−(γw)β

)
> (γw)β × 7/8

so
log

(
1− exp

(
−(γw)β

))
> β log(γw) + log(7/8)

or
− log

(
1− exp

(
−(γw)β

))
/(y2/2) < −β log(γw)/(y2/2)− log(7/8)/(y2/2) (335)

Combining results (334) and (335) and the fact that −y can be made arbitrarily large by making
wlow small enough, we know that we can choose wlow small enough so that for w < wlow and θ ∈ S

y2/4 < −β log(γw) (336)

By assumption (40), for w < wlow and θ ∈ S

1 > γupwlow > γw > γloww

so
β log(γw) > β log(γloww) > βup log(γloww) (337)

By results (336) and (337), for w < wlow (and wlow sufficiently small)

y2 < −4βup log(γloww) (338)

Thus, for (γ, β, ρ, μ, σ) ∈ S, the y2 in T1 can be dominated by a function that does not depend on
the parameter values, and the resulting integral over (0, wlow) is finite (because log(w)rwβ0−1 → 0
as w → 0).

Thus, we have established that if the parameter vector lies in S, then y2 (and hence y) is
dominated by an integrable function that does not depend on the parameter values.

Technique 5—handling wkβ and log(w)j

On (wup,∞), wkβ log(w)j is dominated by wkβup+j which is integrable with respect to

γβ0
0 β0w

β0−1 exp
(−(γ0w)

β0
)
.

For w in the compact interval [wlow, wup], and θ in the compact region S̄, the continuous function

wkβ log(w)j is dominated by a constant which is integrable with respect to γβ0
0 β0w

β0−1 exp
(−(γ0w)

β0
)
.

For w ∈ (0, wlow), |wkβ log(w)j | is dominated by | log(w)|j which is integrable with respect to

γβ0
0 β0w

β0−1 exp
(−(γ0w)

β0
)
because | log(w)|jwβ0−1 → 0 as w → 0.

Thus, if the parameter vector lies in S, then |wkβ log(w)j | is dominated by an integrable function
that does not depend on the parameter values.

Applying the five techniques

We have already used techniques 1, 2, and 5 to establish that third partials (see results (102)
through (136)) 1, 6–9, 18, 22, and 27–31 satisfy Lehmannn’s condition D. Now we simply list the
remaining partials and the techniques needed to handle them. (Note that partials of y are given in
Appendix D.)

2: Techniques 1, 3, 4
3: Techniques 1, 3, 4
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4: Techniques 1–5
5: Techniques 1–5
10: Techniques 1, 3, 4
11: Techniques 1, 3, 4
12: Techniques 1–4
13: Techniques 1–5
14: Techniques 1, 3, 4
15: Techniques 1, 3, 4
16: Techniques 1–4
17: Techniques 1–5
19: Techniques 1–5
20: Techniques 1–5
21: Techniques 1–5
23: Techniques 1–5
24: Techniques 1–5
25: Techniques 1–5
26: Techniques 1, 3, 4
32: Techniques 1–4
33: Techniques 1–5
34: Techniques 1–5
35: Techniques 1–5

20 Appendix K—Behavior of pseudo-truncated Weibull as ρ → 1

From result (6) it is clear that we need to investigate the behavior of

N/D ≡
(
Φ
(
(cu − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

)
− Φ

(
(cl − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

))
÷ (Φ((cu − μ)/σ)− Φ((cl − μ)/σ)) (339)

as ρ → 0 where

y = Φ−1
(
1− exp

(
−(γw)β

))
We have

N = Φ

(
cu − μ

σ
√
1− ρ2

− ρy√
1− ρ2

)

− Φ

(
cl − μ

σ
√
1− ρ2

− ρy√
1− ρ2

)
(340)

= Φ

(
cu − μ

σ
√
1− ρ2

− y√
1− ρ2

+
(1− ρ)y√
1− ρ2

)

− Φ

(
cl − μ

σ
√
1− ρ2

− y√
1− ρ2

+
(1− ρ)y√
1− ρ2

)

≡ Φ (argu)− Φ (argl)

First note that
(1− ρ)y√
1− ρ2

=
(1− ρ)y√
1− ρ

√
1 + ρ

→ 0 (341)
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as ρ → 1. Next note that by the definition (7) of wl, for w < wl

y = Φ−1
(
1− exp

(
−(γw)β

))
< Φ−1

(
1− exp

(
−(γwl)

β
))

=
cl − μ

σ
(342)

Thus, from results (340)–(342), for w < wl both argl and argu converge to +∞ as ρ → 1, and,
consequently N → 1− 1 = 0 as ρ → 1.

By the definition (8) of wu, for w > wu

y = Φ−1
(
1− exp

(
−(γw)β

))
> Φ−1

(
1− exp

(
−(γwu)

β
))

=
cu − μ

σ
(343)

So from results (340), (341), and (343), for w > wu both argl and argu converge to −∞ as ρ → 1,
and, consequently N → 0− 0 = 0 as ρ → 1.

For w ∈ (wl, wu)

y = Φ−1
(
1− exp

(
−(γw)β

))
> Φ−1

(
1− exp

(
−(γwl)

β
))

=
cl − μ

σ
(344)

and

y = Φ−1
(
1− exp

(
−(γw)β

))
< Φ−1

(
1− exp

(
−(γwu)

β
))

=
cu − μ

σ
(345)

So from results (340), (341), (344), and (345), for w ∈ (wl, wu), argl converges to −∞ and argu
converges to +∞ as ρ → 1, and, consequently N → 1− 0 = 1 as ρ → 1.

For w = wl

y = Φ−1
(
1− exp

(
−(γwl)

β
))

=
cl − μ

σ
(346)

From results (340), (341), and (346), for w = wl, argl converges to 0 and argu converges to +∞ as
ρ → 1, and, consequently N → 1− 1/2 = 1/2 as ρ → 1.

For w = wu

y = Φ−1
(
1− exp

(
−(γwu)

β
))

=
cu − μ

σ
(347)

From results (340), (341), and (347), for w = wu, argl converges to −∞ as ρ → 1 and argu converges
to 0, and, consequently N → 1/2− 0 = 1/2 as ρ → 1.

21 Appendix L—Proof that pseudo-truncated Weibulls are not
Weibulls

We need to show that, given γ1 > 0, β1 > 1, there is no γ2 > 0, β2 > 0 such that, for all w > 0,

fPTW(w) = γβ1
1 β1w

β1−1 exp
(
−(γ1w)

β1

)
×
(
Φ
(
(cu − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

)
− Φ

(
(cl − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

))
÷ (Φ((cu − μ)/σ)− Φ((cl − μ)/σ))

= γβ2
2 β2w

β2−1 exp
(
−(γ2w)

β2

)
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where
y = Φ−1

(
1− exp

(
−(γ1w)

β1

))
That is, we need to show that, for at least one w > 0,

R ≡
(
γβ1
1 /γβ2

2

)
(β1/β2)w

β1−β2 exp
(
−(γ1w)

β1

)
exp

(
(γ2w)

β2

)
(348)

×
(
Φ
(
(cu − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

)
− Φ

(
(cl − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

))
÷ (Φ((cu − μ)/σ)− Φ((cl − μ)/σ))

�= 1

First, consider the case in which β1 ≥ β2. In this case, as w → 0, wβ1−β2 , exp
(−(γ1w)

β1
)
, and

exp
(
(γ2w)

β2
)
stay bounded while

Φ
(
(cu − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

)
− Φ

(
(cl − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

)
converges to 0. (We are assuming that ρ �= 0.) Thus, result (348) holds.

Now consider the case in which β1 < β2. Let w → ∞. We have

exp
(
−(γ1w)

β1

)
exp

(
(γ2w)

β2

)
= exp

(
wβ2

(
γβ2
2 − γβ1

1 /wβ2−β1

))
and it is clear that for w large enough, this is greater than

exp
(
kwβ2

)
(349)

for some k > 0.
Next, let au ≡ (cu − μ)/

(
σ
√
1− ρ2

)
, al ≡ (cl − μ)/

(
σ
√
1− ρ2

)
, and b ≡ ρ/

√
1− ρ2. Then,

for w large enough,

S ≡ Φ
(
(cu − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

)
− Φ

(
(cl − μ)/

(
σ
√
1− ρ2

)
− ρy/

√
1− ρ2

)
=

∫ au−by

al−by
φ(s) ds

> (au − al)× φ(al − by)

> (au − al)× φ(2by)

= (au − al)×
(
1/
√
2π

) (
exp

(−y2/2
))4b2

(350)

Now it is clear from results (348)–(350), that to determine the behavior of R for large w we
need only consider

T ≡ wβ1−β2 exp
(
kwβ2

)
(φ(y))4b

2

(351)

From Lemma 1, we know that for large w (and thus for large y) we can replace φ(y) by (1−Φ(y))y
to obtain

T = wβ1−β2 exp
(
kwβ2

)
((1− Φ(y))y)4b

2

M(w)

= wβ1−β2 exp
(
kwβ2

)(
exp

(
−(γ1w)

β1

)
y
)4b2

M(w)

= wβ1−β2 exp
(
wβ2

(
k − 4b2γβ1

1 wβ1−β2

))
y4b

2
M(w) (352)
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where M(w) → 1 as w → ∞. For large enough w, this is greater than

w−β2 exp
(
wβ2k/2

)
y4b

2
M(w)

which (recall that β2 > 1) clearly converges to ∞ as w → ∞. Thus, result (348) holds.
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