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Abstract

In this paper we examine the effect of predictor sort sam-
pling on one-sided confidence bounds for normal quantiles.
We have found that standard noncentral 7 theory that ig-
nores the predictor sort nature of the sampling leads to

Y — kS bounds that are overly conservative. On the other
hand, maximum likelihood methods yield non-conservative
bounds even for fairly large sample sizes. We provide an
asymptotic result that yields the appropriate corrections for
the standard noncentral 7 approach.
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Predictor Sort Sampling and Confidence Bounds
on Quantiles I: Asymptotic Theory

Steve Verrill, Mathematical Statistician

Victoria L. Herian, Statistician

David W. Green, Supervisory Research General Engineer
Forest Products Laboratory, Madison, Wisconsin

1 Introduction

Designers working with lumber must try to ensure that the strengths of wood structural members
exceed the loads to which the members will be subjected. One approach to this problem is to
design so that expected loads do not exceed “allowable strength properties” associated with par-
ticular species and grades of lumber (ASTM D1990). An allowable property is commonly obtained
experimentally by taking a sample from the lumber population in question, obtaining a lower one-
sided confidence bound on the fifth percentile of the strength distribution of the population, and
then dividing by a safety and duration-of-load factor.

If a normal strength distribution is assumed, engineers working with solid-sawn lumber (see,
for example, ASTM D2915) can obtain a parametric one-sided lower confidence bound on the fifth
percentile via the formula:

Y, — kn,a,85n (1)

where we want to cover the « quantile with confidence 8 x 100% and we have n replicates. Here Y,
denotes the average of n strength measurements, and S;, denotes the sample standard deviation of
the measurements. Guttman (1970, Table 4.6) provides & values for n = 2(1)100, (10)300, (25)500,
(50)700, (100)1000, o = 0.01, 0.05, 0.10, and 0.25, and g = 0.75, 0.90, 0.95, and 0.99. He credits
Owen (1963) for these tables.

Scientists in other areas (e.g., composite materials, groundwater monitoring, and soil remedi-
ation) also make use of formula 1 to obtain confidence bounds on quantiles. See, for example,
MIL-HDBK-17-1 (2003), Gibbons (1994), and Michigan DEQ (1994).

For formula 1 to be valid, the sample of lumber (or composite material ...) must be a stan-
dard random sample. However, wood strength researchers commonly replace experimental unit
allocation via random sampling with allocation via sorts based on non-destructive measurements of
strength predictors such as modulus of elasticity and specific gravity. Warren and Madsen (1977)
describe the procedure as follows:

Specifically, then, all the boards in the experiment are ordered from weakest to strongest
as nearly as can be judged from their moduli of elasticity, knot size, and slope of grain.
To divide the material into J equivalent groups the first J boards, after ordering, are
taken and randomly allocated one to each group. This is repeated with the second,
third, fourth, etc., sets of J boards. The strength distributions of the resulting groups
should then be essentially the same.

At the Forest Products Laboratory, this allocation procedure has come to be known as predictor
sort sampling.

In an analysis of variance context, Cox (1957) compared seven procedures that one might use
given the availability of a correlated predictor. Cox’s calculations showed that the effective variance



in these situations is (1 — p?)o?, a fact also noted by Cochran (1957). Here o is the variance of
Y, and p is the correlation between the predictor X and the response Y.

As noted in Verrill (1993) (also see David and Gunnik 1997), the correlations among the order
statistics of the predictor induce correlations among the responses so that the standard analy-
sis of variance (ANOVA) assumptions are not satisfied for a predictor sort experiment. Verrill
demonstrated that blocked ANOVAs are still essentially valid and that simply modified unblocked
ANOVAs can also be performed on predictor sort data sets.

Verrill (1999) investigated the effects of predictor sort sampling on standard confidence intervals
for the mean in an ANOVA context. He found that confidence intervals for the mean are overly
conservative (confidence intervals are too wide and actual confidence levels are greater than nominal
levels) if an unblocked analysis is performed and non-conservative (confidence intervals are too
narrow and actual confidence levels fall below nominal levels) if a blocked analysis is performed.
He obtained asymptotic results that yielded correct confidence interval coverage.

In the current paper we examine the effect of predictor sort sampling on one-sided confidence
bounds for normal quantiles. We have found that standard noncentral T theory that ignores
the predictor sort nature of the sampling leads to Y — kS bounds that are too low and thus
statistically conservative (actual confidence levels are greater than nominal levels). On the other
hand, maximum likelihood methods yield bounds that are too high and thus statistically non-
conservative even for fairly large sample sizes. We provide an asymptotic result that yields the
appropriate corrections for the standard noncentral T' approach.

In a subsequent paper we will provide methods for calculating correct &k values for small samples.

2 Poor Confidence Interval Coverage of the Standard Approach
Given Predictor Sort Sampling

In Tables 1 to 24 we detail the coverages of four kinds of confidence interval for a variety of
combinations of p, a, §, number of treatments (J), and number of replicates (n). The rows of the
tables are based on separate 4,000 trial simulations. The four approaches that we consider are the
incorrect standard approach, which ignores the dependencies induced by sorting on the predictor;
two versions of the (correct) predictor sort Y — kS asymptotic approach; and a maximum likelihood
approach. The maximum likelihood approach is developed in Appendix A. The two versions of the
predictor sort approach differ in the estimate used for the correlation between the predictor and
the response. Version 1 uses the consistent (see Section A.3) estimate

n J n J
p (Xijg — X)(Yig = Y5) /| DD (Xij = X2 ) (Vi — V)2

71=11:=1 7j=1 =1 7=1 =1

Version 2 uses the maximum likelihood estimate of p. It is clear from the tables that the incorrect
approach is overly conservative, that the problem becomes more severe as the correlation between
the predictor and response variables increases, and that the problem does not vanish as sample sizes
increase. It is also clear from the tables that version 2 of the predictor sort approach dominates the
maximum likelihood approach in the sense that the actual coverage always approaches the nominal
coverage more rapidly for the version 2 predictor sort approach than for the maximum likelihood
approach. For smaller J, the version 1 predictor sort approach performs better than the maximum
likelihood approach and the version 2 approach (see Figure 1). However, for large J and small n,
the version 1 approach does not perform as well.



For smaller n the asymptotic approaches are non-conservative. k values that are appropriate
for small sample sizes will appear in a future Forest Products Laboratory research report.

3 Sample Size Reductions Given Predictor Sort Sampling

In the course of the development of the asymptotic theory (see inequality (98)) we find that the
correct k in the appropriate version of Y — kS is given by

ke =0 (a) + 0 (B)n~2/(®- [(2J) +1—p2+p?/J

where @ denotes the N(0,1) distribution function. Thus given higher p values, we can have smaller
n values, and still have the same k. In fact if we set

n~2\/(®- [(2]) +1—p2+p2]J
equal to a constant we obtain

noc (31 (a)2/(20) + 1 - p* + g2/

Thus the approximate permissible sample size reduction factor obtained by using a predictor sort
with a correlation of p between the predictor and the response is (here the denominator is the
numerator with p set equal to 0)

(@ " (@)?/(2]) +1=p*+p*/J) ] (7 (@))?/(2]) + 1)

Plots of this factor as function of p and J are provided in Figure 2. It is clear from the figure that
practically significant sample size reductions (e.g., 30%) are attainable for reasonable correlations.

4 Incorrect “Allowable Properties” Given Predictor Sort Sam-

pling and a Non-Predictor Sort Analysis

As noted in Section 1, in lumber strength applications “allowable properties” are calculated as
b/f where b is a one-sided lower confidence bound on a fifth percentile and f is some “safety and
duration of load factor.” If b is too low then the allowable property will be too low. The ratio of
the correct to incorrect allowable properties will be approximately equal to

r=(1-kcCV)/(1 - kjpCV)
where k¢ is the correct k value, k;, . is the incorrect k value, and CV = o/u for the normal
distribution under consideration.

In Figures 3 through 5 we plot the ratio r versus the correlation p for J = 2,4,6,8,10 and
(n,CV) = (10,0.15), (10,0.25), (20,0.25). Since for small samples k. must be determined by simu-
lation, there is some irregularity in these curves. However it is clear that r increases as p, CV, or
J increases, and r decreases as n increases.

In these plots, the ratio r is sometimes as high as 1.15 which is a figure that is large enough
to attract the interest of lumber manufacturers. On the other hand, correlations for solid-sawn
lumber (between MOR and MOE say) are probably not much greater than 0.70, so permissible
increases in any (overly low) allowable properties that were calculated on the basis of predictor sort
experiments are probably below 5%.

mc



5 The Theorem that Yields the Asymptotically Correct k£ Values

Assume that the predictor variable and the variable of interest, Y, have a joint bivariate normal
distribution with correlation p. Denote the variance of Y by U%. Suppose that we have a two-
way ANOVA design with n blocks and J treatments, and the allocation of samples is done via a
predictor sort as described in Section 1.

Without loss of generality, we focus here on treatment 1. Let Yn,l, Sn,1 be defined as in (3) (see

the next section), and let p be any consistent estimator of p. Then,
Prob (Yn,l — I%nSn,l < pp+ (I)fl(a)ay) - f

as n — 00, where 4 is the mean response for the first treatment, ®~' denotes the inverse of a
standard normal cumulative distribution function,

I%n = \/(1 - 152 + ﬁQ/J)/n Fﬁ(ljt,'yn(ﬁ),nlfl(’@)’

~1
Yn(p) and nJ — 1 degrees of freedom, and

(p) =~ (@)V(l - 2 + /7))

denotes the inverse of a noncentral 7' distribution with noncentrality parameter

The proof is provided in Appendix B.

6 Heuristic Justification of the Theorem

In the standard random sampling case, the derivation of a confidence bound on the ath quantile
proceeds as follows:

Let Y, denote the mean of a sample of size n and let S, denote the corresponding sample
standard deviation. We want to find the k, that satisfies

Prob(Y;, — kn, Sy < py + @ Ha)oy) = B

We have
Prob(Y,, — py — " Ha)oy < k,S,) = B
Prob ((Y, — py — d(a)oy)/(oy/v/n) < kn(Sn/ov)vn) = B
PrOb(XnCt,—éfl(a) n,n—1 < kn\/ﬁ) = p
where Xyt _¢-1(a)y/n,n—1 denotes a random variable with distribution Fyet _g-1(4),mn—1- This
holds if
-1 .
Fnct,—drl(a) n,n—l(ﬁ) = knv/n
or
-1 .
Fnct,_q;.fl(a)\/ﬁ’n_l(lﬁ)/\/_ - kn (2)

How must this derivation be altered in the predictor sort case?
Assume that we have n blocks and J treatments. We can think of a predictor sort specimen
allocation in the following manner. A response value, Y, associated with a specimen is given by

Y =y + oy (p(P = pp) fop + /1= p22)

4



where (P—pp)/op and Z are independent N(0,1) random variables, and p is the correlation between
P and Y. Prior to the experiment we have values for P. We rank the specimens on the basis of
their associated P values and then randomly allocate the top J specimens to the first block, the
next J to the second block, and so on.

Then, for 1 <i<mn,1 < j < J we have

Yij = nj + oy (pXij + V1 - p*Zij)

where the X;;’s, 1 < j < J, are a randomization of the ith group of order statistics from n.J iid
N(0,1)’s, the Z;;’s are iid N(0, 1), and the X’s and Z’s are independent.

Define
Wij = pXij +4/1— pZZij (3)
n n
Vo1 = ZYzl/n =1 +oy ZWzl/n
i=1 i=1

= i +oy (pX.l +4/1 - pQZ.l)
Yoo = p1+oy (pX'.. +v1- pZZ.l)

[Note that le and Yn,g are both estimators of u;. However, in Yn,g, an X.. replaces the X in

Yol

Snaloy = ZJ‘;Z”;(WM W.,)?/(n] 1)

Staleh = 30 (W .+ VIZPZ) i -

Sialot = 33 (W - X+ VIZ P2 07
- zijgj(w W2/ (nd - 1)

[Note that ngl, 572%2, and 82,3 are all estimators of U%. However, in Sg
52

n

20 2 X.. replaces the X'.j in
1, and in S? 5, a Z. replaces the Z.j in S ,.]

Vag = Vg —m)/ ((ov/vV/m)T= 92+ 02T )
= (X1 V1= p22)/ (VI= 2+ 7] T V)
Vap = (Yaz—m)/ ((ov [Va)WT= #4777 )
= (X V1= p22)/ (VI= 2+ 07T V)

Un,l = \/TLJ — I(Sn,l/ay — 1)
Un,g = \/TLJ — I(Sn,g/ay — 1)

<

<

and

Unz=vnd —1(Sp3/oy — 1)



Now we want to show that
Prob <Yn,1 — lAcnSn,l < pr+ Q_l(a)ay) — B

as n — 0o where

bn =V (U= 2+ BN/ Fre oy ()

the noncentrality parameter, v, (p), is given by

() =~ (@)/r/ VT =+ P7]T

and p is a reasonable estimator of the correlation between X and Y.
When we simply try to follow the steps that lead to equation 2, we quickly run into difficulties.
Because of the predictor sort sampling and the resultant correlations among the Xj;, Y, ; is no

longer normally distributed, (nJ — 1),5'721’1 is no longer distributed as a chi-squared, and Y;,; and

5’72%1 are no longer statistically independent. Further ky, is now a random variable.
We could try to establish that the ratio

(Yo = p1 = @7 (@)oy)/(Sn/v/n)

is “close to” a noncentral 7' but this turns out to be difficult.
Instead we can (easily) show that

PI‘Ob(le — I%nSn,l < pr+ Q_l(a)ay) = PI‘Ob(Vn,l <é,+ Cann,l)

for a certain ¢, and czn where ¢, 2 ¢ and czn L d for a certain ¢ and d (the corollary to Lemma
12). Effectively this permits us to focus on

Prob(V,,,1 < ¢+ dUy 1)

Now V;, 1 is “quite close” to V;, 2 (Lemma 3) and V,, 5 is normally distributed. Also U, ; is quite
close to U, 2 (Corollary 6.4), and U, 2 is independent of V;, o (Lemma 14). U, 2 in turn is quite
close to Uy 3 (Corollary 6.3).

In the proof of the main theorem we essentially break the area under the curve y = ¢+ dz into
squares (we have to be careful with squares that intersect the line and that adds some messiness
to the proof). Because of the closeness of Uy, ; and U, 2 and the closeness of V}, ; and V}, 2, we have

Prob((Un,1, V1) € square) = Prob((Up 2, Vp2) € square)
Since Uy, is independent of V;, o,
Prob((Up,2, Vp,2) € square) = Prob(Uy, 2 € segment;) x Prob(V}, 2 € segment,)
Since U, is “close” to Up 3,

Prob(Up, 2 € segment;) x Prob(V}, 2 € segment,)
~ Prob(Uy,3 € segment;) x Prob(V}, o € segment,)

Since Vj, 2 ~N(0,1) and Uy 3 ~ vnJ — 1 (\/X%J_l/(nJ -1) - 1), we can sum

Prob(U,, 3 € segment,) x Prob(V}, 2 € segment,)



over all the squares under the y = ¢ + dz line and obtain
Prob(Yn1 — knSn1 < 1 + @ Ha)oy) = Prob(F, < é&, + d, E,)

where

E, ~ \/m<\/xij_1/(nJ—l)—l)
F, ~ N(0,1)

and E,, F, are independent. This comes close to completing the proof.
However, to show that we can use consistent estimates of p rather than the actual p in calculating

~

k,, we also need to establish

Prob (Xuct, (st < (VI— 2+ 21T /T= g2+ [T ) Fple 0 (B)) =B

as n — oo where p is a consistent estimator of p. This follows from Lemma 12. Lemma 12 in turn
depends on Lemma 11. The proof of Lemma 11 is the most painful element of the overall proof. It
is painful because we need to be careful in order to prove that a certain convergence is uniform in

p.

7 Summary

Predictor sort experiments attempt to make use of the correlation between a predictor that can be
measured prior to the start of an experiment and the response variable that we are investigating.
Properly designed and analyzed, predictor sort experiments can reduce necessary sample sizes,
increase statistical power, and reduce the lengths of confidence intervals. However, if the non-
random nature of the predictor sort is not taken into account, problems can occur.

In particular, standard one-sided lower confidence bounds on quantiles of a normal distribution
are overly conservative in a predictor sort situation. We have developed asymptotic theory that
yields the correct k value in the Y — kS approach to obtaining a confidence bound. The resulting
confidence bounds have coverages that approach the nominal values faster than bounds based on
maximum likelihood estimation. In a subsequent paper we will provide k values that are appropriate
for small sample sizes.
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Appendix A — Maximum Likelihood Estimation

The log likelihood in a one-way predictor sort is given by (here we neglect the constant term)

—Jn(ln(ox) + ln(ay)) — (Jn/2)In(1 — p?)

J
—(1/(2 ZZ ij — 1x) /UX+ZZ — 1) /UY

j=11i=1 7j=11i=1

J n

=20 ) (X — px)(Yij — )/ (ox0v)

j=1i=1
The heuristic is
Prob(observed result)
= Prob(y’s|z’s and random allocations of the x’s in the blocks)

x Prob(random allocations of the z’s in the blocks)
x Prob(z’s)



A.1 Partial Derivatives of the Log Likelihood Function

We have
J n J n
0foux = (1/(1-p%) (Z (Xij — px)/o% — PZZ ij
j=11i=1 j=11i=1
Plopx = —JIn/((1 - p*)o%)
E(&*/op%) = —Jn/((1-p*)o%)
9/0p; = (1/(1—p2))< (Yij = ui) /o5 — p > (Xij — px
i—1 =1
*/ou; = —n/((1—p*)o3)
E(0%/op;) = —n/((1—p°)oy)
0% | Opx O, pn/((1 = p*)oxoy)
E(0°0uxop;) = pn/((1 - p*)oxoy)
For j1 # jo,
8% /O, Opj, = 0

E(82/8/~"j1 8/1']'2) =0

— 1) UXUY)>

)/(UXUY))

(4)

(5)

(9)

To calculate the expectations below we need to note that, because of the predictor sort sampling,

we no longer have
E(Xij —px) =0

However, by a symmetry argument, we do have

n
E (Z(Xij - MX)) =0
i—1
Also,
g
Yij — pj = —l;; X (Xij — px) + oy V1 - p*Z;;

where the X’s and Z’s are independent and E(Z;;) = 0.

a/aUX = —Jn/aX—i—(l/(l— 2))
J n
(ZZ ij = 1x) /UX PZ
j=11=1 j=1 i= 1
0% = Jn/o% +(1/(1-p%)
J n J n
( 3 Z i ,UJX /UX+2PZZ i NX
j=1 =1 7j=11=1
E(@/00%) = —(JnjoX)(1+ (1/(1-p%)

w)/(ﬁmﬂ)

uj)/(fff;’(cfy))

(10)

(11)



d/doy = —Jnjoy + (1/(1 = p?)) (12)
x (i i(Ym‘ —15)* /oy — pi i(Xij — ) (Y = Mj)/(UXU)Q/)>
%[00y = Jn/fjf%ljr(ll/(l ) o
x (3 XJ:I i(Yij — u5)? /oy + 29_2]:1 zn;(Xij — i) (Vi = uj)/(axai”/))
i paciem

E(@[d0%) = —(Jnfoy)(L+(1/(1 %)) (13)

n

J J n
% ouxdox = (1/(1—p ( 22 — px /0X+pz UXUY)>

j=1i= 1 j=1 i= 1
E(82/8u)(80)() =0 (14)

n

& /oudox = (1/(1-p?) (pz(xij - w)/(a%(ay))

i=1
E(8%)dujdox) = 0 (15)
J n
&*[opxdoy = (1/(1—p*) (pZZ%w)/(ow%))
j=1i=1
E(0%/0uxdoy) = 0 (16)

0*/0pjooy = (1/(1—p%) (‘2 > (Yij — ) /o% +p Y (Xij — ,UJX)/(UXU%/)>

i=1 i=1

E(0*/0udoy) = 0 (17)

J
9*/doxdoy = (p/(1 - p?)) Z _
E(0?)0oxdoy) = Jnp*/((1 — p*oxoy) (18)

n

J
0/0p = Jnp/(1—p*)+(1/(1-p%) (ZZ Xij — px) (Vs Mﬂ/(ffxffy)) —(p/(1-p*)*) xS (19)
j=1z

1

10



where

J n J n J n
S= (Z (Xij — px) /UX + ZZ i — ) /UY - 2922 Xij = nx)(Yij — MJ)/(UXUY))
j=11i=1

j=1:1=1 j=1i=1

J n
0%/0p> = In(1+p%)/(1—p*)® + (4p/(1 = 1)) D (Xij — ux)(Yij — 1)/ (ox0v)
j=11i=1
— (/=P +4p°/(1 = p?)*) x S
E(0*/0p*) = —Jn(1+p")/(1 - p?)? (20)
J n
0% opxop = —1/(1—p"))_ /(ox0v)
j=1 z:l
J n J n
+2p/(1 - p*)? (Z > (X —nx)/ox —pY > (Vi — Mj)/(UXUY))
Jj=11=1 j=11i=1
E(9*/0uxdp) = 0 (21)
0% ou;0p = —1/(1—p*) ) (Xij — px)/(ox0v)
i=1
+2p/(1 - p?)? <Z(Yij —pi)/oy —p Y (X - MX)/(UXUY))
i=1 i=1
E(6?/0uiop) = 0 (22)
J n
0°/0oxdp = —1/(1—p")) )(Yij — 1j)/ (0% 0v)
j=1i=1
J n J n
+ 2p/(1 — p?)? (Z (Xij — ux)? /0% —p )Y (Xij — px) (Yij — Mj)/(U?cUY))
j=1 i=1 j=1 i=1
E(8?/00x8p) = pIn/((1-p*)ox
J n
0*[0ov0p = ~1/(1=p") )(Yij — pj)/(ox0%)

n J n

J
+2p/(1—p 2(2 Yij — ) /oy —p > Y (Xij — px)( Mﬂ/(ffxff%))

j=11i=1 j=11i=1
E(9%/doydp) = pJn/((1 - p*)oy)
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A.2 Maximum Likelihood Estimates
Setting 0/0ux (equation (4)) to 0 we obtain
— ] —
fix = X.— plox/oy) Y (V= 1)/ ]
7=1
For j =1,...,J, setting 0/0u; (equation (6)) to 0 we obtain
fij =Y, = ploy/ox)(Xj — fix)

or

Y — iy = ploy/ox)(Xj — fix)
Combining (25) and (27) we obtain (for p? # 1)

fix = X..
Now define
J n -
"I S SEIE ST
j=11i=1
J n
B = Y N (v - i) /oy
j=11:i=1
and

Setting 0/dox (equation (10) to 0 we obtain

Tn = (1/(1 = P)(A - iC)
Setting 0/doy (equation (12) to 0 we obtain

Jn = (1/(1 = )(B - pC)
Setting 0/0p (19) to 0 we obtain

Jnp 1 p )
= ————x(A+B -2
1_ﬁ2+1_ﬁ2x0 (1_ﬁ2)2><( + pC)

Applying (32) and (33) to (34) we then obtain

0

Jn/} 1 ,5 ~9
0= C———= x(2(1 —p)J
or, after some algebra,
C J n B
p= g = 2.2 (Kij = X)(Vsj = i)/ (Jnoxov)
j=1i=1

(32)

(33)

(34)



From (32) and (35) we have
Jn = (1/(1 = p*))(A = p*Jn)

or

Jn —p2in=A— p*in

or B
Z}']:1 Z?:1(Xij - X~~)2
Jn

6% =
Similarly, from (33) and (35) we have

J N
2 D1 >t (Yig = f1)°

7y Jn

Using (26) and (35) we obtain

n

J
p= ZZ ij — X.)(Yij = Y;)/(Jnéx oy (1 - D))
j=11i=

1

where

From (26) and (37) we obtain

J n
= D - V) Un(1 - D))
j=11i=1

Solving for 6% in (38) and setting the result equal to (40), we obtain

»’ = E/((FxFy(1 - D)*) + ED)

where

FX = Z (Xij—X..)2

Fy

Il
=
5

and D is defined by (39).

(36)

(37)

(39)

(40)

(41)

fix, 6x, and p? are given by (28), (36), and (41). Then 6% is given by (40), p by (38), and fi;

by (26).
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A.3 Proof that a Naive Estimator of p Is Consistent

Lemma
where
J n ~ 2 J n J n
=D (X =Xy —Yy) | /[ DD (X —X)PY 0D (Vi — ¥y)?
j=11i=1 j=11i=1 7j=1 =1
Proof:

In the notation of the preceding section

A = E/(FxFy)—E/(FxFy(1 - D)?+ ED)
= (E(FxFy(1—- D)’ + ED) — E(FxFy)) / (F3Fy:(1 — D) + Fx Fy ED)
= (EFxFy(—2D + D?) + E*D) / (F2F}(1 — D)? + FxFy ED) (42)

Dividing the numerator and the denominator in (42) by FaF2 we obtain
A = ((B/(Fx Fy))(=2D + D?) + (B/(Fx Fy))*D) / (1 - D)* + (E/(FxFy))D)  (43)

Now Cauchy-Schwarz implies that E/(Fx Fy) is bounded by 1, and by Lemma 1 in Appendix B,
D 20, so the lemma follows from (43).

A .4 One-Sided, Lower Maximum Likelihood Confidence Interval on a Quantile

A one-sided lower 8 x 100 percent maximum likelihood confidence interval on an « quantile for the
jth treatment population is

fij + @~ (a)oy — zg\v/vi1 + 28~ H@)via + (2 (@))2vae

where fi; is given by (26), 6y is given by (40), 25 = ®~'(8) and ® is the N(0,1) cumulative
distribution function, v1; is the asymptotic variance for fi;, ve2 is the asymptotic variance for oy,
and vy is the asymptotic covariance for fi;, 6y. Approximate values for vi1, ve2, and vi2 can be
obtained from the negative inverse of the matrix of expectations of second partials (whose elements
are given by (5), (7), (8), (9), (11), (13), (14) — (18), (20) — (24)) evaluated at the maximum
likelihood estimates.

Appendix B — Proofs

Assume that there are J levels of the factor and n “replicates” per level.
For1 <i<n,1<j<J we have
Yij = wj + oy (pXij + V1 = p*Zy)

where the X;;’s, 1 < j < J are a randomization of the ith group of order statistics from n.J iid
N(0,1)’s, the Z;;’s are iid N(0, 1), and the X’s and Z’s are independent.

Define Wz]a Yn,la Yn,?a 5727,,13 ST2L,23 5727,,33 Vn,la Vn,?a Un,la Un,?a and Un,3 as in (3)

Before proving the main result we first need to establish a series of lemmas.

14



Lemma 1
V(X —-X.) 20

as n — 00, j fixed.
Note that this lemma is at the heart of the matter. In the case of standard random sampling,
we would have

V(X — X.) ~N(0, (] —1)/J)

However in the predictor sort case, since each X .j is guaranteed to include one representative from
each of the n blocks of adjacent order statistics, the X.;’s tend to be more similar than in the case
of standard random sampling, and Lemma 1 results.

Proof:
lVn(X.;—X.)] = +/n|X1j — (average of first block of X’s) + ... +
X,j — (average of nth block of X’s)|/n

(largest in first block — smallest in first block + . ..
+largest in nth block — smallest in nth block)/y/n

S (Xrnax - Xmin)/\/ﬁ £> 0
by the lemma in the appendix of Verrill (1993).

Lemma 2
Vi ~ N(0,1)

and

Ups ~ vVnd —1 (\/XgJ_l/(nJ —1) - 1)

Proof: Clear.

Lemma 3

Proof:
N (px.l AT =270 — (pX. + /1= p2z.1)) = pv/n(X - X.)
which converges in probability to 0 by Lemma 1.

Lemma 4

V nJ — ]‘(SEL,I — 52,3) £> 0

Proof:

Vnl =182, /oy = nJ—lZ. (Wij — W)/ (nJ — 1)

7j=11=1
n J
- \/njl(z (Wi = W.)2 =Y n(W;—W.)? | /(nd —1)
j=11i=1 j=1

15



Thus,

Mu

Vnd —1(S2, - S2,) /0% (\/nJ 1/(nJ — 1 ) X

’I’L
J=1

which converges in probability to 0 by A.1 in Verrill (1993).
Lemma 5

V nJ — ].(5721172 — 82,3) £> 0

Proof:

<

Vnd —182,/0% = \/rT( Z(pXZ]—i- 1—p ZZ]—(pX—i- 1—p Z>>2>/(njl)
j=1 i=1

ST

= \/T(ZZ(,OXU—F 1= 022 — (pX.+ /1= ?Z.)
+ (pX'.. + 1—,02Z..> - (pX.. + 1= p? Z.j>> >/(nJ— 1)

= vnJ—1 (Zi (Wij —W.+V1—p2(Z. - Z-j)>2) /(nd —1)

j=1i=1

<

— \/TZZWW W.)2/(nJ — 1)
7j=1 =1

J n

+ 21— p2Vnd =13 Y (Wy - W)(Z. = Z,)/(n] = 1)
=1 i=1

J
J n
+(1=p)Wnl =1 )2/ (nJ — 1)
j=11i= 1
Thus
Vnd —1(S; 5 = Si 3)/ 0% (44)
J n J n
= (2vlp2ZZ(WU _ZJ)"‘(l_PQ)Z (ZJZ))/(”Jl)
j=1i=1 j=1i=1
= (2\/1—22( ) + l—p(Zi-—Z)>(Z —Z;)
j=11i=1
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Consider the first term in (44) (here we neglect constant multipliers):

J
Z ) xn(X.;— X.)) /VnJ — 1

Jj=1

By Lemma 1 this converges in probability to 0. Since

is distributed as a chi-squared random variable with J — 1 degrees of freedom, the second term in
(44) also converges in probability to zero. This completes the proof.

Lemma 6
Vi —1(525/0% —1) 2 N(0,2)
Proof: Since 82’3 Jo% ~x%,_,/(nd —1), this is an immediate consequence of the central limit
theorem.

Corollary 6.1

Sn,3 EN oy

Corollary 6.2

p
Sn,l — 0Oy

p,
Sn,g — Oy

Proof: The corollary follows from Lemmas 4 and 5 and Corollary 6.1.

Corollary 6.3

VnJ —1(8n1 — Snz) 20
VnJ —1(Sna — Snz) 20
Proof:

VnJd = 1(Sp1 — Snz) = Vnd —1(S2 1 — 2 3)/(Sn1 + Sny3)

which converges in probability to 0 by Lemma 4 and Corollaries 6.1 and 6.2. The second part of
the corollary follows in a similar fashion from Lemma 5 and Corollaries 6.1 and 6.2.

Corollary 6.4
VnJ —1(8p1 — Sn2) 20

Corollary 6.5
Vnd = 1(Sps/oy — 1) B3 N(0,1/2)

Proof:

vnd — 1(Sn,3/0'y — 1) = +/nJ -1 ((Sn,g — Uy)/(Ty) (Sn,3 + (Ty)/(Sn,3 + Uy)
= vnJ— 1(5273/032/ — Doy /(Sn3+oy)
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which converges in distribution to a N(0,1/2) by Lemma 6 and Corollary 6.1.

Lemma 7

Let R be an r x r square on the plane and let € > 0 be given. Then we can divide R into a k x k
grid of subsquares such that given any line on the plane, the sum of the areas of the subsquares
that intersect the line is less than e.

Proof: s = r/k is the length of a side of a subsquare. Since the greatest distance between any
two points in a subsquare is v/2s, a subsquare can intersect a line only if all of its points lie within
V/2s of the line. Thus all of the subsquares that intersect a line must lie within a rectangle of length
[ +2v/2s and width 2v/2s where [ is the length of the intersection of the line with the square R. It
is clear that [ < v/2r. Thus the area of the bounding rectangle is less than or equal to

(V2r 4 2v2r k) (2V2r k)

and we can make this less than ¢ by making &k large enough.

Lemma 8

Let R=[q,q +r] x [s,s 4 r] be an r X r square on the z,y plane with two of its sides parallel
to the x axis. Let ¢ > 0 be given. Let y = ¢+ dz be any line on the plane that intersects R.
Suppose that ¢, 2 cand d, B d. Then, given any § > 0 we can divide R into a k X k grid of
subsquares, and find a fixed collection C of the subsquares of area less than ¢, and an N such that
n > N implies that with probability greater than 1 — ¢, all the subsquares of R that intersect the
line y = ¢, + cznx lie in C}.

Proof: Let € > 0 and § > 0 be given. Let k be chosen so that 4r2/k < §/2. Let C,; denote the

collection of subsquares of R that intersect the line y = ¢, + can Since ¢, 2 ¢ and Jn 2 d we can
find an N such that n > N implies

Prob <|én +dpz — (c+dz)| < 6/(2V2r) YV € [q,q+r]) >1—¢

It is clear that the perpendicular distance from a point in a subsquare that intersects y = én+dpt
to the line y = ¢ + dz can be at most §/(2v/2r) + v/2r/k when |é, + dyz — (¢ + dz)| < §/(2V2r).
Assume that d > 0. The proof is essentially the same in the other case. We can place lines, L; and
Lo, that are perpendicular to y = ¢ + dz through the lower left and upper right corners of R. It
is clear that lines L; and Lo together with the two lines that are parallel to and a perpendicular
distance of §/(2v/2r) + v/2r/k from the line y = ¢ + dz form a rectangle Ry that covers all the
subsquares of R that intersect the line y = &, +d,2 when |&, +dn2 — (c+dz)| < §/(2v/2r). Now let
C be the collection of all the subsquares of R that intersect Ry. Let R; denote the region covered
by the elements of C;. It is clear that L1 and Ls together with the two lines that are parallel to
and a perpendicular distance of §/(2v/2r) + 2v/2r/k from the line y = ¢ + dx form a rectangle R
that covers R;. Further it is clear that the length of this rectangle is at most v/2r.

Since the area of Ry is less than or equal to the area of Ry which is at most v/2r(6/(2v/2r) +
2v/2r/k) < &, and for n > N

Prob(Cy,1 C C1) > Prob(|é, + dpz — (¢ + dzx)| < 6/(2V2r)) > 1 —¢

the proof is complete.

Corollary 8.1
Let Ey denote the event

{all the subsquares of R that lie strictly below y = ¢ + dz
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but not strictly below y = ¢, + dpz lie in Ci}
Then for n > N, prob(Ep) > 1 —e.

Proof:
Let €, d be given and the subsquares constructed and N chosen as in the proof of Lemma 8. Let
FE; denote the event

{|én + dnz — (c + dz)| < 6/(2V2r) Yz € [q,q + ]}

Now let S be any subsquare that lies strictly below y = ¢+ dz but not strictly below y = é, + dn.
Since S does not lie strictly below y = &, + d,,, it must contain a point (zo,yo) such that yo >
Cn + cznmg. Now if Fy has occurred, (zg,%0) cannot lie more than a perpendicular distance of
§/(2v/2r) below the line y = ¢ + dz. Thus the points of S must lie below the line y = ¢ + dz but
not more than §/(2v/2r) + v/2r/k perpendicular units below the line. Thus S must intersect the
rectangle Ry defined in the proof of Lemma 8, so S € C;. As S was an arbitrary subsquare that
lies strictly below y = ¢ + dz but not strictly below y = é, + d,,z, we have E; C Ej, so

Prob(Ey) > Prob(E;) > 1 —¢

forn > N.

Corollary 8.2
Let Ey denote the event

{all the subsquares of R that lie strictly below y = ¢, + dpt

but not strictly below y = ¢+ dz lie in C}
Then for n > N, prob(Ep) > 1 —e.

Proof:
The proof is essentially the same as the proof of Corollary 8.1.

Lemma 9
Let X,, have a chi-squared distribution with n degrees of freedom. Then there exists a finite
number M that bounds the probability density function (pdf) of v/n(\/X,/n — 1) for all n.

Proof: Tt is clear that the pdf of \/n(y/Xy,/n —1) is bounded if the pdf of v/X,, is bounded. Let
z > 0 and define
F,(z) = Prob(y/X, < z) = Prob(X,, < z?) = G,(z?)

where G, is the cumulative distribution function of a chi-squared random variable with n degrees
of freedom. Then

Fi(z) = G(a”)2z = (1/2)"*(2*)"* " exp(—2/2)22/T(n/2)
(1/2)" 2" " exp(—2*/2) /T (n/2)
where I' denotes the gamma, function.

Taking the derivative with respect to x and setting it equal to zero, we see that the pdf is
maximized at £ = 4/n — 1. Thus the maximum value of the pdf is

(1/2)"2/n=1"" exp(~(n — 1)/2)/((n/2 = )T (n/2 — 1))
= ((n—2)/2)"= 22712 (exp(—(n - 2)/2)/T((n = 2)/2)) x V2¢/(n = 1)/(n = 2)
X (14 1/(n —2))"=2/2 x exp(—1/2)
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which converges to v/2/v/2m as n — oo by Stirling’s formula.

Lemma 10
If

and

Y,-Y' %0

then given any € > 0 and any § > 0 there exists an N such that n > N implies

PI‘Ob((Xn,Yn) € [a1 + d,a0 — 5] X [bl + 0,by — (5]) —€
< PI‘Ob((X’ YI) S [al,a2] X [bl,bg])

n»—n

< Prob((X,,Y,) € [a1 — d,a2 + ] X [by — ,b2 +6]) + €

for arbitrary a1 < ao, b1 < bo.

Proof: Since X, — X! % 0 and ¥;, — Y/ 5 0 we can find an N such that n > N implies

and

Prob(|X,, — X,| > §) < ¢/2

Prob(|Y,, — Y, | > ) < €/2

Now it is clear that

Also

where

b1
D2

and

{(X,Yn) €lar +6,a2 — 8] x [by + 6,0 — S} N{|X,, — X | <6} N{|Y, - Y| <6}

C {(X5,Yy) € [a1,a2] x [br,b2]} (45)

D =p1+p2 (46)

Prob({(Xy,Yy) € [a1 + 6,a2 — 6] x [by + 6,by — 0]} N {| X, — X},| < 6} N {|Y, — Y;1| < })
Prob({(Xn, Yn) € [a1 + 6,as — 8] X [by + 6, by — 8]} N [{| X — X4| > 6} U{|Vs — Y| > 6}])

p= PI‘Ob((Xn,Yn) € [a1 + d0,a0 — (5] X [bl + 6,00 — 5])

Further, for n > N,

po < Prob(|X, — X!'| > 8) + Prob(|Y,, = Y| > 6) < ¢/2+¢/2=¢ (47)

From (46) and (47) we have, for n > N,

pPL=p—p2>p—c¢ (48)

From (45) and (48) we have, for n > N,

Prob((X,,,Y,) € [a1,az2] X [b1,b2]) > p1 >p —€ (49)

Similarly, for n > N,

PI‘Ob((Xn,Yn) S [a1 — 5, as + 5] X [bl — 5, by + 5]) > PI‘Ob((X’ Y’) € [al,ag] X [bl,bQ]) — € (50)

n»—n
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Results (49) and (50) establish the lemma.

Corollary
If
X, - X" %0

then given any € > 0 and any § > 0 there exists an NV such that n > N implies
Prob(X,, € [a; + §,a2 — d]) — €

Prob(X], € [a1,as))
Prob(X,, € [a1 — d,a2 + d]) + €

IAIA

for arbitrary a1 < as.
Proof: The proof is similar to the proof of Lemma 10.

Lemma 11

Prob <XnCt,’yn(p),n=]—1 < Mlp) + (I)_I(IB) Vo(p) ) —p

as n — oo where Xyt o (5 ny—1 is a noncentral T' random variable with noncentrality parameter
Yn(p) and nJ — 1 degrees of freedom,

and
v(p)/(2]) +1 (51)

<
—
s
~—

Il

where
v(p) = =& (a)/\/T= 2 + P[]

Further the convergence is uniform in p in the sense that given any € > 0, there is an N such that
n > N implies that

Prob (cht,fyn(p),nJ—l < 'Yn(P) + (1)71(16) U(p) ) - /6‘ <€

regardless of the value of p.
This lemma, is required to establish Lemma 12 which in turn is required to establish that, for
the purposes of the main theorem, we can use any consistent estimator of p in our calculation of

kp.
Proof:

Heuristic Argument

Because the rigorous details of this proof are painful to follow, it is worthwhile first to give a
heuristic justification of the lemma.
We have

Prob (cht,%(p),n 71 < mlp) + @7H(B)V(p) ) (52)
= Prob (cht’,yn(p),nj_l - 'Yn(P) < (1)71(16) U(p) )

= Prob (Un(p) + Vo < 871 (8)V/0(p) )
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where

Ualp) = v(o)V/a(1/¥s 1)
Vo, = E,/Y,
Vo ~ /(0] = 1)
F, ~ N(0,1)

and F),, Y, are statistically independent.
Now since Y;, 2 1, V,, is asymptotically N(0,1). Also

Un(p) = (o) (VA/VT =1 ) Vi =1(1 = ¥2)/(Ya(1 + Y3))

This converges in distribution to a N(0,2%(p)/(2.J)). Thus since V,, and U,(p) are asymptotically
independent (in this heuristic argument we do a a big hand wave here and rely on the fact that Y,
is essentially 1 for the purposes of V,, but has a distribution for the purposes of Uy, (p)), Un(p) + V,
is asymptotically N(0,22(p)/(2J) + 1) or N(0,v(p)). Consequently,

Prob (Un(p) + Ve < @7 (8)V/u(p) ) ~ Prob(N(0,1) < 7' (8)) = 8

To make this heuristic argument rigorous and to establish that it holds uniformly in p requires
that we make use of an argument similar to that used to prove the main theorem. In particular
we break the area under a line into squares and show that the probability that (U,(p), V,) lies
in a square is closely approximated by the probability that (G, (p), H,) lies in the square where
Gn(p) ~N(0,2(p)/(2])), Hy, ~ N(0,1), and G,,(p) and H,, are independent.

Rigorous Argument

Let € > 0 be given. Find an r X r square, R, on the z,y plane such that two of R’s sides are parallel
to the x axis and
Prob((X,Y) € R°) <e (53)

N <0,< V(p)20/(2J) (1) ))

distribution. [Please note that we are in the process of using some fairly ugly notation. Ear-
lier we were using Y;; = p; + oy(pXij + /1 — p?Z;j) in connection with the responses in a
predictor sort. Here we use Y as the second variable in a bivariate normal, and below we use

for (X,Y) having a

Y, ~ \/XZJA/(”J —1). Our excuse is the limited size of the English alphabet. We hope and

believe that context makes clear which Y is relevant.| It is clear that R can be chosen large enough
so that (53) holds regardless of the value of p. Let M = v/2.J/(2r|® ' (a)|) be the maximum value
of the pdf of (X,Y") over all possible values of p.

Now by Lemma 7 we can divide the square R into a k x k grid with the following property:
Given any line on the plane, the sum of the areas of all the subsquares of R that intersect the line
is less than ¢/M. Let ag < a1 < ... < aj be the z coordinates of the vertices of the k? subsquares
of R. Let by < by < ... < by, be the y coordinates of the vertices of the k? subsquares of R.
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Next we express the central probability in the lemma in terms of U,(p) and V;:

Prob (Xnet,, (i1 < (o) + 97 (AVo(p) ) (54)
= Prob (Xnct (s 1 — (o) <@ (B)Vo(p) )

(x
= Prob (V + Un(p) < 7 1(B)/v(p) )
(

— Prob (V, < & 1(8)v/olp) — Unl )
where
Un(p) = V(p)\/ﬁ(l/yn - 1)
Vi, = E,/Y,
Y, ~ \/X%Jq/(”t] - 1)
F, ~ N(0,1)

and F,, Y, are statistically independent. (Thus F,, and U, (p) are statistically independent.)
It is clear that
F,~Vo=F,(1-1/Y,) 50 (55)

Next we demonstrate that
Prob((Un(p), Vi) € [as, ai1] X [bjsby41]) & Prob(Un(p) € [ai,ai41]) x Prob(N(0,1) € [by, by 1])

This argument concludes with result (64):

We claim that we can find a §; > 0 and an Ny (N; is defined below) such that for n > Ny, all
p,and i € {0,1,...,k}
Prob(Uy(p) € [ai,a; + 61]) < €/k> (56)

and
Prob(U,(p) € [a; — 61, a;]) < €/k? (57)

To prove result (56) consider

Prob(Un(p) € lai, a; + d1])
— Prob (l/(p) <\/ﬁ/\/nJ - 1) VT —1(1 - Y2)/(Yo(1 +Yy)) € [ai, a; + 51])
— Prob(v(p) (ﬂ/\/fﬂ - 1) VT —1(1 - Y2)/(Ya(l +Yy)) € [as, a; + 1]
A{Y, € [1— 61,1+ &]}) (58)
+ Prob(v(p) (\/ﬁ/\/n,] - 1) VT —1(1 - Y2)/(Ya(1 +Y,)) € [a5, ai + 01]
N{Yy <1- 8} U{Y, >146))

The second probability in (58) is dominated by
Prob({Y, <1—-0}U{Y, > 1+ 6}) (59)

Since Y;, & 1 we can find a Ny such that, regardless of the value of p, n > N; implies that the
probability in (59) is less than €/(2k?).
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Now assume that a; > 0. (The proof is essentially the same in the other case.) Then the first
probability in (58) is dominated by

Prob(v/nJ —1(1 — Y;?)
€ [a;(1 = 01)(2 = d1)vnd = 1/(Vnv(p)), (a; + 01) (1 + 01)(2 + d1)Vnd — 1/(v/nv(p))])

Thus by Pélya’s Theorem (see, for example, Section 1.5.3 in Serfling (1980)) and the fact that v(p)
is bounded away from zero, we can find an Ny > N; and a do > 0 such that for n > Ns, all p, and
0 < 81 < &9, this probability is less than €/(2k?). Thus for n > Ny, all p, and 0 < §; < dz, result
(56) follows. Result (57) can be established in a similar fashion.

Next it is clear that we can find a d3 > 0 such that for all n, for j € {0,1,...,k}

Prob(F, € [b;,b; + d3]) < e/k? (60)

and
Prob(F, € [b; — d3,b;]) < €/k? (61)

Let § = min(52, 53)
By result (55), Lemma 10, and the statistical independence of F,, and U, (p), there exists an
N3 > Nj such that for n > N3 and arbitrary p, given any i € {0,1,...,k—1}, 5 € {0,1,...,k—1},

Prob(U,,(p) € [ai + 6,a;11 — 6])Prob(F, € [b; + §,bj11 — d]) — €/k* (62)
Prob((Un(p), Va) € [ai, ait1] X [bj, bjt1])

<
< Prob(Un(p) € [a; — 6,a;11 + 0])Prob(F, € [bj — 6,bj1 + 0]) + €/k?

Note that N3 does not depend on p since, in the notation of Lemma 10, X,,— X/ = U, (p)—Uyh(p) =0,
which does not depend on p, and Y,, — Y,) = F,, — V,,, which does not depend on p.

Recalling that ¢ was chosen to satisfy (56), (57), (60), and (61), we can conclude from (62) that
for n > N3 (which does not depend on p) and i € {0,1,...,k—1}, j € {0,1,...,k — 1},

[Prob(Un(p) € [ai, ai+1]) — Prob(Un(p) € [ai,a; + ]) — Prob(Uyn(p) € [ait1 — 6,ai11])]
x[Prob(F, € [bj, bj+1]) — Prob(E, € [bj, bj + 6]) — Prob(F, € [bj1 — 6,b,41])] — ¢/k2
Prob((Un(p), Vi) € las, ait1] X [bj, bj41]) (63)
[Prob(Uy,(p) € [ai,ait+1]) + Prob(U,(p) € [ai — 0, ai]) + Prob(Un(p) € [ait1,air1 + 0])]
x[Prob(F;, € [bj, bj11]) + Prob(F, € [bj — 6,b;]) + Prob(Fy € [bjs1,bj11 + 0))] + €/k?

VARPAN

or (from (56), (57), (60), and (61)),

Prob(Uy,(p) € [ai, ait1])Prob(F, € [b;, bj11]) — 9¢/k? (64)
Prob((Un(p), Va) € [ai, ait1] X [bj, bjq1])

<
< Prob(U,(p) € [ai,ai11])Prob(F, € [bj,bj11]) + 9¢/k?

Next we show that

Prob(Uy (p) € [as, ai1]) ~ Prob (N (0, ”Z(j’)> € [ai, am])

This argument concludes with result (73):
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We have

Prob(Un(p) € [ai, ai+1]) (65)
= Prob(v/nJ — 1(1 = Y,2)/V2 € [z1(p,n), 27 (p, n)])
where
zr(p,n) = aivnd — 1Y, (1 +Yy,)/ (v(p)V2n)
and
Ty (p,n) = aip1Vnd — 1Y, (1 +Y,,)/(v(p)v/2n)
Define
yr(p) = ai\/ﬁ/’/(P)

and

yu(p) = air1V2J /v(p)

It is clear that we can find a 4 > 0 such that regardless of the value of p,

Prob(N(0,1) € [yr(p) — 61, yu(p) + 84]) — Prob(N(0,1) € [yz.(p),yu(p)]) < ¢/(3k*)  (66)
and

Prob(N(0,1) € [yz.(p), y(p)]) — Prob(N(0,1) € [yz(p) + ds,yrr(p) — 04]) < ¢/(3k*)  (67)

Since v(p) is bounded away from zero, and Y, EN 1, it is clear that we can find an Ny > N3
such that for all p, n > N4 implies that

Prob({lyz(p) — x1.(p,m)| > 84} U{lyu(p) — zu(p,m)] > 84}) < e/ (347) (68)

Thus, for n > Ny, any p, we have

Prob (VT = 1(1 = Y2)/V2 € [yr(p) + b1,y (p) — 64]) — ¢/ (35?) (69)
< Prob(vnd — 1(1 - Y2)/v2 € [y(p) + ba,y0(p) — 4]
Mlyr(p) — zr(p,n)| < da} N {lyv(p) — zv(p,n)| < da})
< Prob (Vad = 1(1 = Y2)/V2 € [s1(p,n), 0 (p, n)])
< Prob (VaJ = 1(1 = Y2)/VZ € [yr(p) = b1, 50 (p) + 81])
+ Prob ({lyz(p) — #1.(p,m)| > 64} U {Jyw (p) — z0(pym)| > 04})
< Prob (Vad = 1(1 = Y2)/V2 € [yr(p) — b1, y0(p) + 01]) + ¢/ (35?)

Now by Pdlya’s Theorem we can find an N5 > Ny such that n > N5 implies that, for all p,

Prob(N(0,1) € [yr(p) + du,yu (p) — da]) — €/(3k%) (70)
Prob(v/nJ — 1(1 — ¥;2)/V2 € [yr(p) + 64, yu(p) — d4])
Prob(N(0, 1) € [yr(p) + 4, yu(p) — 04]) + €/(3k?)

VARPAN

and

Prob(N(0,1) € [y.(p) — 61, yu(p) + 64]) — €/(3k?) (71)
Prob(v/nJ — 1(1 — Y.2)/vV2 € [yr(p) — 04,y (p) + 64])
Prob(N(0,1) € [yr(p) — du,yu (p) + 0a]) + €/(3k?)

VARPAN
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Results (65) and (69) — (71) imply that for n > N5 and all p,
Prob(N(0,1) € [yr(p) + 81, yu(p) — da]) — 2¢/(3k?) (72)
Prob(vnJ —1(1 = Y2)/V2 € [yr(p) + bu,yu (p) — 64]) — €/ (3K?)

Prob(Un(p) € [as, ai41])

Prob(vnJ —1(1 = Y2)/V2 € [yr(p) — bu,yu (p) + 64]) + €/ (3K%)

Prob(N(0,1) € [yr(p) — d1,yu(p) + da]) + 2¢/(3k?)

VAN VAN VAR VA

Results (66), (67), and (72) then imply that for n > N5 and all p,
Prob(N(0,1) € [yz(p), yu (p)]) — €/k°
Prob(Uy,(p) € [a;,ait1])

Prob(N(0,1) € [yL(p), yu (p)]) + €/k”

VARPAN

Prob(E(p) € [a;,ait1]) — €/k> (73)

Prob(Un(p) € [ai; ait1])
PI“Ob(E(p) S [ai,ai+1]) + 6/k‘2

IA N

where
E(p) ~N(0,v(p)*/(2J))
We now pull together results (64) and (73) to yield

v*(p)
27

Prob((Un(p), Vn) € a particular square) ~ Prob <independent N(0, ), N(0,1) € the square)

This result is embodied in inequalities (74) and (75):
Results (64) and (73) imply that for n > Nj, all p, i € {0,1,...,k—1}, j € {0,1,...,k—1}
PI‘Ob(E(p) € [ai,ai+1])Prob(Fn € [bj, bj_|_1]) — 10€/k2 (74)

Prob((Uy(p), Va) € [ai, ait1] X [bj, bjt1])

<
< Prob(E(p) € [a;,a;+1])Prob(Fy, € [bj,bj11]) + 10¢/k?
Result (74) implies that for n > Nj, all p,

Prob (E(p) € [ao, ar]) Prob (F), € [by,bg]) — 10e (75)
< Prob((U,(p),Vn) € R)
< Prob (E(p) € [ao,ax]) Prob (F,, € [bo, bg]) + 10e
Since E(p) ~ N(0,v(p)?/(2J)) and F,, ~ N(0,1), (53) and (75) imply that for n > Nj, all p,
Prob((Un(p),Vn) € R) > 1 —11e (76)

or

Prob((Un(p), Va) € RY) < 11¢ (77)

Now we must be careful and show that the squares that intersect a particular line
can be treated as negligible. This fact is expressed in result (78):
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Define
Cy,1 = subsquares of R that intersect the line y = >~ 1(B)v(p) — =

(see (54) for the source of this line),

R, = the region covered by the elements of C, ;

Cno = subsquares of R that lie entirely below the line y = ®~'(3)\/v(p) — =

and
R, 2 = the region covered by the elements of C,, o

Then by (74) and by the method of construction of the k x k grid, for n > Nj, all p,

Prob((Un(p), V) € Ba,1)
< Prob(independent N(0, V(P)Z/(QJ))vN(O’ 1) € Ry1) + 10¢
< (e/M)M + 10e = 11e

where M was introduced in the paragraph following (53).
Result (79) handles the squares that lie below the line:
Again by (74) for n > Nj, all p,

Prob(independent N(0,2(p)?/(2.J)),N(0,1) € Ry2) — 10e
Prob((Un(p), V) € By2)

<
< Prob(independent N(0,v(p)?/(2J)),N(0,1) € Ry, 2) + 10¢

We are now ready to complete the proof by introducing statistically independent

N(0,2%(p)/(2J)) and N(0,1) random variables:

Let Gy, (p) ~ N(0,v(p)2/(2J)), H, ~ N(0,1), and let G,,(p), H, be independent.
By (53), for all p (see the remark following (53)),

Prob((Gn(p), Hn) € R°) < ¢
By the method of construction of the k x k grid, for all p,
Prob((Ga(p), Hy) € Ruy) < (e/M)M = €
Next note that
Prob (Hy < @~ (8)v/0(p) — Ga(p)) = Prob (Gulp) + Hy < @~ (B)V/0(p) )
= Prob (N(0,0(p)) < @ (B)v/v(p) ) = 5

Thus by (54) and (82),

[Prob (Xt (o1 < 1(0) + @ H(8)Vol0) ) Bl
= |Prob (V,y < 071 (8)V/0(p) — Un(p)) = Prob (Hy < @71 (8)v/u(p) = Gulp)) |
= |Prob (Vi < 071 (8)V/0(p) — Un(p) and (Un(p), Vi) € E°)
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Un(p) and (Un(p), V) € Rn,l)
Un(p) and (Un(p), Va) € Rm)
)

R
iy
gy
iy
iy

<P~ Gn(p) and (G, (p), H,) € R®
— Prob (H, < ® G(p) and (Gn(p), Hy) € le)
— Prob (H, < &~ G(p) and (Gu(p), Hy) eRn,2)|
< Prob((Un(p), Vo) € Rc) + Prob((Gn(p), Hn) € R°)
+ Prob((Un(p), Va) € Ru1) + Prob((Gy(p), Hy) € Ru1)
+ [Prob((Un(p), Vi) € Rn2) — Prob((Gn(p), Hyn) € Rn2)|

By results (77), (80), (78), (81), and (79), for n > Ns, all p, this last sum is less than
1le + €+ 11e + € + 10€

As e was arbitary, this completes the proof.

Corollary (An Aside)

Prob (Xnet,ymn <o+ 87 (BVAZ2+1 ) = 6

as n — o0.

Proof: The proof is a simplified version of the proof of Lemma 10.
Note that this corollary implies that given any ¢ > 0 we can find an N > 0 such that n > N
implies that

Wik @ (B - VPR TL<Fl o (8) < yyn+ @7 (B4 VA2 H T

By contrast, the Sth quantile for a N(yy/n,1) random variable is yy/n + ® '(8). Thus the
asymptotic effect of dividing a N(y4/n, 1) random variable by an independent /x2/n is to expand
the variance from 1 to v2/2 + 1.

Lemma 12

(Recall that this lemma is needed to establish that the main theorem holds for any consistent
estimator p of p.)

Let /6 be a consistent estimator of p. Then

Prob (chw( ymg1 < <\/1—,0 + 2/ J]\/1 = p? +p2/J) nct,%( ),nH(ﬁ)> — B

as n — 0o where

Wm(p) = vip)vn
vip) = -0 Na)/\/1-p*+p?/]

cht,'yn( )T —1 denotes a noncentral T random variable with noncentrality parameter v, (p) and
nJ — 1 degrees of freedom, and Fy ¢, (5) ns—1 denotes the distribution function of a noncentral T
random variable with noncentrality parameter v, (p) and nJ — 1 degrees of freedom.

28



Proof: Let € > 0 be given. By Lemma 11 we can find an IV; such that for n > Ny, all p,
Prob (Xt st < (o) + @18 = V(o) ) < f—¢/2

and

Prob (Xnct (-1 < W) + @7 B+ V(o) ) > B+¢/2

where

v(p) = v(p)2/(27) + 1
Thus, for n > Ny, all p,

(o) +®71 (B = Vo) <Fply o (B) < mlp) + 07 (B+)V/olp) (83)
So for n > Ny,
Prob (Xpet (st < (VI— 52+ 21T/ VT= g2+ 2217 ) (3(p) + @7 (8 = 9V () ) )
Prob (Xnet o, st < (V= 92+ P2LINT= 2+ 21T ) ol () (84)

Prob (Xnet (st < (VI 52+ P1T/VT= 2+ 2217 ) (3(p) + @7 (B + 9v/0() ) )

IN

AN

Now, since p EN p, we can find a Ny > Ny such that n > Ns implies

Prob ((Ifl(ﬁ —26)\/o(p) < OB — )Vu(p)V/1 - P2+ p2 [T/ V1 - p? +p2/J) >1-e

and

Prob (fifl(ﬁ +26)/v(p) > B+ )V o(p) V1 — P2+ p2[T/\/1 - p? +p2/J) >1—e
Thus for n > No,

Prob (Xnet st < (o) + @18 = 20/0(p) ) — ¢ (85)

< Prob (Xt as—1 < le) + @B = Vol(p) (VI 2+ 21T /1= +7]7 )

and

Prob (Xnct . (st < le) + @B+ Vo) (VI= 2+ 21T /NI =2+ 02T ))

< Prob (cht,'yn(p),nJ—l < ’Yn(,O) + (I)_l(ﬁ + 26) U(p)) +e (86)

Results (84) through (86) and the fact that y,(p) = Yn(p)\/1 — %+ p2/J/\/1 — p* + p2/J
imply that for n > No,

Prob (Xnet, (st < (o) + @18 =20 /u(p) ) — ¢ (87)
Prob (cht,fyn(p),nJ—l < (\/1 - :52 + ﬁZ/J/\/l - P2 + p2/J> F;l(ljt,yn(ﬁ),njfl(’@)>

Prob (Xnet o, (st < W(p) + @18 +261/0(p) ) +e¢

IA

AN
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Finally, by Lemma 11, we can find a N3 > Ns such that n > N3 implies

Prob (cht,'yn(p),anl < IYn(p) + q)il(/B - 26) \% U(p)> > —3e (88)
and
Prob (cht,fyn(p),nJ—l < 7“(:0) + (I)_I(IB + 26) U(p)) <P+ 3e (89)

Results (87) to (89) imply that for n > Nj,

/3_46 < Prob (cht,'yn(p),nJ—l < (\/1 - /32 + :52/‘]/\/1 - :02 + :02/J) Fa(ljt,fyn(ﬁ),anl(ﬁ)) < ﬁ+4€

As e was arbitrary, the lemma, is established.
Corollary
Let p be a consistent estimator of p. Define

ko= (VI= 22 #5271V ) Foly iy ) (90)
where
(D) = (P = (-0~ (@)1= 2+ 7T ) Vn (91)
Define
e = (kn + 27 @)W/ /T — 0P+ 2] (92)
and
dy, = kn/n/ (\/1—p2+p2/J\/nJ—1> (93)
Then
kp — —® (a) (94)
as n — 00,
én B e=071(B)V/v(p) (95)
and
dy B d= —@‘1(04)/<\/1 —p2+p2/Jﬁ) = v(p) VT (96)
as n — 0o where
v(p) =v3(p)/(2]) +1 (97)

and v(p) is defined in (91).

Proof:
Let € > 0 be given. Then by (83), we can find an N such that n > N implies

(P + BB - VP <Fl o (B) <)+ @7 (B + 9VolD)
Thus, for n > N,

(VI=#+ 21TV (1a(6) + 9718 = V(7))
i

< Fn
<

(\/1 -2+ ﬁ2/J/\/ﬁ) (vn(ﬁ) +o ' (B+e) v(ﬁ))
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or

0 o) + @ (B— )1 —p? +p? /T o(p)/Vn (98)

< ky
< 0 o)+ B+ VT 24 RIIVIR VA
This establishes (94) which in turn establishes (96).
From (98) and definition (92) we have, for n > N,

(2718 - VT =+ P2[INo(B) [Vn) V1= 7 + 7] T

< Cp

< (@7 B+ VI =2+ PTG V) VAT = 2 + 7]

or

o8 — Vo) (VI 2+ 2L N =2+ 2] )

< Cp

< OB+ V) (VI— P+ RLTNT =7+ 2T )

Since p 2 p and e was arbitrary, this establishes (95) and completes the proof of the corollary.

The Independence of V,,» and U, »

To be rigorous we need to be fairly careful as we establish the independence of V;, » and U,, ». First,
recall the following lemma.

Lemma 13
Let Zi,...,Zy, be independent N(0,1) random variables. Then there exist independent N(0,1)

random variables, T1,..., T}, such that Z is a continuous function of Ty and Z; — Z,...,Z, — Z
are continuous functions of T, ..., T},.

Proof:

Let u; = (1...1)7/\/n and let uy,...,u, be an orthonormal extension of u; to a basis of

Euclidean n-space. Then
(ur...u,)"'Z ~ N(0, 1,5

soul'Z,...,ul'Z are stochastically independent. Now
Z=ulZ/yn

is a continuous function of ulTZ. Also

Z\-Z=vI%Z
where vI' = (10...0) — (1...1)/n. Since vI'1 = 0, vy lies in the linear span of uy,...,u,.
Thus Z; — 7Z = vI'Z is a linear combination of ul'Z,...,ulZ. A similar argument holds for

Zy—Z,...,Zy — Z. This completes the proof of the lemma.

Now to complete the justification of the stochastic independence of V,, 2 and U, 2 we would
simply like to invoke Lemma 13 and Theorem 3.3.2 of Chung (1974). However to do so we need to
build the predictor sort randomization into our probability model. We can do this by adding an
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extra dimension to the 2 x nJ (n here differs from the n in Lemma 13) dimensional product space
upon which we are (implicitly) generating the nJ X;;’s and nJ Z;;’s of the main theorem.

Lemma 14
Va2 and Uy, 2 are stochastically independent.

Proof:

Let R;;’s and Z;j’s, i = 1,...,n, j = 1,...,J be independent N(0,1)’s on a 2 x n.J product
space. Extend the product space by “multiplying” by the interval [0,1], where the associated
measure is the standard uniform measure on [0,1]. Let w be an element of this product space (so
its 2 x nJ + 1th component lies in [0,1]). Let W} be the random variable defined by Wy (w) = wy.

We have R;j(w) = wp(j—1)+; = Wy(j—1)+i(W) and Zi;(W) = wypyn(j—1)+i = Waiin(j—1)+i(W), and

the probability density at w is
2nJ
2
exp(—wj/2) | x 1
(I

Now the R’s and Z’s are all statistically independent. By Lemma 13 we can find statistically
1ndependent Sl, ..,Spy on this product space such that the S’s are functions of Wy,..., W, ;,
R.(w) = Wk( ) is a function of Sj, and the R;j(w) — R..(w)’s are functions of Sa,...,S,.
Also by Lemma 13 we can find statistically independent T4j,...,T,; for j = 1,...,J such that
the Tj;’s are functions of Wy, 7 1)415- -+ » Wnatnj» Z.j(w) is a function of T}, and the Z;;(w) —
Z.j(w)’s are functions of Tyj,...,T,;. Clearly the S’s and the T"s are independent of each other
and of WQnJ+1.

Consider indicator variables I(g,_, 4 )(Wgn]+1( w)) where i = 1,...,J!" and d; = i/(J!").
Tig;_ 1 d )(WQnJ+1( w)) =1 if Wy, y41(w) lies in (d;—1,d;), 0 otherwise.

Then, in the notation of (3),

Jm
Sy o(w) /oy = Zf(dk,l,dk)(WszJrl(W))X
k=1
J n - - 9
Z ( X]“] X(W)) + 1-— ,02 (ZZ](W) — Z](W))>
j=11i=1

where w is a point in the product space, and the Xj;;j(w) — X..(w)’s are the randomization of the
R;j(w) — R..(w)’s that corresponds to the kth of the possible J!"™ predictor sort randomizations.
It is clear that S%AW)/U% is a Borel measurable function of {Ss,...,Sus}, {Tj,...,Ty;} for
j=1,...,J, and Wo,511. Also it is clear that YH’Q is a Borel measurable function of S; and T7;.

Thus in the product probability space, Yn,g and 53,2 are Borel measurable functions of disjoint
sets of stochastically independent random variables. So by Chung’s Theorem 3.3.2, YH’Q and S?L’Q
are stochastically independent.

Proof of the Main Result

Theorem.
Let /6 be a consistent estimator of p. Then

Prob (Yn,l — I%nSn,l < pr+ <I>*1(a)ay) - f

32



as n — oo where Yn,l and Sy, ; are defined in (3),

bn =V (L= 2+ 02/ D)/ Frce o ms— (B
the noncentrality parameter, v, (), is given by

T (p) = v(p)Vn

and

v(p) = =& (a)/\/T= 2 + P[]

Proof: Let € > 0 be given. Find an r X r square, R, on the plane such that

Prob((X,Y) € R°) <€ (99)

1/2 0
v (7))
distribution.

Let X, have a chi-squared distribution with m degrees of freedom. By Lemma 9 we can find
a finite M that bounds the probability density function of \/m(y/X,,/m — 1) for all m.
Define

for (X,Y) having a

en = (o + 7)) Va/ T = 2+ 2]

and

dy = kn/n/ (\/1 —p2+p2/JVnd — 1)
By the corollary to Lemma 12,

and
dn B d = 0N (a)/ (VI= 2+ 721IVT)
where )
v(p) = V2(J’0) +1

Thus by Lemma 8 we can divide R into a k x k grid of subsquares, and find a fixed collection C
of subsquares of R with total area less than €/ (M/\/%), and an Ny such that n > Ny implies that
with probability greater than 1 — e, all of the subsquares of R that intersect the line y = ¢, + dpz
lie in C}. Let R; denote the region covered by the elements of C'y. Let ag < a1 < ... < ag be the
coordinates of the vertices of the k% subsquares of R. Let by < by < ... < b;, be the y coordinates
of the vertices of the k2 subsquares of R.

Let Vi1, Va2, Un,1, Uy, and U, 3 be defined as in (3).

Now we express the central probability in the theorem in terms of U, ; and V}, ;:

We have

Prob(Y,1 — knSn1 < p1 4+ @ L(a)oy) (100)
= Prob(Yp1 — 1 <@ Yoy + knSn1)

— Prob ((Yn,1 — )/ ((Uy/\/ﬁ)\/l 2 p2/J) < én + dy V0T — 1(Sni1 /oy — 1))

= Prob(Va, < én + dnUn.)

33



Next we show that

Prob((Un,1, Va1) € [ai, @iv1] X [bj, bjta])
~ PI‘Ob(UmQ € [ai,ai+1]) X PI‘Ob(Vn,Q € [bj,bj.H])

This argument concludes with result (103):
By Lemmas 2 and 9 we can find a §; > 0 such that for all n
Prob(U,, 3 € arbitrary interval of length smaller than 6;) < e/k? (101)
and since (Lemma 2) V,, o ~ N(0, 1), we can find a d > 0 such that for all n

Prob(V,, 2 € arbitrary interval of length smaller than d5) < ¢/k? (102)

Let 6 = min(él, (52)/2
By Corollary 6.4 and Lemmas 3, 10, and 14, there exists an N; > Ny such that for n > Ny,
given any 7 € {0,1,...,k—1},7€{0,1,...,k — 1},

Prob(Uy2 € [a; + 6,a;11 — 6])Prob(Via € [b; + §,bj11 — 0]) — €/k? (103)

Prob((Un,1, V1) € [ai; aiv1] X [bj, bj11])
Prob(Uy,2 € [a; — 6,a;11 + 6])Prob(Via € [bj — §,bj1 + 0]) + €/k?

VARPAN

‘We now show that

Prob((Un,1, Va1) € [ai, @iv1] X [bj, bjta])
~ PI‘Ob(Umg € [ai,ai+1]) X PI‘Ob(Vn,Q € [bj,bj.H])

This argument concludes with result (108):
By Corollary 6.3 and the corollary to Lemma 10, we can find an Ny > Ny such that for n > No,
given any 7 € {0,1,...,k — 1},
PI‘Ob(Un,;), € [ai + 26, Ai+1 — 25]) — €/k2 < PI‘Ob(UmQ € [ai + 4, Qi1 — (5]) (104)
and
PrOb(Un,g € [ai — 5, a;+1 + 5]) < PI‘Ob(Un’g, € [ai — 25, a;+1 + 25]) + 6/k2 (105)
Thus from (103), (104), and (105), for n > Ny and i € {0,1,...,k — 1}, 7 € {0,1,...,k — 1},

PI‘Ob(Un,g € [ai + 25, Aj41 — 25])Pr0b(vn’2 € [bj + 5, bj+1 — 5]) — 2€/l€2 (106)
< Prob((Un,1, Va,) € [ai, ait1] X [bj, bj1])
< PI‘Ob(Un,g € [ai — 25, ai+1 + 25])Pr0b(vn’2 € [bj + 5, bj+1 — 5]) + 2€/l€2

We can conclude from (106) that for n > Ny and i € {0,1,...,k—1}, 5 € {0,1,...,k — 1},

[Prob(U, 3 € [ai,ai4+1]) — Prob(Up 3 € [a;,a; + 26]) — Prob(Uy 3 € [ait1 — 2d,a;11])]  (107)
% [Prob(Vp.s € [b7,bj11]) — Prob(Vaa € [bj,b; + 6]) — Prob(Vas € [bjs1 — 6, bj11])] — 2¢/k?
Prob((Un,1, Va,1) € [ai, ait1] x [bj, bj11])

[Prob(Uy, 3 € [ai,ai+1]) + Prob(Uy 3 € [a; — 20, a;]) + Prob(Uy. 3 € [ait1, aiy1 + 20])]

% [Prob(Vp2 € [bj, bj1]) + Prob(Viz € [bj — 6,b;]) + Prob(Vas € [bys1, i1 + 0])] + 2¢/k2

VARPAN
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or (recall that 20 was chosen to satisfy (101) and (102))

Prob(Uy,3 € [ai,ait1])Prob(Vy,2 € [bj, bj11]) — 10e/k? (108)
Prob((Un,1, Va1) € [ai,air1] X [bj,bj41])

<
< Prob(Uns € [ai, ais1])Prob(Vy, 2 € [bj, bj11]) + 10e/k?

Next we show that with high probability, U, 1, V,, lies inside the square R intro-
duced in the second line of the proof. This argument ends with inequality (113):
From (108) we have, for n > No,

Prob (U, 3 € [ao, ax])Prob(V, 2 € [bo, bi]) — 10€e (109)
PI‘Ob((Uml, Vn,l) S R)
PI‘Ob(Un,;), S [ao,ak])Prob(VmQ S [bo, bk]) + 10¢

IAIA

By Corollary 6.5, Uy, 3 B N(0,1/2). Thus we can find an N3 > Ny such that for n > N3,

Prob(N(0,1/2) € [ag,ar]) — € (110)
< Prob(Uy, 3 € [ao, ai])
< Prob(N(0,1/2) € [ag,ax]) + €
So for n > Nj,
Prob (N(0,1/2) € [ao, ai]) Prob (V,, 2 € [bo, b]) — 11e (111)

PrOb((Un’l, Vn,l) c R)

<
< Prob (N(O, 1/2) S [ag, ak]) Prob (Vn72 € [bo, bk]) + 1le

Since (Lemma 2) V, 2 ~ N(0,1), (99) and (111) imply that for n > N3,

Prob((Up,1,Va1) € R) > 1 — 12¢ (112)
or
PI‘Ob((Uml,Vn,l) € RC) < 12¢ (113)
Now define
én,l = subsquares of R that intersect the line y = ¢, + Jnx
Rn,l = the region covered by the elements of CA’n,l
C’n72 = subsquares of R that lie entirely below the line y = é, + cznx
Rng = the region covered by the elements of én,g
Ch2 = subsquares of R that lie entirely below the line y = ¢ + dz
and

R, 2 = the region covered by the elements of C}, 2.

Next we demonstrate that the probability that (U, i, V1) lies in le is small. This
argument concludes at result (116):
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Now (C; and R; are defined just prior to equation (100)), for n > N3(> Ny), by the method of
construction of the subsquares,

Prob(Un.1,Vai) € Rn1) = Prob({(Un1,Vai) € Rua} N{Cn1 C C1}9) (114)
+ PI‘Ob({(Uml, le) € le} N {én,l - Cl})
< €+ PI‘Ob({(Un,l, Vn,l) € Rn,l} N {Cn,l - 01})

By Lemma 2, inequality (108), and the method of construction of the subsquares, for n > N3,
Prob({(Un.1, Vn1) € Rua} N{Cuy1 C C1}) (115)
< Prob (independentm (\/X?lj_1/(nj -1) - 1) ,N(0,1) € R1) + 10¢
< [e/(M/V2r)]M/V2r + 10e = 11e
Thus by results (114) and (115), for n > N3
Prob((Un,1, Va1) € Rn,1) < 12¢ (116)

Next we establish that the probability that (U, 1, V;,1) lies below the line y = en+dnz
is very close to the probability that (U,:, V; 1) lies below the line y = ¢ + dz. This
argument concludes at result (118):

It is clear that
[Prob((Un,1, V1) € Rna) — Prob((Un,1, Va1) € Ruy2)|
< Prob({(Un,1, Vo) € Rn2} N {(Un,1, V1) € RS 5}
+ Prob({(Un,1, Va,1) € RS 5} N {(Un1, Vo) € Rup})
Let Ey denote the event
{all of the subsquares of R that lie strictly below y = ¢, + dpx

but not strictly below y = ¢ + dz lie in C4}.
We have

Prob({(Un,1, V1) € Bn2} N {(Un1, Vi) € RS 5} (117)
= Prob({(Un1,Va1) € Ru2} N{(Un,1, Va) € RS 5} N Ey)
+ Prob({(Un,1, V1) € B2} N {(Un1, Vi) € RS 5} N EY)

By Corollary 8.2 and the construction of the subsquares of R, the second term on the right hand
side in (117) is less than e. Clearly the first term in (117) is bounded by Prob({(Uy,1, Vi,1) € Ri}).
Similarly, by Corollary 8.1,

Prob({(Un,1, Vn,1) € RS 5} N {(Un,1,Viu1) € Ru2}) < Prob({(Un,1, V1) € Ri}) +e
Thus for n > N3, result (108) implies that
IProb((Un.1, V1) € Ruz) — Prob((Un.1, V1) € Ry2)| (118)
Prob({(Un,1, V1) € Bp2} N{(Un1,Vi,1) € RS 5}
+ Prob({(Un,1, Va,1) € RS 5} N {(Un1, Vi) € Rug})
2 x Prob((Up,1,Vn,1) € Ri) + 2
2 x Prob (independent VT —1 (\/XiJfl/(nJ 1) - 1) N(0,1) € Rl) + 20€ + 2

2e/(M/V2m)|M /27 + 22¢ = 24e

IA

IN

IA

N
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Next we will establish that for the ‘“easy” variables F,, F, defined below, we ob-
tain results (119), (120), and (121) analogous to results (113), (116), and (118) for
Un,1,Vn,1.- We also obtain result (122) which relates the U, 1,V, 1 probability content of
the subsquares below the line to the E,, F,, content. Result (123) establishes that F,
and F,, combine with quantities ¢, and d, to yield the correct asymptotic coverage:

Let

Bn e Vid =1 (/X2 / (0] = 1) — 1)
. Fn ~ N(Ov 1)7

and let E,, F, be independent. Then by Corollary 6.5 and the construction of R (R is defined on
the second line of the proof),

Prob((E,, F,) € R)

— Prob (vnJ - 1(\/an J( nJ—l)—l) [ag,ak])Prob(N(O,l)E[bg,bk])
—  Prob(N(0,1/2) € [ag, ar])Prob(N(0,1) € [bo,bg]) > 1 —€

So we can find an Ny > N3 such that n > N, implies
Prob((Ey,, F,) € R°) < € (119)
Next note that by reasoning similar to that used to establish (116), for n > Ny,
Prob((Ep, F,) € Ry1) < 2¢ (120)
By reasoning similar to that used to establish (118), for n > Ny,
|Prob((Ey, ) € Rp2) — Prob((Ep, Fy) € Ry2)| < 4e (121)
By Lemma 2 and result (108), for n > Ny,
|Prob((Un1,Va,1) € Rp2) — Prob((Ey, Fy,) € Ry 2)| < 10e (122)
Now, by the definitions of kn, én, and d,, (definitions (90), (92), and(93)), and by Lemma 12,

Prob(F, < ép + dnEp) (123)
— Prob (N(o, 1) < (kn + @*l(a)) Va1 =2+ 2] T

+ (/v T= 07+ 2717 ) /] (0] —1)/nT =1 <\/X721]71/(n(] -1)-1))
= Prob (N(0,1) < @~ (@)n/v/T = g2+ 2T + (buv/n/ /T = 2+ P21 )3 [X2y 1 /(0] = 1) )
= Prob (N(0,1) < @ (a)v/m/v/1 = 2 + p2]]

+ (VI=P+PITINT=P+ 7T ) Pl )M_l(ﬁwxiu/(m -1)
= Prob (cht,m yng—1 < (\/1 — P2+ 2] T/\1—p2+ p2/J> oot n(p ),nJ_l(ﬁ)) —f

as n — oQ.
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Now we will assemble all of the preceding pieces to yield the desired result:

We have

IProb ( 1 — knSny < p1 + qu(a)ay) — g (124)

< |Prob (Yn,l — JonSn < p1 + <I>—1(a)ay) _ Prob (Fn < én+ cZnEn) | + |Prob (Fn < én+ dnEn) _ B
Now by (100), the first term on the right hand side of (124) equals

[Prob (Va1 < én +dUn, ) — Prob (Fy < é + dnFy) |
= |Prob (Vi1 < én +dnUps and (Up, Vi) € FY)

+ Prob (Vi < &+ duUp and (Up,1, V1) € Bt )

+ Prob( 1 < e+ dyUny and (Up1, V) € )
— Prob (Fn o+ dn By and (Ep, F,) € RC>
~ Prob (F < én + dnEy and (B, F,) € Rnl)

— Prob ( < én + dnE, and (En, F,) € Rn2> |
Prob ((Un,l,Vn,l) € RC) + Prob ((En,F ) € R¢ )
+ Prob ((Un V) € Rn,l) + Prob (( F,) € Ry 1)

IN

+ [Prob ((Un,1, V1) € finp) = Prob (U1, Va,1) € Ra2)]|
+ |Prob ((Un,1, V1) € Rn2) — Prob ((En, F,) € Ry 2) |

+ [Prob ((En, Fp) € Rus) — Prob ((En,Fn) e Rm) |

By results (113), (119), (116), (120), (118), (122), and (121), for n > Ny, this last sum is less

than
12¢ + € + 12€ 4 2e + 24€ 4 10e + 4e (125)

As e was arbitrary, results (124), (125), and (123) complete the proof.
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Table 1: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.75, J = 2

coverage!

o) n | incorrect | version 1 | version 2 | MLE
5| 0.7762 0.6903 0.6410 | 0.5663
0.70 | 10 | 0.7695 0.7218 0.6823 | 0.6258
20| 0.7728 0.7258 0.6965 | 0.6585
40 | 0.7798 0.7400 0.7215 | 0.6970

5| 0.8003 0.7083 0.6540 | 0.5663
0.75 | 10 | 0.7752 0.7175 0.6760 | 0.6245
20| 0.7853 0.7325 0.7027 | 0.6690
40 | 0.7915 0.7500 0.7275 | 0.7067

5| 0.7940 0.7105 0.6570 | 0.5733
0.80 | 10 | 0.7917 0.7302 0.6937 | 0.6358
20| 0.7973 0.7505 0.7202 | 0.6867
40 | 0.7970 0.7392 0.7190 | 0.6950

5| 0.8065 0.7222 0.6670 | 0.5850
0.85 | 10 | 0.8163 0.7422 0.7007 | 0.6452
20| 0.7915 0.7372 0.7103 | 0.6760
40 | 0.7967 0.7372 0.7188 | 0.6975

5| 0.8215 0.7235 0.6743 | 0.5887
0.90 | 10 | 0.8247 0.7432 0.7055 | 0.6512
20 | 0.8157 0.7412 0.7130 | 0.6770
40 | 0.8253 0.7508 0.7250 | 0.7045

5| 0.8320 0.7278 0.6803 | 0.5980
0.95 | 10 | 0.8417 0.7450 0.7003 | 0.6462
20 | 0.8337 0.7425 0.7127 | 0.6775
40 | 0.8365 0.7502 0.7288 | 0.7043

5| 0.8423 0.7285 0.6810 | 0.5915
0.99 | 10 | 0.8582 0.7585 0.7175 | 0.6600
20 | 0.8525 0.7528 0.7255 | 0.6883
40 | 0.8515 0.7560 0.7348 | 0.7120

" incorrect” denotes the incorrect standard approach; “version 1” denotes a predictor
sort approach using the section A.3 consistent estimator of p; “version 2” denotes a pre-
dictor sort approach using the maximum likelihood estimator of p; and “MLE” denotes
the full maximum likelihood approach presented in Appendix A.
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Table 2: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.75, J =4

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.8025 0.6657 0.6292 | 0.5903
0.70 | 10 | 0.7945 0.6940 0.6735 | 0.6452
20| 0.7883 0.7107 0.6943 | 0.6747
40 | 0.7840 0.7208 0.7090 | 0.6947

5| 0.8090 0.6760 0.6405 | 0.5940
0.75 | 10 | 0.8047 0.7030 0.6775 | 0.6465
20| 0.8073 0.7143 0.6943 | 0.6717
40 | 0.7925 0.7248 0.7127 | 0.6970

5| 0.8243 0.6855 0.6550 | 0.6112
0.80 | 10 | 0.8140 0.7087 0.6885 | 0.6520
20 | 0.8230 0.7250 0.6980 | 0.6755
40 | 0.8153 0.7345 0.7235 | 0.7095

5| 0.8518 0.6963 0.6647 | 0.6148
0.85 | 10 | 0.8393 0.7170 0.6913 | 0.6530
20 | 0.8415 0.7362 0.7165 | 0.6937
40 | 0.8430 0.7475 0.7335 | 0.7153

5| 0.8548 0.6957 0.6735 | 0.6195
0.90 | 10 | 0.8618 0.7248 0.7000 | 0.6610
20 | 0.8652 0.7338 0.7153 | 0.6963
40 | 0.8565 0.7378 0.7265 | 0.7100

5| 0.8895 0.7100 0.6933 | 0.6450
0.95 | 10 | 0.8962 0.7390 0.7123 | 0.6770
20| 0.8878 0.7470 0.7288 | 0.7067
40 | 0.8882 0.7502 0.7368 | 0.7192

5| 0.9042 0.7160 0.6993 | 0.6442
0.99 | 10 | 0.9130 0.7388 0.7155 | 0.6785
20 | 0.9245 0.7502 0.7302 | 0.7035
40 | 0.9257 0.7498 0.7410 | 0.7208
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Table 3: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.75, J = 8

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.8025 0.6298 0.6108 | 0.5787
0.70 | 10 | 0.8067 0.6735 0.6617 | 0.6432
20| 0.7985 0.7050 0.7005 | 0.6853
40 | 0.7965 0.7348 0.7260 | 0.7173

5| 0.8285 0.6442 0.6292 | 0.5998
0.75 | 10 | 0.8170 0.6717 0.6633 | 0.6432
20 | 0.8190 0.7060 0.6950 | 0.6833
40 | 0.8055 0.7290 0.7225 | 0.7147

5| 0.8243 0.6550 0.6472 | 0.6155
0.80 | 10 | 0.8413 0.6983 0.6820 | 0.6635
20 | 0.8275 0.7103 0.7015 | 0.6863
40 | 0.8317 0.7400 0.7302 | 0.7220

5| 0.8550 0.6623 0.6645 | 0.6348
0.85 | 10 | 0.8582 0.6985 0.6883 | 0.6677
20 | 0.8650 0.7415 0.7328 | 0.7183
40 | 0.8482 0.7235 0.7150 | 0.7053

5| 0.8935 0.6773 0.6785 | 0.6430
0.90 | 10 | 0.8900 0.7137 0.7073 | 0.6877
20 | 0.8805 0.7212 0.7070 | 0.6935
40 | 0.8790 0.7382 0.7292 | 0.7165

5| 0.9160 0.6885 0.6850 | 0.6577
0.95 | 10 | 0.9187 0.7087 0.7037 | 0.6785
20 | 0.9203 0.7368 0.7322 | 0.7165
40 | 0.9267 0.7495 0.7380 | 0.7268

5| 0.9515 0.7115 0.7183 | 0.6833
0.99 | 10 | 0.9583 0.7365 0.7282 | 0.7055
20 | 0.9603 0.7345 0.7258 | 0.7083
40 | 0.9617 0.7440 0.7340 | 0.7220
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Table 4: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.75, J = 30

coverage
o) n | incorrect | version 1 | version 2 | MLE
5 | 0.8300 0.5883 0.5982 | 0.5913
0.70 | 10 | 0.8143 0.6510 0.6530 | 0.6472
20| 0.8125 0.6930 0.6953 | 0.6930
40 | 0.8035 0.6915 0.6903 | 0.6883

5| 0.8235 0.6148 0.6185 | 0.6078
0.75 | 10 | 0.8280 0.6633 0.6667 | 0.6610
20 | 0.8310 0.6875 0.6883 | 0.6853
40 | 0.8160 0.7205 0.7170 | 0.7145

5| 0.8445 0.6110 0.6295 | 0.6180
0.80 | 10 | 0.8478 0.6615 0.6667 | 0.6597
20 | 0.8370 0.7017 0.6997 | 0.6947
40 | 0.8343 0.7320 0.7330 | 0.7300

5| 0.8715 0.6160 0.6345 | 0.6242
0.85 | 10 | 0.8708 0.6880 0.6885 | 0.6827
20 | 0.8682 0.7020 0.7005 | 0.6957
40 | 0.8758 0.7332 0.7282 | 0.7262

5| 0.8985 0.6375 0.6607 | 0.6500
0.90 | 10 | 0.9022 0.6883 0.6915 | 0.6850
20 | 0.9075 0.7005 0.7047 | 0.7000
40 | 0.9045 0.7208 0.7250 | 0.7202

5| 0.9267 0.6450 0.6880 | 0.6710
0.95 | 10 | 0.9455 0.6990 0.7133 | 0.7037
20 | 0.9517 0.7230 0.7288 | 0.7228
40 | 0.9470 0.7228 0.7210 | 0.7163

5| 09715 0.6530 0.7095 | 0.6933
0.99 | 10 | 0.9865 0.7007 0.7305 | 0.7190
20 | 0.9918 0.7320 0.7392 | 0.7310
40 | 0.9940 0.7395 0.7392 | 0.7350
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Table 5: Observed confidence interval coverage of the 0.05 quantile when
the nominal coverage equals 0.75, J = 2

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.7795 0.7075 0.6595 | 0.5915
0.70 | 10 | 0.7847 0.7228 0.6865 | 0.6420
20| 0.7730 0.7235 0.6947 | 0.6623
40 | 0.7802 0.7460 0.7262 | 0.7047

5| 0.7935 0.7013 0.6583 | 0.5897
0.75 | 10 | 0.7917 0.7318 0.6990 | 0.6530
20| 0.7812 0.7340 0.7053 | 0.6733
40 | 0.7788 0.7272 0.7145 | 0.6955

5| 0.7950 0.7153 0.6690 | 0.5978
0.80 | 10 | 0.7990 0.7395 0.6993 | 0.6530
20| 0.7913 0.7352 0.7113 | 0.6833
40 | 0.7903 0.7410 0.7218 | 0.7007

5| 0.8103 0.7225 0.6770 | 0.6028
0.85 | 10 | 0.8010 0.7395 0.7010 | 0.6562
20 | 0.8095 0.7355 0.7117 | 0.6787
40 | 0.8047 0.7405 0.7240 | 0.7053

o | 0.8147 0.7165 0.6670 | 0.5942
0.90 | 10 | 0.8123 0.7292 0.6943 | 0.6468
20 | 0.8190 0.7460 0.7208 | 0.6913
40 | 0.8133 0.7402 0.7242 | 0.7045

5| 0.8350 0.7332 0.6895 | 0.6095
0.95 | 10 | 0.8357 0.7472 0.7117 | 0.6603
20 | 0.8307 0.7422 0.7143 | 0.6833
40 | 0.8237 0.7418 0.7245 | 0.7045

5| 0.8525 0.7485 0.7053 | 0.6332
0.99 | 10 | 0.8430 0.7470 0.7133 | 0.6597
20 | 0.8452 0.7505 0.7235 | 0.6950
40 | 0.8360 0.7388 0.7232 | 0.7013
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Table 6: Observed confidence interval coverage of the 0.05 quantile when
the nominal coverage equals 0.75, J =4

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.7903 0.6730 0.6448 | 0.6068
0.70 | 10 | 0.8117 0.7150 0.6957 | 0.6733
20| 0.7895 0.7230 0.7123 | 0.6940
40 | 0.7943 0.7340 0.7235 | 0.7085

5| 0.7987 0.6827 0.6545 | 0.6185
0.75 | 10 | 0.8103 0.7037 0.6840 | 0.6610
20 | 0.8057 0.7208 0.7060 | 0.6877
40 | 0.7975 0.7328 0.7200 | 0.7087

5| 0.8345 0.7050 0.6727 | 0.6360
0.80 | 10 | 0.8220 0.7255 0.7025 | 0.6773
20 | 0.8257 0.7315 0.7180 | 0.6970
40 | 0.8270 0.7470 0.7358 | 0.7222

5| 0.8365 0.7060 0.6863 | 0.6415
0.85 | 10 | 0.8407 0.7140 0.6953 | 0.6645
20| 0.8330 0.7305 0.7127 | 0.6923
40 | 0.8355 0.7442 0.7338 | 0.7202

5| 0.8552 0.7027 0.6743 | 0.6385
0.90 | 10 | 0.8570 0.7295 0.7165 | 0.6840
20 | 0.8550 0.7342 0.7150 | 0.6980
40 | 0.8528 0.7450 0.7308 | 0.7188

5| 0.8882 0.7120 0.7003 | 0.6515
0.95 | 10 | 0.8902 0.7212 0.7060 | 0.6735
20 | 0.8832 0.7438 0.7290 | 0.7080
40 | 0.8818 0.7460 0.7345 | 0.7215

5| 0.9155 0.7358 0.7190 | 0.6680
0.99 | 10 | 0.9140 0.7355 0.7240 | 0.6867
20 | 0.9187 0.7388 0.7220 | 0.7047
40 | 0.9247 0.7598 0.7485 | 0.7350
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Table 7: Observed confidence interval coverage of the 0.05 quantile when
the nominal coverage equals 0.75, J = 8

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.8077 0.6432 0.6348 | 0.6165
0.70 | 10 | 0.8095 0.6895 0.6830 | 0.6700
20 | 0.8137 0.7093 0.7030 | 0.6937
40 | 0.7997 0.7302 0.7262 | 0.7180

5| 0.8205 0.6645 0.6565 | 0.6335
0.75 | 10 | 0.8337 0.6963 0.6857 | 0.6683
20 | 0.8243 0.7218 0.7170 | 0.7073
40 | 0.8125 0.7250 0.7212 | 0.7137

5| 0.8363 0.6673 0.6625 | 0.6408
0.80 | 10 | 0.8393 0.7040 0.6977 | 0.6815
20| 0.8375 0.7252 0.7170 | 0.7065
40 | 0.8355 0.7280 0.7225 | 0.7160

5| 0.8565 0.6765 0.6780 | 0.6515
0.85 | 10 | 0.8610 0.7047 0.6955 | 0.6760
20 | 0.8580 0.7278 0.7198 | 0.7110
40 | 0.8530 0.7365 0.7260 | 0.7202

5| 0.8888 0.6840 0.6877 | 0.6575
0.90 | 10 | 0.8880 0.7137 0.7117 | 0.6927
20 | 0.8860 0.7305 0.7208 | 0.7087
40 | 0.8810 0.7372 0.7328 | 0.7252

5| 0.9185 0.7003 0.7037 | 0.6713
0.95 | 10 | 0.9143 0.7160 0.7105 | 0.6880
20| 0.9215 0.7298 0.7215 | 0.7080
40 | 0.9253 0.7328 0.7188 | 0.7095

5| 0.9463 0.6950 0.7027 | 0.6690
0.99 | 10 | 0.9650 0.7308 0.7290 | 0.7097
20 | 0.9645 0.7518 0.7375 | 0.7218
40 | 0.9633 0.7405 0.7368 | 0.7258
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Table 8: Observed confidence interval coverage of the 0.05 quantile when
the nominal coverage equals 0.75, J = 30

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.8155 0.6342 0.6360 | 0.6298
0.70 | 10 | 0.8087 0.6743 0.6727 | 0.6687
20 | 0.8090 0.7085 0.7025 | 0.7003
40 | 0.8073 0.7200 0.7177 | 0.7163

5| 0.8315 0.6268 0.6320 | 0.6248
0.75 | 10 | 0.8225 0.6607 0.6665 | 0.6610
20 | 0.8317 0.7060 0.7060 | 0.7037
40 | 0.8263 0.7270 0.7272 | 0.7255

5| 0.8538 0.6365 0.6555 | 0.6485
0.80 | 10 | 0.8440 0.6807 0.6920 | 0.6875
20 | 0.8492 0.7192 0.7192 | 0.7143
40 | 0.8470 0.7418 0.7390 | 0.7360

5| 0.8750 0.6542 0.6755 | 0.6657
0.85 | 10 | 0.8765 0.6863 0.6975 | 0.6923
20| 0.8715 0.7095 0.7113 | 0.7073
40 | 0.8770 0.7372 0.7312 | 0.7300

5| 0.9045 0.6502 0.6823 | 0.6725
0.90 | 10 | 0.9005 0.6967 0.7045 | 0.6983
20 | 0.9030 0.7133 0.7173 | 0.7137
40 | 0.9083 0.7242 0.7248 | 0.7230

o | 0.9347 0.6535 0.6910 | 0.6777
0.95 | 10 | 0.9537 0.6920 0.7157 | 0.7110
20 | 0.9577 0.7308 0.7400 | 0.7360
40 | 0.9537 0.7285 0.7285 | 0.7252

5| 0.9790 0.6573 0.7315 | 0.7177
0.99 | 10 | 0.9875 0.6977 0.7348 | 0.7260
20 | 0.9918 0.7173 0.7310 | 0.7248
40 | 0.9945 0.7335 0.7450 | 0.7395
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Table 9: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.90, J = 2

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9135 0.8702 0.8375 | 0.7218
0.70 | 10 | 0.9217 0.8865 0.8600 | 0.7887
20| 0.9193 0.8925 0.8740 | 0.8315
40 | 0.9257 0.8932 0.8835 | 0.8558

5| 0.9165 0.8782 0.8445 | 0.7330
0.75 | 10 | 0.9233 0.8935 0.8725 | 0.8075
20 | 0.9340 0.8882 0.8735 | 0.8320
40 | 0.9283 0.8958 0.8835 | 0.8555

5| 0.9283 0.8785 0.8488 | 0.7318
0.80 | 10 | 0.9363 0.8942 0.8755 | 0.8093
20 | 0.9293 0.8915 0.8780 | 0.8280
40 | 0.9305 0.9020 0.8900 | 0.8598

5| 0.9323 0.8878 0.8528 | 0.7428
0.85 | 10 | 0.9417 0.8910 0.8680 | 0.7965
20 | 0.9460 0.9000 0.8802 | 0.8413
40 | 0.9350 0.8920 0.8810 | 0.8550

5 | 0.9420 0.8875 0.8605 | 0.7528
0.90 | 10 | 0.9377 0.8925 0.8728 | 0.7980
20 | 0.9527 0.8988 0.8828 | 0.8367
40 | 0.9443 0.8892 0.8768 | 0.8472

o | 0.9497 0.8742 0.8450 | 0.7382
0.95 | 10 | 0.9537 0.9000 0.8718 | 0.7985
20 | 0.9597 0.8908 0.8772 | 0.8333
40 | 0.9577 0.8990 0.8885 | 0.8595

5| 0.9620 0.8882 0.8560 | 0.7498
0.99 | 10 | 0.9637 0.8938 0.8702 | 0.7980
20| 0.9673 0.8935 0.8785 | 0.8293
40 | 0.9630 0.9028 0.8930 | 0.8620
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Table 10: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.90, J =4

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9285 0.8380 0.8170 | 0.7470
0.70 | 10 | 0.9350 0.8712 0.8542 | 0.8113
20 | 0.9263 0.8832 0.8708 | 0.8413
40 | 0.9270 0.8780 0.8700 | 0.8560

5| 0.9395 0.8595 0.8403 | 0.7678
0.75 | 10 | 0.9437 0.8708 0.8532 | 0.8095
20 | 0.9407 0.8832 0.8705 | 0.8430
40 | 0.9413 0.8920 0.8840 | 0.8658

5| 0.9533 0.8622 0.8420 | 0.7788
0.80 | 10 | 0.9407 0.8758 0.8638 | 0.8195
20 | 0.9485 0.8818 0.8702 | 0.8435
40 | 0.9520 0.8952 0.8888 | 0.8708

5 | 0.9550 0.8695 0.8492 | 0.7840
0.85 | 10 | 0.9580 0.8802 0.8695 | 0.8237
20 | 0.9567 0.8902 0.8772 | 0.8508
40 | 0.9593 0.8998 0.8900 | 0.8702

5| 0.9593 0.8770 0.8630 | 0.7887
0.90 | 10 | 0.9698 0.8852 0.8728 | 0.8320
20| 0.9710 0.8922 0.8795 | 0.8505
40 | 0.9722 0.8940 0.8872 | 0.8672

5| 0.9735 0.8775 0.8682 | 0.8083
0.95 | 10 | 0.9832 0.8918 0.8810 | 0.8367
20 | 0.9870 0.9002 0.8928 | 0.8670
40 | 0.9858 0.9020 0.8932 | 0.8778

5| 0.9888 0.8922 0.8860 | 0.8170
0.99 | 10 | 0.9908 0.8968 0.8892 | 0.8478
20 | 0.9918 0.8965 0.8878 | 0.8568
40 | 0.9932 0.8952 0.8855 | 0.8640
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Table 11: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.90, J = 8

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9340 0.8220 0.8130 | 0.7738
0.70 | 10 | 0.9355 0.8620 0.8530 | 0.8283
20| 0.9375 0.8798 0.8745 | 0.8560
40 | 0.9345 0.8820 0.8768 | 0.8665

5| 0.9395 0.8263 0.8215 | 0.7778
0.75 | 10 | 0.9517 0.8665 0.8555 | 0.8337
20 | 0.9465 0.8798 0.8720 | 0.8552
40 | 0.9447 0.8898 0.8870 | 0.8735

5| 0.9500 0.8410 0.8355 | 0.7920
0.80 | 10 | 0.9535 0.8608 0.8538 | 0.8320
20 | 0.9545 0.8862 0.8805 | 0.8615
40 | 0.9560 0.8918 0.8888 | 0.8778

5 | 0.9680 0.8480 0.8485 | 0.8045
0.85 | 10 | 0.9725 0.8695 0.8640 | 0.8353
20 | 0.9680 0.8812 0.8742 | 0.8538
40 | 0.9800 0.8995 0.8920 | 0.8815

5| 0.9708 0.8662 0.8618 | 0.8237
0.90 | 10 | 0.9798 0.8702 0.8668 | 0.8430
20 | 0.9822 0.8822 0.8798 | 0.8620
40 | 0.9788 0.8975 0.8890 | 0.8778

5 | 0.9860 0.8672 0.8702 | 0.8275
0.95 | 10 | 0.9922 0.8855 0.8830 | 0.8578
20 | 0.9918 0.8962 0.8935 | 0.8725
40 | 0.9940 0.9000 0.8955 | 0.8832

5| 0.9962 0.8730 0.8790 | 0.8370
0.99 | 10 | 0.9982 0.8845 0.8842 | 0.8540
20 | 0.9992 0.8952 0.8922 | 0.8702
40 | 0.9995 0.9065 0.8988 | 0.8865
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Table 12: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.90, J = 30

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 09373 0.7830 0.7895 | 0.7745
0.70 | 10 | 0.9400 0.8343 0.8370 | 0.8290
20 | 0.9417 0.8530 0.8515 | 0.8450
40 | 0.9457 0.8762 0.8728 | 0.8690

5| 0.9445 0.7870 0.8040 | 0.7885
0.75 | 10 | 0.9475 0.8343 0.8385 | 0.8297
20 | 0.9495 0.8712 0.8705 | 0.8632
40 | 0.9493 0.8828 0.8798 | 0.8762

5| 0.9523 0.7907 0.8043 | 0.7890
0.80 | 10 | 0.9587 0.8430 0.8502 | 0.8390
20 | 0.9643 0.8642 0.8630 | 0.8565
40 | 0.9623 0.8702 0.8680 | 0.8655

5| 0.9623 0.8033 0.8273 | 0.8113
0.85 | 10 | 0.9695 0.8423 0.8528 | 0.8413
20| 0.9752 0.8675 0.8660 | 0.8590
40 | 0.9782 0.8870 0.8835 | 0.8800

5| 0.9775 0.8145 0.8430 | 0.8247
0.90 | 10 | 0.9835 0.8535 0.8655 | 0.8552
20 | 0.9842 0.8688 0.8745 | 0.8672
40 | 0.9868 0.8872 0.8898 | 0.8852

5 | 0.9920 0.8173 0.8570 | 0.8410
0.95 | 10 | 0.9958 0.8562 0.8745 | 0.8628
20 | 0.9980 0.8790 0.8875 | 0.8782
40 | 0.9980 0.8928 0.8930 | 0.8895

5| 0.9995 0.8215 0.8835 | 0.8612
0.99 | 10 | 1.0000 0.8625 0.8915 | 0.8792
20 | 1.0000 0.8828 0.8950 | 0.8870
40 | 1.0000 0.8932 0.8992 | 0.8930
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Table 13: Observed confidence interval coverage of the 0.05 quantile when
the nominal coverage equals 0.90, J = 2

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9225 0.8810 0.8550 | 0.7505
0.70 | 10 | 0.9193 0.8855 0.8628 | 0.8047
20 | 0.9225 0.8905 0.8760 | 0.8383
40 | 0.9140 0.8872 0.8768 | 0.8490

5| 0.9233 0.8822 0.8502 | 0.7578
0.75 | 10 | 0.9295 0.8890 0.8702 | 0.8125
20 | 0.9263 0.8965 0.8805 | 0.8415
40 | 0.9220 0.8920 0.8828 | 0.8605

5| 0.9237 0.8760 0.8485 | 0.7548
0.80 | 10 | 0.9317 0.8898 0.8655 | 0.8060
20 | 0.9323 0.8935 0.8805 | 0.8417
40 | 0.9313 0.8955 0.8868 | 0.8582

5| 0.9395 0.8842 0.8525 | 0.7550
0.85 | 10 | 0.9405 0.8915 0.8658 | 0.8080
20 | 0.9387 0.8888 0.8770 | 0.8380
40 | 0.9420 0.9087 0.9000 | 0.8760

5| 0.9415 0.8832 0.8600 | 0.7558
0.90 | 10 | 0.9427 0.8875 0.8695 | 0.8155
20 | 0.9567 0.9028 0.8870 | 0.8458
40 | 0.9495 0.8998 0.8912 | 0.8655

5| 0.9573 0.8878 0.8625 | 0.7668
0.95 | 10 | 0.9605 0.8978 0.8835 | 0.8225
20 | 0.9550 0.8945 0.8792 | 0.8387
40 | 0.9553 0.8948 0.8845 | 0.8605

5| 0.9620 0.8990 0.8715 | 0.7695
0.99 | 10 | 0.9640 0.8948 0.8788 | 0.8217
20 | 0.9683 0.9022 0.8888 | 0.8485
40 | 0.9677 0.8970 0.8892 | 0.8605
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Table 14: Observed confidence interval coverage of the 0.05 quantile when
the nominal coverage equals 0.90, J =4

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9270 0.8578 0.8415 | 0.7817
0.70 | 10 | 0.9257 0.8752 0.8635 | 0.8275
20 | 0.9350 0.8802 0.8712 | 0.8490
40 | 0.9267 0.8905 0.8850 | 0.8710

5| 0.9317 0.8538 0.8357 | 0.7827
0.75 | 10 | 0.9425 0.8792 0.8648 | 0.8337
20 | 0.9463 0.8882 0.8808 | 0.8608
40 | 0.9467 0.8972 0.8922 | 0.8765

5| 0.9387 0.8505 0.8390 | 0.7860
0.80 | 10 | 0.9457 0.8732 0.8612 | 0.8260
20 | 0.9527 0.8958 0.8840 | 0.8638
40 | 0.9530 0.8980 0.8905 | 0.8785

5| 0.9543 0.8625 0.8500 | 0.7963
0.85 | 10 | 0.9620 0.8868 0.8750 | 0.8425
20 | 0.9565 0.8938 0.8868 | 0.8652
40 | 0.9690 0.9018 0.8985 | 0.8788

5| 0.9615 0.8792 0.8690 | 0.8077
0.90 | 10 | 0.9708 0.8942 0.8820 | 0.8460
20 | 0.9750 0.8955 0.8850 | 0.8635
40 | 0.9720 0.8960 0.8890 | 0.8732

5| 09748 0.8708 0.8648 | 0.8047
0.95 | 10 | 0.9800 0.8938 0.8848 | 0.8458
20 | 0.9852 0.8968 0.8888 | 0.8598
40 | 0.9860 0.8952 0.8910 | 0.8732

5| 0.9865 0.8818 0.8752 | 0.8183
0.99 | 10 | 0.9922 0.8918 0.8860 | 0.8427
20 | 0.9918 0.9020 0.8925 | 0.8695
40 | 0.9918 0.8968 0.8908 | 0.8702
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Table 15: Observed confidence interval coverage of the 0.05 quantile when
the nominal coverage equals 0.90, J = 8

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9357 0.8275 0.8210 | 0.7887
0.70 | 10 | 0.9377 0.8678 0.8612 | 0.8445
20 | 0.9403 0.8760 0.8698 | 0.8562
40 | 0.9445 0.8972 0.8935 | 0.8855

5| 0.9423 0.8363 0.8363 | 0.8007
0.75 | 10 | 0.9463 0.8662 0.8638 | 0.8385
20 | 0.9487 0.8832 0.8795 | 0.8672
40 | 0.9427 0.8800 0.8770 | 0.8675

5| 0.9497 0.8485 0.8468 | 0.8105
0.80 | 10 | 0.9507 0.8725 0.8665 | 0.8475
20 | 0.9537 0.8780 0.8718 | 0.8552
40 | 0.9580 0.8852 0.8795 | 0.8712

5 | 0.9600 0.8518 0.8570 | 0.8260
0.85 | 10 | 0.9683 0.8690 0.8700 | 0.8458
20 | 0.9680 0.8850 0.8808 | 0.8690
40 | 0.9690 0.8900 0.8852 | 0.8740

5| 09748 0.8450 0.8518 | 0.8160
0.90 | 10 | 0.9808 0.8742 0.8732 | 0.8465
20 | 0.9815 0.8872 0.8878 | 0.8758
40 | 0.9858 0.8955 0.8908 | 0.8802

5| 0.9882 0.8615 0.8745 | 0.8317
0.95 | 10 | 0.9920 0.8898 0.8882 | 0.8640
20 | 0.9940 0.8960 0.8955 | 0.8778
40 | 0.9952 0.9000 0.8930 | 0.8850

5| 0.9982 0.8692 0.8880 | 0.8470
0.99 | 10 | 0.9982 0.8725 0.8868 | 0.8630
20 | 0.9990 0.8938 0.8880 | 0.8692
40 | 0.9992 0.8930 0.8918 | 0.8800
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Table 16: Observed confidence interval coverage of the 0.05 quantile when
the nominal coverage equals 0.90, J = 30

coverage
o) n | incorrect | version 1 | version 2 | MLE
5 | 0.9403 0.7987 0.8055 | 0.7963
0.70 | 10 | 0.9445 0.8508 0.8540 | 0.8480
20 | 0.9440 0.8725 0.8732 | 0.8680
40 | 0.9470 0.8800 0.8800 | 0.8772

5| 0.9517 0.8073 0.8217 | 0.8115
0.75 | 10 | 0.9510 0.8478 0.8498 | 0.8420
20 | 0.9527 0.8750 0.8778 | 0.8735
40 | 0.9595 0.8805 0.8808 | 0.8768

5| 0.9570 0.8023 0.8215 | 0.8100
0.80 | 10 | 0.9567 0.8492 0.8505 | 0.8455
20| 0.9675 0.8730 0.8742 | 0.8695
40 | 0.9688 0.8828 0.8858 | 0.8840

5 | 0.9690 0.8200 0.8345 | 0.8197
0.85 | 10 | 0.9738 0.8530 0.8625 | 0.8528
20| 0.9758 0.8750 0.8748 | 0.8685
40 | 0.9778 0.8818 0.8812 | 0.8790

5 | 0.9800 0.8235 0.8492 | 0.8383
0.90 | 10 | 0.9875 0.8540 0.8730 | 0.8622
20 | 0.9910 0.8782 0.8808 | 0.8752
40 | 0.9905 0.8885 0.8905 | 0.8872

5| 0.9930 0.8247 0.8692 | 0.8562
0.95 | 10 | 0.9958 0.8525 0.8802 | 0.8692
20| 0.9972 0.8755 0.8822 | 0.8755
40 | 0.9995 0.8978 0.8960 | 0.8932

5| 0.9995 0.8085 0.8890 | 0.8705
0.99 | 10 | 1.0000 0.8612 0.8948 | 0.8848
20 | 1.0000 0.8720 0.8868 | 0.8762
40 | 1.0000 0.8925 0.8970 | 0.8908
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Table 17: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.95, J = 2

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9617 0.9367 0.9143 | 0.7985
0.70 | 10 | 0.9587 0.9423 0.9285 | 0.8562
20 | 0.9583 0.9443 0.9327 | 0.8892
40 | 0.9640 0.9523 0.9455 | 0.9185

5| 0.9660 0.9345 0.9145 | 0.8033
0.75 | 10 | 0.9665 0.9473 0.9307 | 0.8670
20 | 0.9635 0.9483 0.9400 | 0.8980
40 | 0.9698 0.9530 0.9475 | 0.9205

5| 0.9613 0.9405 0.9215 | 0.8087
0.80 | 10 | 0.9657 0.9395 0.9290 | 0.8688
20| 0.9673 0.9505 0.9393 | 0.8915
40 | 0.9718 0.9473 0.9365 | 0.9120

5| 0.9698 0.9387 0.9183 | 0.8083
0.85 | 10 | 0.9735 0.9495 0.9365 | 0.8728
20| 0.9738 0.9447 0.9347 | 0.8895
40 | 0.9732 0.9453 0.9400 | 0.9175

5| 0.9695 0.9337 0.9157 | 0.8067
0.90 | 10 | 0.9775 0.9495 0.9370 | 0.8702
20 | 0.9810 0.9495 0.9395 | 0.9008
40 | 0.9792 0.9483 0.9407 | 0.9147

5| 0.9842 0.9410 0.9250 | 0.8123
0.95 | 10 | 0.9825 0.9527 0.9400 | 0.8775
20 | 0.9862 0.9510 0.9425 | 0.9070
40 | 0.9860 0.9487 0.9410 | 0.9157

5| 0.9875 0.9460 0.9320 | 0.8225
0.99 | 10 | 0.9870 0.9485 0.9383 | 0.8752
20 | 0.9900 0.9445 0.9337 | 0.8910
40 | 0.9900 0.9515 0.9455 | 0.9185
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Table 18: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.95, J =4

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9667 0.9100 0.9000 | 0.8257
0.70 | 10 | 0.9725 0.9313 0.9205 | 0.8785
20| 0.9712 0.9417 0.9373 | 0.9117
40 | 0.9663 0.9395 0.9365 | 0.9183

5| 0.9685 0.9183 0.9058 | 0.8377
0.75 | 10 | 0.9752 0.9347 0.9243 | 0.8902
20| 0.9712 0.9380 0.9330 | 0.9073
40 | 0.9800 0.9435 0.9377 | 0.9207

5| 0.9780 0.9273 0.9137 | 0.8455
0.80 | 10 | 0.9778 0.9340 0.9250 | 0.8812
20 | 0.9770 0.9433 0.9360 | 0.9120
40 | 0.9822 0.9487 0.9433 | 0.9257

5| 0.9782 0.9330 0.9227 | 0.8495
0.85 | 10 | 0.9865 0.9375 0.9295 | 0.8920
20 | 0.9830 0.9420 0.9370 | 0.9080
40 | 0.9860 0.9490 0.9460 | 0.9303

5| 0.9845 0.9405 0.9335 | 0.8650
0.90 | 10 | 0.9900 0.9335 0.9250 | 0.8862
20 | 0.9912 0.9447 0.9383 | 0.9097
40 | 0.9902 0.9450 0.9395 | 0.9210

5 | 0.9910 0.9377 0.9277 | 0.8612
0.95 | 10 | 0.9968 0.9427 0.9363 | 0.8930
20 | 0.9962 0.9445 0.9377 | 0.9127
40 | 0.9965 0.9515 0.9483 | 0.9300

5| 0.9978 0.9430 0.9407 | 0.8798
0.99 | 10 | 0.9992 0.9503 0.9427 | 0.9030
20 | 0.9982 0.9515 0.9467 | 0.9195
40 | 0.9995 0.9513 0.9457 | 0.9295

o6



Table 19: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.95, J = 8

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 09712 0.8968 0.8928 | 0.8485
0.70 | 10 | 0.9728 0.9177 0.9193 | 0.8920
20 | 0.9750 0.9290 0.9240 | 0.9077
40 | 0.9715 0.9375 0.9335 | 0.9243

5| 0.9690 0.8972 0.8952 | 0.8512
0.75 | 10 | 0.9772 0.9263 0.9230 | 0.8970
20 | 0.9815 0.9313 0.9280 | 0.9113
40 | 0.9750 0.9347 0.9315 | 0.9220

5| 0.9755 0.9080 0.9080 | 0.8600
0.80 | 10 | 0.9785 0.9345 0.9325 | 0.9075
20 | 0.9838 0.9380 0.9350 | 0.9215
40 | 0.9852 0.9487 0.9447 | 0.9355

5| 0.9808 0.9090 0.9115 | 0.8688
0.85 | 10 | 0.9875 0.9287 0.9297 | 0.9035
20 | 0.9878 0.9317 0.9293 | 0.9130
40 | 0.9912 0.9427 0.9413 | 0.9280

5| 0.9922 0.9270 0.9303 | 0.8892
0.90 | 10 | 0.9950 0.9407 0.9347 | 0.9115
20 | 0.9952 0.9437 0.9397 | 0.9215
40 | 0.9965 0.9440 0.9413 | 0.9305

5| 0.9945 0.9247 0.9270 | 0.8838
0.95 | 10 | 0.9980 0.9350 0.9350 | 0.9058
20 | 0.9990 0.9510 0.9490 | 0.9297
40 | 0.9990 0.9480 0.9467 | 0.9385

5| 1.0000 0.9290 0.9373 | 0.8958
0.99 | 10 | 1.0000 0.9490 0.9483 | 0.9187
20 | 1.0000 0.9490 0.9463 | 0.9277
40 | 1.0000 0.9467 0.9450 | 0.9305
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Table 20: Observed confidence interval coverage of the 0.01 quantile when
the nominal coverage equals 0.95, J = 30

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9705 0.8642 0.8712 | 0.8572
0.70 | 10 | 0.9765 0.9083 0.9065 | 0.8990
20| 0.9772 0.9260 0.9257 | 0.9215
40 | 0.9792 0.9335 0.9333 | 0.9300

5| 0.9700 0.8808 0.8878 | 0.8730
0.75 | 10 | 0.9810 0.9107 0.9115 | 0.9032
20 | 0.9818 0.9277 0.9333 | 0.9267
40 | 0.9818 0.9375 0.9365 | 0.9340

5| 0.9805 0.8735 0.8880 | 0.8738
0.80 | 10 | 0.9860 0.9217 0.9230 | 0.9145
20 | 0.9865 0.9310 0.9335 | 0.9267
40 | 0.9865 0.9395 0.9400 | 0.9367

5| 0.9858 0.8795 0.9035 | 0.8878
0.85 | 10 | 0.9888 0.9140 0.9187 | 0.9080
20 | 0.9912 0.9387 0.9387 | 0.9337
40 | 0.9932 0.9390 0.9345 | 0.9300

5| 0.9945 0.8782 0.9073 | 0.8878
0.90 | 10 | 0.9970 0.9163 0.9235 | 0.9137
20 | 0.9975 0.9293 0.9315 | 0.9237
40 | 0.9978 0.9367 0.9360 | 0.9313

5| 0.9982 0.8955 0.9310 | 0.9133
0.95 | 10 | 0.9998 0.9243 0.9320 | 0.9237
20 | 0.9995 0.9435 0.9500 | 0.9425
40 | 1.0000 0.9467 0.9487 | 0.9437

5| 1.0000 0.8978 0.9395 | 0.9207
0.99 | 10 | 1.0000 0.9250 0.9453 | 0.9335
20 | 1.0000 0.9367 0.9417 | 0.9353
40 | 1.0000 0.9405 0.9445 | 0.9387
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Table 21: Observed confidence interval coverage of the 0.10 quantile when
the nominal coverage equals 0.95, J = 2

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9605 0.9337 0.9157 | 0.8273
0.70 | 10 | 0.9653 0.9465 0.9393 | 0.8918
20 | 0.9635 0.9400 0.9303 | 0.8965
40 | 0.9643 0.9465 0.9423 | 0.9215

5| 0.9655 0.9437 0.9275 | 0.8375
0.75 | 10 | 0.9650 0.9385 0.9267 | 0.8702
20 | 0.9705 0.9530 0.9450 | 0.9127
40 | 0.9705 0.9445 0.9425 | 0.9237

5| 0.9670 0.9320 0.9170 | 0.8347
0.80 | 10 | 0.9735 0.9420 0.9303 | 0.8860
20| 0.9715 0.9490 0.9415 | 0.9073
40 | 0.9745 0.9467 0.9413 | 0.9237

5| 0.9683 0.9395 0.9240 | 0.8353
0.85 | 10 | 0.9738 0.9413 0.9345 | 0.8808
20| 0.9788 0.9443 0.9375 | 0.9062
40 | 0.9800 0.9530 0.9483 | 0.9263

5| 0.9740 0.9477 0.9345 | 0.8458
0.90 | 10 | 0.9785 0.9483 0.9385 | 0.8845
20| 0.9775 0.9440 0.9360 | 0.9087
40 | 0.9820 0.9480 0.9417 | 0.9227

5| 0.9802 0.9485 0.9317 | 0.8455
0.95 | 10 | 0.9838 0.9485 0.9373 | 0.8838
20 | 0.9878 0.9520 0.9433 | 0.9135
40 | 0.9842 0.9453 0.9390 | 0.9163

5| 0.9862 0.9477 0.9370 | 0.8550
0.99 | 10 | 0.9898 0.9495 0.9403 | 0.8905
20 | 0.9892 0.9507 0.9405 | 0.9155
40 | 0.9905 0.9515 0.9460 | 0.9210
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Table 22: Observed confidence interval coverage of the 0.10 quantile when
the nominal coverage equals 0.95, J =4

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9683 0.9180 0.9093 | 0.8595
0.70 | 10 | 0.9710 0.9337 0.9270 | 0.8950
20 | 0.9702 0.9370 0.9333 | 0.9173
40 | 0.9782 0.9497 0.9453 | 0.9357

5| 0.9708 0.9260 0.9167 | 0.8698
0.75 | 10 | 0.9782 0.9357 0.9285 | 0.9010
20 | 0.9805 0.9493 0.9447 | 0.9295
40 | 0.9790 0.9467 0.9435 | 0.9327

5| 09718 0.9307 0.9267 | 0.8768
0.80 | 10 | 0.9795 0.9403 0.9333 | 0.9038
20 | 0.9860 0.9463 0.9400 | 0.9240
40 | 0.9805 0.9423 0.9383 | 0.9270

5| 0.9798 0.9277 0.9245 | 0.8728
0.85 | 10 | 0.9868 0.9457 0.9380 | 0.9055
20 | 0.9868 0.9403 0.9370 | 0.9200
40 | 0.9895 0.9513 0.9467 | 0.9353

5| 0.9865 0.9305 0.9275 | 0.8812
0.90 | 10 | 0.9895 0.9383 0.9345 | 0.8998
20 | 0.9920 0.9490 0.9447 | 0.9240
40 | 0.9938 0.9495 0.9463 | 0.9330

5| 0.9915 0.9345 0.9327 | 0.8785
0.95 | 10 | 0.9945 0.9455 0.9385 | 0.9038
20 | 0.9982 0.9490 0.9457 | 0.9247
40 | 0.9960 0.9483 0.9473 | 0.9337

5| 0.9978 0.9320 0.9330 | 0.8820
0.99 | 10 | 0.9975 0.9385 0.9340 | 0.9022
20 | 0.9995 0.9403 0.9377 | 0.9147
40 | 0.9992 0.9455 0.9435 | 0.9305
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Table 23: Observed confidence interval coverage of the 0.10 quantile when
the nominal coverage equals 0.95, J = 8

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9695 0.9093 0.9075 | 0.8815
0.70 | 10 | 0.9760 0.9333 0.9293 | 0.9133
20| 0.9762 0.9447 0.9427 | 0.9333
40 | 0.9765 0.9485 0.9475 | 0.9417

5| 0.9752 0.9113 0.9125 | 0.8818
0.75 | 10 | 0.9762 0.9170 0.9165 | 0.8988
20 | 0.9802 0.9400 0.9367 | 0.9265
40 | 0.9812 0.9445 0.9430 | 0.9357

5| 0.9810 0.9215 0.9160 | 0.8922
0.80 | 10 | 0.9840 0.9360 0.9325 | 0.9163
20 | 0.9848 0.9405 0.9400 | 0.9315
40 | 0.9898 0.9427 0.9405 | 0.9325

5| 0.9875 0.9153 0.9220 | 0.8935
0.85 | 10 | 0.9915 0.9335 0.9310 | 0.9127
20 | 0.9932 0.9415 0.9410 | 0.9293
40 | 0.9920 0.9487 0.9445 | 0.9377

5 | 0.9910 0.9267 0.9305 | 0.9022
0.90 | 10 | 0.9958 0.9413 0.9443 | 0.9237
20 | 0.9955 0.9413 0.9445 | 0.9335
40 | 0.9982 0.9537 0.9517 | 0.9440

5 | 0.9968 0.9215 0.9365 | 0.9030
0.95 | 10 | 0.9992 0.9407 0.9447 | 0.9245
20 | 0.9992 0.9473 0.9485 | 0.9350
40 | 1.0000 0.9490 0.9493 | 0.9395

5| 1.0000 0.9130 0.9377 | 0.9067
0.99 | 10 | 0.9998 0.9360 0.9403 | 0.9235
20 | 1.0000 0.9470 0.9455 | 0.9317
40 | 1.0000 0.9435 0.9420 | 0.9335
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Table 24: Observed confidence interval coverage of the 0.10 quantile when
the nominal coverage equals 0.95, J = 30

coverage
o) n | incorrect | version 1 | version 2 | MLE
5| 0.9758 0.8958 0.9012 | 0.8925
0.70 | 10 | 0.9740 0.9203 0.9240 | 0.9180
20| 0.9768 0.9345 0.9337 | 0.9313
40 | 0.9818 0.9425 0.9427 | 0.9413

5| 0.9785 0.8938 0.9000 | 0.8925
0.75 | 10 | 0.9830 0.9205 0.9240 | 0.9195
20 | 0.9865 0.9337 0.9320 | 0.9293
40 | 0.9830 0.9377 0.9387 | 0.9377

5| 0.9832 0.9000 0.9103 | 0.9012
0.80 | 10 | 0.9860 0.9157 0.9203 | 0.9133
20 | 0.9905 0.9417 0.9450 | 0.9417
40 | 0.9902 0.9417 0.9433 | 0.9405

o | 0.9895 0.8930 0.9117 | 0.9038
0.85 | 10 | 0.9908 0.9207 0.9315 | 0.9245
20 | 0.9920 0.9317 0.9363 | 0.9310
40 | 0.9965 0.9443 0.9445 | 0.9430

5 | 0.9968 0.8988 0.9217 | 0.9130
0.90 | 10 | 0.9968 0.9273 0.9377 | 0.9337
20 | 0.9985 0.9415 0.9440 | 0.9413
40 | 0.9998 0.9503 0.9497 | 0.9477

5| 0.9982 0.8932 0.9365 | 0.9245
0.95 | 10 | 1.0000 0.9210 0.9430 | 0.9360
20 | 1.0000 0.9323 0.9397 | 0.9355
40 | 0.9995 0.9413 0.9397 | 0.9375

5| 1.0000 0.8758 0.9427 | 0.9283
0.99 | 10 | 1.0000 0.9085 0.9417 | 0.9343
20 | 1.0000 0.9355 0.9493 | 0.9437
40 | 1.0000 0.9400 0.9445 | 0.9417
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Actual confidence interval coverage
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Figure 1: Approach of actual confidence interval coverage to nominal (.75)
coverage as sample size increases. The correlation between the predictor
and the response is 0.85. The number of treatments is four. The confidence
interval is for the 0.01 quantile. (See Table 2.)
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Figure 2: Sample size reduction factor as a function of the correlation be-
tween the predictor and the response, and the number of treatments .J.
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Figure 3: The ratio of the correct to the incorrect allowable property as a
function of the correlation between the predictor and the response, and the
number of treatments J. n = 10, CV = 0.15
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Figure 4: The ratio of the correct to the incorrect allowable property as a
function of the correlation between the predictor and the response, and the
number of treatments J. n = 10, CV = 0.25
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Figure 5: The ratio of the correct to the incorrect allowable property as a
function of the correlation between the predictor and the response, and the
number of treatments J. n = 20, CV = 0.25
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