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Abstract

When one designs with wood, shear deflections can become substantial compared
to deflections due to moments, because the modulus of elasticity in bending
differs from that in shear by a large amount.

This report presents a simplified energy method to calculate shear deflections
in bending members. This simplified approach should help designers decide
whether or not shear deflection is important in any complex situation.
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Introduction

The purpose of this report is to present a simplified energy method of
computing shear deflection in a bending member. Shear deflections due to
changing moments often need to be determined for wood, since its modulus of
elasticity in bending and in shear differ approximately by a factor of 16. The
factor is only 2.5 for steel, and 2.3 to 2.7 for concrete.

A brief review of the theory is presented here to help one to understand the
limitations of the method. For more details on energy methods used to compute
deflections, see reference ( 5 ).

Shear Deflection of Beams

Hooke’s law and the well-known shear stress formula from elementary strength
of material textbooks give us the total strain energy in a beam of length L due
to shear as:

(1)

where V is the shearing force in the direction of one of the principal axes at any
section along the beam due to any general loading through the shear
center at that section.

S is the static moment of the cross sectional area, above the point where
the shear stress is desired, about the principal axis which is perpen-
dicular to the direction of V.

I is the
to the

b is the
A is the
G is the

Let

moment of inertia about
direction of V.
breadth, at the point where the shearing stress is desired.
cross sectional area of a bean
modulus of elasticity in shear.

(2)

 U n d e r s c o r e d  n u m b e r s  i n  p a r e n t h e s e s  r e f e r  t o  L i t e r a t u r e  C i t e d  a t  t h e  e n d
o f  t h i s  r e p o r t .
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k is constant for a given shape, 10/9 for a circle and 6/5 for a rectangle. (For
further detail see Appendix. ) Equation (1.) becomes:

(3)

By applying Castiglianoys theorem ( 5 ), the deflection ∆ at point q due to a
general loading P is q

where V is due to P and Q. Note that Q is a fictitious load applied in the direction
of and at the point of the desired deflection, and let it be equal to zero after the

partial differentiation is performed. In (4), is the shear force due to the

external loads, call it V, and ~   is equivalent to the
3Q

load applied at the point q of the desired deflection.

Since v is constant for the various segments

shear force v due to a unit

 of a beam and since thet

quantity  is the area of the shear diagram for the i-th segment

due to the general loading P  divided by      the shear deflection is:

(5)

where n is the number of segments into which the beam is divided. The magnitude
of n is determined by any change in      on one hand or by an abrupt change in  
which effects    

When a general load has components in the direction of both principal axes,
k has to be determined with respect to both axes so that the shear deflection can
be computed in both directions.

Following are some illustrations of how equation (5) is used if a handbook
containing suitable shear diagrams is available.
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Example 1. --Statically indeterminate structures. When shear deflections are
large relative to the deflections due to moments, the reaction forces found in
handbooks are only approximate ( 6 ) because they are determined only on the
basis of the deflection due to bending moment without considering the shear
deflection as is customarily done in textbooks on indeterminate structures.

Given

Find:

A beam supported at three different points, as shown in figure 1, and
loaded by any general loading system
The shear deflection at point q.

The approximate magnitude of VA,
—

in many handbooks, and their values

The deflection at q is:

VC, and VD (as shown in fig. 1) can be found
— —
are dependent on a , b , and c only.

Note that the same sign convention has to be used for      as for    
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Example 2. --Statically determinate structures.

Given:  A cantilevered beam, circular in cross section, loaded with a uniformly
increasing load, as shown in figure 2.

Find: The deflection due to shear at a point one-third of the span away from
the support.

Figure 3 gives the shear diagram for a unit load at the point of interest.

Figure 4 shows the shear diagram due to the uniformly increasing load, and
the equation for the shear is

The area of the shear diagram between points A and B (shown by the cross-
hatched area in fig. 4) can be determined by the difference between two areas

(ABCFD and BCF), remembering that the area under this parabola is one-third
of the product of the height and length.
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and since the magnitude of v is 1, the deflection is

Conclusion

The simplification of the conventional energy method lies in the fact that the
integration is reduced to multiplication of the area of the shear diagram (due to
a general loading) and the ordinate of the shear diagram due to a unit load applied
at the desired point of shear deflection.

The simplification is possible because the ordinate of the shear diagram due
to a unit load is constant for various segments of the beam. It is hoped that, with
this simplified approach, designers can more readily check shear deflections
in cases where computations are ordinarily difficult to make but may be highly
desirable, e.g., two-span continuous I-beams made up of plywood web and
dimension lumber flanges.
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APPENDIX

Derivation of k for a Circular Cross Section

k can be derived by substituting the static moment, which is expressed as a
function of y , and breadth at y , the area of the cross section, and the moment of
inertia into equation (2). See figure 1A.
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Method of Determine k for an I-Beam

This derivation is applicable when the modulus of elasticity in bending is
different for the web and for the flange. In that case, figure 2A refers to the
transformed cross section. For further details on transformed cross sections
see reference ( 7 ). Furthermore, if the modulus of rigidity G of the web is alsow
different from the modulus of rigidity Gf of the flange, i.e., if Gf = 6GW, then the

integration has to be done in parts and the limits should be divided up so that the
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breadth and G will be constant between any pair of limits. By considering that
the I-beam has two axes of symmetry, the k is determined about one of the axes
as follows:

(2A)

Note that equation (2A) assumes

incorporate & in k According to
in the web, where

that G = Gw in equation (4). It is convenient to

(2A), S has to be determined in the flange and

(3A)

and

(4A)

When kl is to be determined, the limits are extended for the height of the
—

flange; therefore, the static moment of only the flange is to be included.

(5A)

For k2, the static moment in the web should be substituted.
—

(6A)
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that is

The area or the moment of inertia of the I-beam can be obtained as a difference
between rectangular ABCD and EFGII plus IJKL, as follows;

By substituting p and t into (9A), and (9A)
for k

(9A)

into (8A) we obtain the final expression
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which reduces to $ if 6 = 1, t = 1, and p = 1, or simply a rectangular cross
section. Note that k is independent of the actual sizes of the I-beam and depends
only on the ratio of the dimensions and on the ratio of the G’s. Equation (10A)
is presented in graphic form, in figure 3A.
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